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Abstract: In this work, a three-dimensional volume-of-fluid computational fluid dynamics (VOF-CFD)
model was developed for a coagulation bath of the dry-jet wet spinning (DJWS) process for the
production of polyacrylonitrile (PAN)-based carbon fiber under long-term operating conditions.
The PAN-fiber was assumed to be a deformable porous zone with variations in moving speed,
porosity, and permeability. The Froude number, interpreted as the wave-making resistance on the
liquid surface, was analyzed according to the PAN-fiber wind-up speed (vPAN). The effect of the
PAN speed on the reflection and wake flow formed by drag between a moving object and fluid is
presented. A method for tracking the wave amplitude with time is proposed based on the iso-surface
of the liquid volume fraction of 0.95. The wave signal for 30 min was divided into the initial and
resonance states that were distinguished at 8 min. The maximum wave amplitude was less than
0.5 mm around the PAN-fiber inlet nozzle for vPAN = 0.1–0.5 m/s in the resonance state. The VOF-CFD
model is useful in determining the maximum vPAN under an allowable air gap of the DJWS process.

Keywords: polyacrylonitrile-based carbon fiber; coagulation bath; dry-jet wet spinning process;
computational fluid dynamics; wave resonance; maximum wave amplitude

1. Introduction

Carbon fiber (CF) has attracted attention owing to the increase of its uses in the fields of aerospace,
automotives, sporting goods, biomedicine, building, and infrastructure [1–4]. The need for high-quality
and high-productivity CF has emerged due to a need for economic efficiency [5,6]. Polyacrylonitrile
(PAN)-based carbon fibers constitute an overwhelming share, i.e., more than 90%, of the world’s
CF production [7]; they are advantageous in terms of their high tensile strength, low density, and
reasonable cost [8].

Several spinning processes such as wet, dry, dry-jet wet, and melt spinning are used to fabricate
PAN-fiber [7,9,10]. The dry-jet wet spinning (DJWS) process possesses the advantages of high-speed
fiber formation, high concentration of dope, high degree of jet stretch, and control capability of
coagulation kinetics [9,11]. The DJWS process is characterized by the fact that the fiber solution is
extruded into air or a gaseous environment, and is pulled inside a coagulation bath [11,12].

The gap between the spinneret and the coagulation bath surface, called the air gap, varies with
the type of polymer and technology being used. The air gap does not only facilitate jet-stretch, but also
provides resistance to counter diffusion when the dope is immersed inside the coagulation bath; this is
a crucial factor for preventing the void structure of the fiber product [13]. By increasing the air gap
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height, the maximum attainable spinning speed decreases sharply [11]. A large air gap results in a
yarn of low tenacity [11] and high elongation stress [13]. A small air gap can lead to fiber breakage
by contact between the spinneret nozzle and the coagulation bath surface. It has been reported that
the molecular orientation of fibers induced by shear stress within the spinneret can relax in an air
gap of 1 cm [14]. A high-speed PAN-fiber production has been presented using a solvent-free DJWS
process [7].

Computational fluid dynamics (CFD) has been shown as a powerful tool for analyzing single-phase
hydrodynamics [2,3] as well as multiphase interactions [15–18]. The volume-of-fluid (VOF) CFD for
multiphase flows is widely used for capturing interphase surface characteristics such as tracking the
interface between gas and liquid phases in structured packing [19], and free-surface wave flow around
a surface-piercing foil [20]. The VOF method can handle highly distorted or breaking interfaces without
the need for a grid conformation [18–20]. However, few researchers have addressed the VOF-CFD
model the wave resonance on a free surface in the presence of obstacles and moving objects. Moreover,
the detection of wave amplitude is required to identify an allowable air gap in the DJWS process.

The purpose of this study was to develop a VOF-CFD model of a coagulation bath in the
DJWS process for the identification of wave resonance and amplitude on the liquid surface during
a long-term operating condition. The coagulation bath geometry for a DJWS process, CFD mesh
structure, and boundary conditions are presented. A method for tracking the wave amplitude with
time is proposed based on the iso-surface of the liquid volume fraction. The Froude number, wave
speed, and maximum wave amplitude (MWA) are investigated according to the PAN-fiber spinning
speed using the VOF-CFD model.

