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Abstract: The traditional effective variance weighted least squares algorithms for solving CMB
(Chemical Mass Balance) models have the following drawbacks: When there is collinearity among
the sources or the number of species is less than the number of sources, then some negative value
of contribution will appear in the results of the source apportionment or the algorithm does not
converge to calculation. In this paper, a novel robust algorithm based on enhanced sampling Monte
Carlo simulation and effective variance weighted least squares (ESMC-CMB) is proposed, which
overcomes the above weaknesses. In the following practical instances for source apportionment,
when nine species and nine sources, with no collinearity among them, are selected, EPA-CMB8.2
(U.S. Environmental Protection Agency-CMB8.2), NKCMB1.0 (NanKai University, China-CMB1.0)
and ESMC-CMB can obtain similar results. When the source raise dust is added to the source
profiles, or nine sources and eight species are selected, EPA-CMB8.2 and NKCMB1.0 cannot solve the
model, but the proposed ESMC-CMB algorithm can achieve satisfactory results that fully verify the
robustness and effectiveness of ESMC-CMB.

Keywords: CMB receptor model; effective variance weighted least squares algorithm; enhanced
sampling Monte Carlo simulation

1. Introduction

Atmospheric particulate matter (PM10 and PM2.5, with diameters less than 10 µm and 2.5 µm)
is a mixture of solid or liquid particles suspended in the air, and is an important air pollutant in
urban environments [1–3]. Epidemiological studies have shown that PM2.5/PM10 and an increase
in respiratory symptoms, lung cancer mortality, and cardiovascular disease are closely related [4–10].
China is one of the countries with the most serious PM2.5 pollution in the world. In recent years, a
total of 28 provinces and cities have reported heavy PM2.5 pollution phenomena; on average, each
province has an annual total of nearly 20 days of heavy pollution.

At present, haze is frequent in China, affecting a wide range and having a long duration, which
causes inconvenience to public life, threatens human health, and causes great concern for society and
the government. Understanding and clarifying the potential sources and their contributions of PM2.5
is important [4]. The work of source apportionment of PM2.5 has become one of the core strategies in
the prevention and control of atmospheric pollution.
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The CMB (Chemical Mass Balance) air quality model [5,6] is the most important model of
atmospheric particulate matter source apportionment technology [7], recommended by the United
States’ EPA (Environmental Protection Agency), mainly used to study the TSP (Total Suspended
Particulate), PM2.5, PM10, and VOC (Volatile Organic Compounds) as well as other sources of
pollutants and their contribution. CMB receptor models are established according to the principle of
mass balance, and the chemical concentration of pollutants can be expressed by the sum of the product
of the species richness and the source contribution.

The CMB receptor model [8,9] is composed of a set of linear equations, which indicates that
the receptor concentration of each chemical element is equal to the linear sum of the product of the
element content and the source contribution concentration. The basic principle of CMB model is
mass conservation. It is assumed that there are several sources (J) that contribute to atmospheric
particulates in the receptor, and that: (1) compositions of source emissions are constant over the
period of ambient and source sampling; (2) the number of sources or source categories is less than
or equal to the number of species; (3) the chemical composition of the particulate matter emitted by
the various sources is significantly different; (4) the chemical composition of the particulate matter
emitted by the source class is relatively stable; (5) all sources that make an obvious contribution to
the receptors have their respective emission characteristics; (6) there is no interaction between the
particles emitted by the source class, so the change in the process of transmission can be ignored;
and (7) measurement uncertainties are random, uncorrelated, and normally distributed. Then the total
substance concentration measured on the receptor is the linear sum of the contribution of each source.

The methods for solving CMB equations mainly include: (1) trace element method [10]; (2) linear
programming solution [11]; (3) ordinary weighted least squares method [12]; (4) ridge regression
weighted least squares [13]; (5) partial least squares [14]; (6) neural networks [15]; and (7) effective
variance weighted least squares (EVWLS) with or without an intercept [16].