2. Coagulation Bath of DJWS Process

The symmetric coagulation bath of a DJWS process adopted from a patent [21] is shown in Figure 1.
The coagulation bath is 1400 mm × 300 mm × 1310 mm (length × width × height). The diameter of
the spinneret nozzle is 120 mm (see Figure 1a). The PAN solution is extruded through a commercial
spinneret nozzle with 3000 holes of 0.5 mm in each, and subsequently passes through the air gap before
being immersed into a dimethyl sulfoxide (DMSO)–water solution in the coagulation bath. The as-spun
fiber passes through a static guide roller immersed in the coagulation bath. In this CFD study, the PAN
solution uniformly injected from the nozzle is assumed as a porous medium. The non-slip boundary
condition was applied to the surface of the roller and the wall of the bath.

During the coagulation process, the PAN solution is spun, stretched, and wound to create the
fiber. As shown in Figure 1b,c, the shape of the PAN-bundle (or PAN solution) deforms from a circle to
an ellipse, and its size reduces linearly. The ellipse maintains the same form from A to B. The large
ellipse shrinks linearly to a small one from B to C. It is known that a short air gap benefits jet-stretch
and high production speed [11]. The DJWS process is operated for 30 min in the flow time.
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Figure 1. Geometry of coagulation bath and PAN bundle shape in dry-jet wet spinning (DJWS) process.

2.1. Mesh Structure and Material Properties

The boundary and mesh structure of the CFD domain are shown in Figure 2a. The inlet of the
DMSO–water solution is located below the liquid outlet at the top of the bath. The liquid overflows
from the liquid outlet. The PAN solution is injected 50 mm above the liquid surface. The PAN fiber
solidified in the coagulation bath exits at the end of the bath.

The CFD domain has a polyhedral mesh structure of 0.67 million cells. The mesh is concentrated
on the gas–liquid interface, PAN fiber, and walls. The near-PAN zone from the PAN inlet to the middle
roller where a strong perturbation of liquid can occur is compartmentalized and a relatively dense
mesh is used. The area at the top of the coagulation bath is named the freeboard.

Because the diameter and shape of the PAN fiber change and the PAN fiber is stretched through
the roller, the PAN fiber is assumed to be a continuous porous zone with variable moving velocity (v),
porosity (φ), and permeability (K). As shown in Figure 2b, the speed of the PAN fiber is divided into
four zones near the middle roller: vin, vmid

1 , vmid
2 , and vout. The first speed (vin) and the last speed (vout)

are regarded as the PAN-fiber spinning speed (vs) and wind-up speed (vPAN), respectively.
The one-filament diameters of the PAN-bundle are din

f = 0.5 (as the spinneret hole diameter),

dmid
f ,1 = dmid

f ,2 = 0.2, and dout
f = 0.1 mm [7]. The local porosity (φ) of the porous zone is calculated from
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the ratio of the cross-sectional area of all the filaments to that of the PAN bundle. Thus, φ is defined as
the reciprocal of a linear function of the Y-coordinate, i.e.,

1
φin = 0.9479− 4.79× 10−2

× (Y − 0.26)
1

φmid
1,2

= 0.9− 1.61× (Y + 0.09449)
1
φout = 0.6875

(1)

where the origin of Y is the bottom of the coagulation bath.Processes 2019, 7, x FOR PEER REVIEW 4 of 17 
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Figure 2. Mesh structure and polyacrylonitrile (PAN)-fiber moving velocity.

The transverse and parallel permeabilities (K⊥ and K||, respectively) are calculated from [22,23]

K⊥ =
16

9π
√

6


√

1−φc

1−φ
− 1


2.5

R2
f (2)

K‖ =
8R2

f

c
φ3

(1−φ)2 (3)

where φc = 1− π/
(
2
√

3
)

is the critical porosity for hexagonal packing, at which the filaments come
into contact, thus preventing flow in the transverse direction and c is the geometrical shape factor
equal to 53 for hexagonal packing. R f is the filament radius (= df/2). The porous viscous resistance
(1/K) is the reciprocal of the permeability. K⊥ and K|| along the Y-axis are defined as

1
Kin
⊥

= 3.86× 106 + 7.15× 107(Y − 0.26)
1

Kmid
1,2,⊥

= 7.15× 107 + 3.1× 1010(Y + 0.09449)
1

Kout
⊥

= 4.17× 109

(4)
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
1

Kin
‖

= 3.38E5 + 8.75× 106
× (Y − 0.26)