At present, the most commonly used algorithm for solving CMB model is the EVWLS method [17],
which is derived by minimizing the weighted sums of the squares of the differences between the
measured and the calculated values of Ci and Fij, and is a practical method for calculating the
contribution of the source Sj and the error σSj :

minm2 =
I

∑
i=1

(Ci −
J

∑
j=1

Fij × Sj)
2

Ve f f ,i
, (1)

where the effective variance is Ve f f ,i = σ2
ci
+

J
∑

j=1
σ2

Fij
× S2

j , σSj (µgm−3 or g/g) is the uncertainty in source

contribution Sj (µgm−3 or g/g), σCi (µgm−3 or g/g) is the uncertainty in the ambient concentrations
species i, and σFij is the uncertainty in the fraction of species i in the source j profile.

The EVWLS method is actually an improvement over the ordinary weighted least squares method
to minimize the sum of squares of the differences between the weighted chemical composition
measurements and the calculated values.

However, there are some weaknesses to the above algorithms, such as near collinear sources
resulting in incorrect source contributions, and the requirement that the number of chemical species be
greater than or equal to the number of sources. At the same time, most of the above algorithms are
finally transformed into optimization algorithms, which are mostly NP (Non-deterministic Polynomial)
problems. So, in general, we get a locally optimal value or suboptimal value instead of a globally
optimal value. So, instability is a fatal drawback to these algorithms, that is to say that different runs of
the same input dataset at different times using the same algorithm may produce very different outputs
or exhibit high variance with the same diagnostic criteria.

The Monte Carlo method [18], also known as stochastic simulation or statistical experiments,
is based on statistical theory, according to the law of large numbers, using computer simulation
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technology [19] to solve some practical problem that is difficult to figure out directly with mathematical
or other methods. The Monte Carlo method uses computer programs and mathematical models [20]
to simulate practical random phenomena, through simulation experiments to get experimental data,
and then infers from the analysis to get the law of certain phenomena. Monte Carlo simulation [19] is
a method for exploring the solution and sensitivity of a complex system by varying the parameters
within the statistical constraints. It is widely used in many fields such as engineering [21],
environmental science [22], statistical physics [23], biophysics [24], materials science [25], and financial
engineering [26]. Many practical problems are often accompanied by many random factors. If we
take these factors into account, the model will become too complex to solve. However, we can utilize
the Monte Carlo method to generate a random number to simulate these complicated phenomena,
and then find out the operation law. The validity of the Monte Carlo method relies on the sampling
process in simulation. However, the simple Monte Carlo algorithm converges too slowly, and it is easy
to converge to local extreme points.

In this paper, we explore a novel robust method for solving CMB receptor model based on
enhanced sampling Monte Carlo simulation, which overcomes the shortcomings of the above
algorithms. In other words, when collinearity exists in the source profiles or the number of source
profiles is greater than the number of species, the ESMC-CMB (Enhanced Sampling Monte Carlo
CMB) algorithm can come to the correct results for source apportionment. In general, these enhanced
sampling methods can be employed to help us quickly find an optimal stable solution when the model
is complex, nonlinear, or involves more than just a couple uncertain parameters.

This paper is organized as follows. Section 2 provides a literature review about the CMB model
and enhanced sampling Monte Carlo simulation. In Section 3, the proposed enhanced sampling Monte
Carlo CMB algorithm (ESMC-CMB) is described. Section 4 presents the related numerical experiments
and a comparison with various traditional algorithms. Finally, conclusions are given in Section 5.

2. CMB Model and Enhanced Sampling Monte Carlo Simulation

Methods commonly used for the particulate source apportionment include receptor model, source
emission inventory, and source dispersion models. The source emission inventory method determines
its contribution rate by investigating and accounting for emission factors and activity levels for different
source categories. The source dispersion model is a combination of meteorological conditions, emission
sources, and chemical processes to assess the distribution and contribution of different source classes
in three dimensions [27]. The receptor model is a commonly used model in source apportionment.

In general, due to source j with constant emission rate Ej, the source contribution Sj present at a
receptor during a sampling period of length T is

Sj = Dj · Ej, (2)

where:

Dj =
∫ T

0
d
[
⇀
u (t), σ(t),

⇀
x j

]
dt. (3)

Dj is a dispersion factor depending on atmospheric stability (σ), wind velocity (u) and the location
of source j with respect to the receptor (xj). All parameters in Equation (2) vary with time, so the
instantaneous Dj must be integrated over time period T [27].

The CMB receptor model consists of a solution of a linear equation that represents the chemical
concentration of each receptor as the product of source profile abundance and source contribution.
Resource profile abundances (i.e., mass fractions of certain chemicals or other properties emitted
from each source) and receptor concentrations (estimated with appropriate uncertainties) are used as
input data for CMB. In order to distinguish the contribution of source types, the measured chemical
and physical properties must occur in different proportions of source emissions, and the changes of
these proportions between source and recipient can be neglected or approximated. The CMB model
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calculates the contribution values of each source and the uncertainties of these values. The principle of
the CMB receptor model is shown in Figure 1.
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Figure 1. The principle of the Chemical Mass Balance (CMB) receptor model.

The receptor model was used to identify the source of the receptor and determine the quantitative
contribution of various sources to the receptor by analyzing the chemical tracers of the source of the
environmental samples and the emission sources. If there is no interaction between their emissions to
cause mass removal, the total mass measured at the receptor C is a linear sum of the contributions of
the individual sources Sj:

C =
J

∑
j=1

Dj · Ej =
J

∑
j=1

Sj. (4)

Similarly, the mass concentration of elemental component i, Ci, will be

Ci =
J

∑
j=1

Fij · Sji = 1, 2, · · · , I, (5)

where Fij is the mass fraction of source contribution Sj composed of element i at the receptor.
The number of chemical species (I) must be greater than or equal to the number of sources (J) for a
unique solution to these equations.

Equations (4) and (5) are based on material immortality and mass conservation. In Equation (5),
Ci and Sj are the inputs to the model, and Fij is the source contribution we need to calculate.

There are several methods to solve the CMB receptor models: (1) the tracer element method [28];
(2) an ordinary weighted least squares solution [28]; (3) a linear programming solution [29], which
maximizes the sum of the source contributions; (4) a ridge regression weighted least squares solution
with or without an intercept [30] that is one approach for handling the multi-collinearity; (5) a neural
networks solution; and (6) an EVWLS solution, which is the most common algorithm.

At present, the most commonly used algorithm to solve the CMB model is the effective variance
least squares method, because this method is a practical method to calculate the error σSj of source
contribution Sj. The effective variance least squares method is actually an improvement on the ordinary
weighted least squares method, which minimizes the sum of squares of the difference between the
measured and calculated values of the weighted chemical components:

minm2 =
I

∑
i=1

(Ci −
J

∑
j=1

Fij × Sj)
2

Ve f f ,i
, (6)
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where the effective variance is Ve f f ,i = σ2
ci
+

J
∑

j=1
σ2

Fij
× S2

j , σSj (µgm−3 or g/g) is the uncertainty in

source contribution Sj (µgm−3 or g/g), σCi (µgm−3 or g/g) is the uncertainty (i.e., measurement errors)
in the ambient concentrations species i, and σFij is the uncertainty (i.e., measurement errors) in the
fraction of species i in the source j profile.

The matrix form of the CMB model is as follows:

Ci×1 = Fi×jSj×1. (7)

The steps of EVWLS iterative algorithm for solving the CMB model (Equation (7)) are as follows:

1. Set the initial estimate of the source contributions equal to zero:

Sk=0
j = 0j = 1, 2, · · · , J. (8)

2. Calculate the diagonal components Ve f f ,i of the effective variance matrix. All off-diagonal
components of this matrix are equal to zero:

Vk
e f f ,i = σ2

ci
+

J

∑
j=1

(Sk
j )

2 × σ2
Fij

. (9)

3. Calculate the K + 1 value of Sj:

Sk+1
j = (FT(Vk

e )
−1

F)
−1

FT(Vk
e )

−1
C. (10)

4. If the result of Equation (10) is greater than 1%, the previous iteration is executed; if less than 1%,
the iteration is terminated.