1
Kmid

1,2,‖
= 9.09E6 + 5.96× 109

× (Y + 0.09449)

1
Kout
‖

= 7.96× 108

(5)

In this study, five spinning velocities (vs) of the dope (polymer solution) at the spinneret nozzle
were considered with a jet-stretch ratio (vPAN/vs) of five [7,24,25]. Table 1 indicates the PAN-bundle
velocity (v), porosity (φ), and viscous resistance (1/K) according to the five cases. The porous zone was
divided into four: the inlet, middle roller 1, middle roller 2, and outlet. The five vPAN were 0.1, 0.25, 0.5,
0.75, and 1 m/s. vPAN was five times higher than vs according to the jet-stretch ratio, implying that the
PAN-fiber was elongated by five times during the coagulation. The ranges of porosity and viscous
resistance were indicated in each porous zone.

Table 1. Material properties of porous media zones.

Porous Zone
PAN-Bundle Velocity (v, m/s) Porosity (φ) Viscous Resistance

(1/K, m2)Case 1 Case 2 Case 3 Case 4 Case 5

Inlet 0.02 0.05 0.1 0.15 0.2 0.9479–0.9 3.86 × 106–7.54 × 107

Middle roller 1 0.03 0.075 0.15 0.225 0.3 0.9 7.54 × 107

Middle roller 2 0.04 0.1 0.2 0.3 0.4 0.9–0.6875 7.54 × 107–4.17 × 109

Outlet 0.1 0.25 0.5 0.75 1 0.6875 4.17 × 109

2.2. Mesh-Independence Test

A mesh-independence test was performed for Case 2 (vPAN = 0.25 m/s) on coarse, medium, and
fine meshes of 0.52, 0.673, and 1.42 million cells, respectively. The time- and volume-averaged velocities
in the near-PAN zone and the entire CFD domain are shown in Figure 3 with respect to the cell number.
The average velocities of the coarse and medium meshes were significantly different, whereas those
on the medium and fine meshes changed slightly. Therefore, the medium mesh was selected for
computational efficiency, while maintaining the numerical accuracy.Processes 2019, 7, x FOR PEER REVIEW 6 of 17 
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Figure 3. Mesh-independence test of computational fluid dynamics (CFD) domain at vPAN = 0.25 m/s
(Case 2).

It is noteworthy that the mesh density at the liquid surface should be sufficiently dense to capture
the surface wave. We recommend that the cell size at the liquid surface be smaller than 0.5 mm,
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according to our experience. The cell size at the liquid surface ranges from 0.38 to 0.45 mm on the
selected medium mesh.

3. VOF-CFD Model

The volume-of-fluid computational fluid dynamics model relies on the assumption that two
phases do not interpenetrate [2]. An unsteady-state VOF-CFD model was applied to the incompressible
gas–liquid system including air and the DMSO–water solution, where the diffusion of the solvent
(DMSO) from the PAN solution to the bath was ignored. The standard k–ε model was used for
modeling the turbulence, which has been used extensively for industrial applications [19]. Table 2
shows the VOF-CFD model.

Table 2. VOF-CFD model used in this study.

Continuity equation (DMSO): ∂αD
∂t +

→

∇ · (αD
→
u ) = 0 (T1)

(air): αD + αA = 1 (T2)

Single momentum equation: ∂
∂t (ρ

→
u ) +

→

∇ · (ρ
→
u
→
u ) = −

→

∇P +
→

∇ · [η(
→

∇
→
u +

→

∇
→
u

T
)] + ρ

→
g + Fsur f (T3)

where the surface tension force (Fsur f ) is Fsur f =
→

∇ ·
=
τ (T4)

with the surface stress tensor of
=
τ = σ

|→∇αD|
=
I −

→

∇αD·

(
→

∇αD

)T

|
→

∇αD |

 (T5)

Single properties (density): ρ = αAρA + αDρD (T6)
(viscosity): η = αAηA + αDηD (T7)

k-ε turbulence model: ∂
∂t (ρk) +

→

∇ ·

(
ρk
→
u
)
=
→

∇ ·

[(
η+

ηt

Dt
k

)
→

∇k
]
+ Gk − ρε (T8)

∂
∂t (ρε) +

→

∇ ·

(
ρε
→
u
)
=
→

∇ ·

[(
η+

ηt

Dt
ε

)
→

∇ε
]
+ C1ε

ε
k

(
Gk −C2ερ

ε2

k

)
(T9)

where: ηt = ρCµ k2

ε , Gk = ηtS2, and S =
√

2Si jSij . (T10)

The tracking of the interface between the two phases was accomplished by the solution of a
continuity equation for the volume fraction (αD) of the DMSO solution, where the DMSO solution is
denoted as the subscript D. Assuming no mass transfer between the two phases and no source term in
each phase, the continuity equation of the DMSO solution is expressed in Equation (T1), where

→
u is

the velocity. The continuity equation of the air phase (denoted as the subscript A) is computed using
Equation (T2).