If
∣∣∣Sk+1

j − Sk
j

∣∣∣/Sk+1
j > 0.01, go to step 2.If

∣∣∣Sk+1
j − Sk

j

∣∣∣/Sk+1
j ≤ 0.01, go to step 5.

5. Calculate the value of σSj in the K + 1 step iteration, then

σSj =

[
(FT(Vk+1

e )
−1

Fjj)
−1
]1/2

j = 1, 2, · · · , J, (11)

where C = (C1, · · · , CI)
T is a column vector with Ci as the ith component; S = (S1, · · · , SJ)

T is
a column vector with Sj as the jth component; F is an I × J matrix of Fij, the source composition
matrix; σci is one standard deviation uncertainty of the Ci measurement; σFij is one standard deviation
uncertainty of the Fij measurement; and Ve is diagonal matrix of effective variances.

The above algorithm shows that the input parameters of the model are: the measured values of the
concentration spectrum of the chemical components of the receptor Ci and the standard deviation σCi

of Ci, the measured values Fij of the source chemical composition spectrum and the standard deviation
σFij of Fij. The output parameters of the model are: the calculated source contribution values of Sj and
the standard deviation σSj of Sj, the calculated source contribution values of chemical composition Sij,
and the standard deviation σSij of Sij.

In the actual work of source apportionment, there are two commonly used software tools,
EPA-CMB8.2 (V8.2, EPA, Washington, USA, 2004) and NKCMB1.0 (V1.0, Nankai University, Tianjin,
China, 2005), which are the concrete implementation of above effective variance least squares algorithm
for solving the CMB model.
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The CMB receptor model is one of the standard methods used by the U.S. Environmental
Protection Agency (EPA) to assess air quality. The practical tool software EPA-CMB8.2 based on
the CMB model and the effective variance least squares algorithm is recommended by the EPA.
NKCMB1.0 is a practical software tool for PM2.5 source apportionment, developed by the Key
Laboratory of Urban Air Particulate Pollution Prevention and Control, Nankai University, Tianjin
China, based on the CMB receptor mathematical model and the corresponding effective variance least
squares algorithm. NKCMB1.0 is more suitable for source analysis and calculation in China’s more
complex air quality environment.

As a stochastic method, Monte Carlo modeling can be used to describe and analyze complex
problems by computer simulation sampling based on probability theory combined with certain
statistical methods. Although the method emerged in the 1940s, it was limited to defense-related
nuclear technology because it required sufficient computing resources to analyze the neutron behavior
in matter [20]. With the rapid development of high-speed computers, the Monte Carlo simulation
method is more and more widely used [19,20].

The basic idea of the Monte Carlo method is to establish an appropriate probability model or
stochastic process so that its parameters (such as the probability of events, the mathematical expectation
of random variables) are equal to the solution of the problem. Then repeated random sampling test of
the model or process are carried out. With the statistical analysis to the results, the final calculation of
the parameters, the approximate solution is obtained.

For example, in a Monte Carlo Simulation problem we represent the quantity we want to know
as the expected value of a random variable Y, such as µ = E(Y). Then we generate values Y1, · · · , Yn

randomly and independently from the distribution of Y and get their average:

µ̂ =
1
n

n

∑
i=1

Yi, (12)

as the estimate of µ.
However, the convergence speed of the above simple sampling Monte Carlo method is too slow;

for a large dimension sampling space, the time to complete the sampling calculation is intolerable.
This paper will explore a new, enhanced sampling method to accelerate the convergence of the

algorithm from the following aspects.
Firstly, in the process of solving the receptor CMB model, if the diagnostic indicator

PM =
J

∑
j=1

ηj =
J

∑
j=1

Sj/C < λ, the results did not meet the requirements. So we could sample in the

following space PM =
J

∑
j=1

ηj =
J

∑
j=1

Sj/C ≥ λ, for which the dimensions of the sample space will be

reduced to some extent, and in the following experiment, λ = 0.7 will be selected. In the new sampling
space, the Gibbs sampling method will be used.