In this study, a special interpolation treatment of αD to the cells that lie near the interface between
the two phases was applied, which was based on the compressive scheme of a second-order slope
limiter reconstruction [26]. To specify a cutoff limit for αD, a cutoff factor of αD = 1 × 10−6 was used.
Thus, all values of αD below the cutoff value were zero.

In the VOF model, the single momentum equation shown in Equation (T3) was solved throughout
the domain, and the resulting velocity field was shared in both phases. The left-hand side of Equation
(T3) includes the accumulation and convection of momentum per unit volume. On the right-hand side

of Equation (T3), P is the pressure shared in both phases, ρ
→
g is the gravity force, η(

→

∇
→
u +

→

∇
→
u

T
) is the

stress tensor of the Newtonian fluid, and Fsur f is the surface tension force on the interface between the
two phases.

The continuum surface stress (CSS) model, expressed in Equation (T4), was used to model Fsurf

conservatively, where the surface stress tensor (
=
τ) owing to the surface tension is expressed in Equation

(T5). The gradient of αD (
→

∇αD) is the surface normal vector and
=
I is the unit tensor. The surface

tension coefficient (σ) is assumed as a constant σ = 0.072 N/m, which is comparable to the air-water
system [19].
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The single properties of density (ρ) and viscosity (η) are employed to solve the VOF model,
as expressed in Equations (T6)–(T7). For the DMSO–water solution, ρD = 1048 kg/m3 and
ηD = 0.00212 kg/m/s. For air, ρA = 1.225 kg/m3 and ηA = 1.7894 × 10−5 kg/m/s.

The standard k-ε models [27] for turbulence kinetic energy (k) and turbulence energy dissipation
(ε) are expressed in Equations (T8) and (T9), respectively. The turbulence viscosity (ηt) is determined
by the local values of ρ, k, ε, and a constant Cµ (see Equation (T10)). Gk representing the generation
of turbulence kinetic energy is estimated by the turbulence viscosity (ηt) and the modulus of mean
rate-of-strain tensor (S). Dt

k and Dt
ε in Equations (T8) and (T9), respectively, represent the diffusion

rate of k and ε, respectively [27]. The model constants of the turbulence model were set to C1ε = 1.44,
C2ε = 1.92, Cµ = 0.09, Dt

k = 1.0, and Dt
ε = 1.3.

3.1. Boundary Conditions of the VOF–CFD Model

Table 3 summarizes the boundary conditions for the present CFD model. The DMSO inlet was set
to the mass flow inlet with 0.1 kg/s of the DMSO–water solution. The inlet and outlet of the PAN fiber,
the outlet of the DMSO solution, and the freeboard (see Figure 2) were defined as an open channel.
The open channel involved a free surface between the flowing fluid and the atmosphere that was often
applied for wave propagation (ANSYS Fluent Theory Guide, ANSYS Inc., Washington, PA, USA, 2018).

Table 3. Boundary conditions of coagulation bath CFD simulation. Legend: DMSO, dimethyl sulfoxide.

Boundary Type Setting Value Remarks

DMSO inlet Mass flow inlet 0.1 kg/s 100% liquid
PAN inlet Open channel vs = 0.02–0.2 m/s Porous medium

PAN outlet Open channel vPAN = 0.1–1.0 m/s Porous medium
DMSO outlet Open channel

Freeboard Open channel Gas phase

3.2. Froude Number and Wave Speed

The open-channel flows are characterized by the dimensionless Froude Number (Fr) that is defined
as the ratio of the inertial force to the hydrostatic force, i.e.,

Fr =

∣∣∣∣→u ∣∣∣∣
√

gy
(6)

where
∣∣∣∣→u ∣∣∣∣ is the velocity magnitude of the liquid at the surface, g is the gravity, and y is the length scale.

Here, y is given by the distance from the bottom of the equipment to the free surface (approximately
1.26 m). The denominator of Equation (6) is the wave speed of the fluid itself.

The wave speed observed by a fixed observer is defined as (ANSYS Fluent Theory Guide, 2018):∣∣∣∣→u ∣∣∣∣
w
=

∣∣∣∣→u ∣∣∣∣± √gy (7)

Based on the Froude number, open-channel flows can be classified into the following three

categories. When Fr < 1, i.e.,
∣∣∣∣→u ∣∣∣∣ < √gy,

∣∣∣∣→u ∣∣∣∣
w
< 0 or

∣∣∣∣→u ∣∣∣∣
w
> 0, and the flow is known to be subcritical

where disturbances can travel to the upstream and downstream. In this case, the downstream conditions
might influence the upstream flow. When Fr = 1, the flow is known to be critical, where waves

propagating from the inlet stream remain stationary. When Fr > 1, i.e.,
∣∣∣∣→u ∣∣∣∣ > √gy,

∣∣∣∣→u ∣∣∣∣
w
> 0, and the

flow is known to be supercritical where disturbances cannot travel to the upstream (ANSYS Fluent
Theory Guide, 2018).
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4. Detection of Surface Wave

In the VOF multiphase CFD model, the interface between the gas and liquid is located at a liquid
volume fraction from 0 to 1 (0 < αD < 1). αD close to 0 is gas-like while αD close to 1 is liquid-like.
The interface sharpness was highly dependent on the grid resolution around the interface [20]. In this
study, αD,min = 0.95 as the minimum liquid volume fraction was selected to detect the iso-surface of
the liquid. αD,min higher than 0.95 on the medium mesh structure yielded a flatter iso-surface. αD,min
lower than 0.95 caused a wave signal with considerable noise. A αD,min lower than 0.95 was reported
to capture the interface for the Eulerian multiphase CFD model [28,29].

The detection point of the surface wave is shown in Figure 4. There are five horizontal lines (1–5),
six vertical lines (A–F), and six additional points (PA–PF) located near the PAN injection spinneret
nozzle. Lines 1 and 5 are located at the symmetry line and the side wall of the coagulation bath,
respectively. The distance from Lines 2 to 5 from the symmetry line (Line 1) is 20, 50, 100, and 149 mm,
respectively. The vertical lines are positioned in the same interval from the spinneret nozzle (Line B) of
200 mm. Thus, 30 intercepts of the horizontal and vertical lines are created, which are named after the
number and letter.
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Figure 4. Detection points of surface wave.

At the 36 points, the surface wave signal in the time-series was transformed into the wave height
(hw) by a three-step data processing, as shown in Figure 5. In the first step, the unsteady state CFD
simulation results were used to reconstruct the iso-surface of αD,min = 0.95. The data sampling interval
was set to every one second of flow time, and 1800 CFD data files for 30 min were used. The wave
coordinates (Yi) at a point (P) and a time step (ti) were obtained from the iso-surface of liquid with αD
≥ 0.95. In the second step, the coordinate and time of the iso-surface, P(Yi), were exported as a new
dataset. In the third step, the wave height (hw) in the time-series at each detecting point was generated.
The maximum wave amplitude (MWA) was calculated from the difference between the maximum and
minimum values of hw within a given period.

MWA = max [hw(t)] −min [hw(t)] (8)

As shown in the third step of Figure 5, the wave height signal is divided into two states: initial
wave and resonance wave. The initial wave appears at the first moment of operation, where the wave
is unstable due to the inertia force of liquid itself against the moving PAN fiber. For all five cases with
different PAN speeds, the initial wave appeared when the flow time was less than 8 min. The resonance
wave occurred in the later moment, showing a stable hydrodynamic state with the compromise of
inertia and gravity forces, surface tension, and turbulence at the liquid surface.

In this study, the wave speed (
∣∣∣∣→u ∣∣∣∣

w
) was calculated from two datasets of the iso-surface of liquid

in an interval of 1 s. The distance of two wave peaks (∆l) displacing for one second was used directly

as
∣∣∣∣→u ∣∣∣∣

w
: ∣∣∣∣→u ∣∣∣∣

w
= ∆l, (9)
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5. Results and Discussion

The three-dimensional (3D) VOF-CFD model was solved using ANSYS Fluent v18.2 (ANSYS Inc.,
Washington, PA, USA) and a 24-core workstation (Supermicro Inc., San Jose, CA, USA, model: X10DAi,
Intel Xeon CPU E5-2670 of 2.3 GHz and 128 GB RAM). The time step of the transient simulation
was fixed to 0.01 s. The calculation time was approximately five days for 30 min of the flow time in
each case.

The CFD results were analyzed for the five PAN-fiber speeds (vPAN) in terms of the streamlines of
liquid flow, Froude number, wave speed on the liquid surface, and wave amplitude. The time-averaged
quantities such as velocity and volume fraction were sampled at every 0.1 s for 30 min of flow time.

5.1. Effects of PAN Speed on Flow Streamlines

The side view of the flow streamlines on the symmetrical plane is illustrated in Figure 6 for the
five vPAN (0.1, 0.25, 0.5, 0.75, and 1 m/s) at t = 1800 s. The color of the streamlines indicates the velocity
magnitude, and the streamlines with the arrow describe the flow history during the residence in the
bath. A streamline represents a non-intersected flow. At vPAN = 0.1 m/s, a large recirculation flow
is observed in the inner region surrounded by the PAN fiber. One recirculation flow also appears in
the top-right of the bath (see Figure 6a). A recirculation flow well-developed beneath the right of the
PAN outlet is observed in Figure 6e. It may be attributed from the fact that the drag force between the
moving PAN fiber and the liquid promotes the recirculation along the wall of the coagulation bath as
vPAN increases. At vPAN = 1.0 m/s, the wake flow that emerges beneath the surface and separates the
flow on the surface is observed at the PAN outlet, and in the region between the DMSO outlet and the
PAN inlet.
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Figure 6. Streamlines of DMSO solution in the side-view at t = 1800 s.

Figure 7 depicts the streamlines from the top view of the liquid surface for the five vPAN at
t = 1800 s. The two wake flows are clearly shown for each PAN speed behind the PAN inlet and at the
PAN outlet. In the wake flow behind the PAN inlet, the front flow moves directly from the DMSO inlet
to the outlet, while the rear flow moves forward to the PAN inlet. The wake points change according
to the PAN speed. Because the forward flow from the PAN inlet collides with the backward flow from
the PAN outlet, recirculation flows (or vortices) appear between the PAN inlet and PAN outlet.
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5.2. Froude Number and Wave Speed

Figure 8 shows the contours of the time-averaged Froude number (Fr) on the liquid surface at the
five vPAN. The maximum value of Fr was 0.28 near the PAN outlet at vPAN = 1 m/s. However, the scale
of Fr in Figure 8 was limited from 0 to 0.05 for an easy visualization of the difference in Fr between the
five PAN speeds. Thus, red implies that Fr ranges from 0.05 to 0.28. As Fr < 1 in this system, the waves
can travel to both the front and rear sides of the bath.Processes 2019, 7, x FOR PEER REVIEW 12 of 17 
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Figure 8. Contours of time-averaged Froude number (Fr) on the liquid surface.

As explained in Equation (6), a high Fr on the liquid surface indicates a high potential for wave
formation. The higher the PAN speed (vPAN), the higher the Fr becomes. Fr is relatively high on the
surfaces of the PAN inlet and the rear side of the PAN outlet. Fr is relatively low on the surfaces of the
right end of the bath, the center of the bath, and behind the PAN inlet. In Figure 8d, two long ellipsoidal
shapes are found near the side walls of the PAN inlet, where the wave can be formed. Some waves are
observed in the region where the forward flow from the PAN inlet collides with the backward flow
from the PAN outlet (see Figure 7), which is coincident with the ripples on the free surface.

Figure 9 shows the wave speed (|u|w) with respect to the liquid velocity (|u|). The experimental
data of |u|w were measured in a co-current air–water inclined-pipe flow [30]. Two CFD results were
obtained for both the simple inclined-pipe flow and the present coagulation bath at vPAN = 1.0 m/s at
various positions on the liquid surface. The CFD results for the inclined-pipe flow are comparable to
the experimental data, having the same order of the wave speed in magnitude. However, the difference
of the wave speed between the simple inclined-pipe flow and the complex coagulation bath flow is
approximately two orders of magnitude. The wave speed exhibits a linear relationship with the liquid
velocity in the inclined-pipe flow [30], while the present coagulation bath showed a random response.
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The surface wave resonance and breaking are closely related to the hydrodynamic parameters
such as density, velocity, surface tension, and viscosity [31,32]. Furthermore, the geometry contributes
significantly to the surface wave characteristics owing to numerous reflections from the walls and
moving objects. The surface wave resonance appears somewhat chaotic in the coagulation bath, which
leads to a random response of the wave speed to the liquid velocity. Therefore, it is difficult to predict
the present surface wave behaviors using any previous liquid wave models [32–35].

5.3. Analysis of Surface Wave Signal

As mentioned in Section 4, the surface wave signal can be divided into two states: the initial state
for t ≤ 480 s and the resonance state for t > 480 s. Figure 10 depicts the wave height (hw) at Point
PF (see also Figure 4) for vPAN = 0.1, 0.5, 0.75, and 1.0 m/s. Because Point PF is located at the PAN
inlet, the baseline of hw indicated in Figure 10b depends entirely on vPAN. The baseline is lowered as
the vPAN increases, as expected. For vPAN = 0.1 and 0.5 m/s, the initial waves are unstable and the
resonance waves are stable and periodic (see Figure 10a). As shown in Figure 10b, the resonance wave
at vPAN = 0.75 m/s is stable and periodic during the majority of the flow time, but unstable waves are
occasionally superpositioned. The wave height at vPAN = 1.0 m/s fluctuates strongly over 480 s.

Figure 11 illustrates the MWA according to vPAN, which was detected at ten points around the
PAN inlet. For t ≤ 480 s, the MWA is relatively high for every detecting point because of the unstable
waves in the initial state (see Figure 11a). As shown in Figure 10b, the MWA of vPAN = 1.0 m/s is
relatively lower than those of other vPAN. This may be attributed to the fact that the strong injection of
the PAN solution protects the invasion of waves into the PAN inlet area at the initial moment.

However, the MWA of vPAN = 1.0 m/s is the highest for t > 480 s for most detecting points, as shown
in Figure 11b. The MWAs of vPAN = 0.1–0.5 m/s remain low under 0.5 mm, while the MWAs increase
considerably for vPAN = 0.75 and 1.0 m/s. The highest value of MWA (= 8 mm) is detected at Point PF,
which is located at the axial center of the PAN inlet in the forward direction. The MWA around the
PAN inlet provides an air gap that is allowable according to the PAN speed.
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6. Conclusions

In this work, a 3D VOF-CFD model was developed for a coagulation bath for the production
of PAN-based CF in the DJWS process. A bundle of 3000 PAN-based CF filaments was assumed as
a deformable porous zone with variations in moving velocity, porosity, and permeability along its
path through the coagulation bath. The surface wave was detected at 36 points on the free surface by
a three-step data processing. The iso-surface having a liquid volume fraction greater than 0.95 was
tracked for 30 min of the flow time, and the wave height versus time was obtained.

The streamlines of the liquid, Froude number (Fr), wave speed, and wave height were examined
for five PAN-fiber speeds (vPAN = 0.1, 0.25, 0.5, 0.75, and 1.0 m/s). The wake flow that emerged
beneath the surface and separated the flow on the surface was observed in the liquid streamlines.
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The contour of Fr indicating the potential for wave formation was coincident with the ripples on the
free surface. Due to the reflections from the coagulation bath walls and moving objects, the wave
speed of the coagulation bath was much lower than that of an inclined pipe flow without obstacles.
The surface wave signal for 30 min was divided into the initial state (t ≤ 480 s) and the resonance
state (t > 480 s). The maximum wave amplitude (MWA) around the PAN inlet increased considerably
for vPAN = 0.75 and 1.0 m/s in the resonance state. Thus, the maximum PAN production speed of
0.5 m/s was recommended for the DJWS process to maintain a stable resonance for the long-term
operating condition.

The MWA can determine the minimum air gap between the spinneret and the bath surface.
The maximum PAN production rate can be obtained when the air gap is close to the MWA. The resolution
of the MWA depended on the minimum value of the liquid volume fraction used to determine the
iso-surface. The minimum value may be confirmed by an experimental validation on the MWA. It would
be useful to investigate the effect of solvent diffusion from the PAN solution on the hydrodynamics
near the PAN zone to identify the reason for PAN-fiber defects during coagulation.
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