Gibbs sampling [31–33] or a Gibbs sampler is a MCMC (Markov chain Monte Carlo) algorithm for
obtaining a sequence of observations that are approximated from a specified multivariate probability
distribution. Like other MCMC algorithms, Gibbs sampling from Markov chain can be regarded as
a special case of the Metropolis-Hastings algorithm; its sampling distribution can be deduced from
the properties of the Markov chain and probability transition matrix, and it finally converges to joint
distribution. The name of the algorithm originated from Josiah Willard Gibbs and was proposed by
brothers Stewart and Donald Gemman in 1984 [31–33]. Gibbs sampling is suitable for multivariate
distribution, where conditional distribution is easier to sample than edge distribution. At the same
time, in order to accelerate the convergence speed of the simulation process, in this paper we adopt
the enhanced Gibbs sampling algorithm from [34], called the enhanced sampling algorithm for short.

In order to overcome the shortcomings of the effective variance algorithm for solving the CMB
model, in this paper, the EVWLS (effective variance weighted least square) algorithm will be combined
with the Monte Carlo simulation algorithm of enhanced sampling to obtain a novel robust ESMC-CMB
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algorithm for solving the CMB receptor model. The algorithm is programmed by using MATLAB
(V8.5, Mathworks, Natick USA, 2015) and implemented through numerical experiments with a real
background. By comparing with the results of EPA-CMB 8.2 and NKCMB 1.0, the accuracy, robustness,
and superiority of ESMC-CMB algorithm are fully verified.

3. Solving CMB Model Based on Enhanced Sampling Monte Carlo Simulation

For the CMB model with consideration of random error:

Ci =
J

∑
j=1

Fij · Sj + εii = 1, 2, · · · , I, (13)

where Ci is the ambient concentration of species i, Sj is the source contribution of source j, Fij is the
fraction of species i in source j, εi is for errors. The number of chemical species (I) must be equal to or
greater than the number of sources (J) for a unique solution to these equations. Equation (13) is solved
by an effective variance weighted least squares approach: minimizing χ2, where

χ2 =
I

∑
i=1

 (Ci − ∑J
j=1 FijSj)

2

σ2
Ci
+ ∑J

j=1 α2
Fij

S2
j

. (14)

In the CMB model, uncertainties in the source contribution are estimated as

σSj =

 I

∑
i=1

F2
ij

σ2
Ci
+ ∑J

j=1 α2
Fij

S2
j

−1/2

, (15)

where σSj (µgm−3 or g/g) is the uncertainty in source contribution Sj (µgm−3 or g/g), σCi (µgm−3

or g/g) is the uncertainty in the ambient concentrations species i, and σFij is the uncertainty in the
fraction of species i in the source j profile. Uncertainties in input variables are propagated by inversely
weighting the EV (effective variance).

In this paper a new method for solving CMB receptor model based on the enhanced sampling
Monte Carlo simulation was proposed as follows:

minχ2 =
I

∑
i=1

[
(Ci−∑J

j=1 FijSj)
2

σ2
Ci
+∑J

j=1 α2
Fij

S2
j

]

st.



Generate random inputs : Sj
with Enhanced Gibbs sampler

J
∑

j=1
Sj ≤ C

Sj ≥ 0

PM =
J

∑
j=1

ηj =
J

∑
j=1

Sj/C ≥ λ

i = 1, 2, · · · , I j = 1, 2, · · · , J

σSj =

(
I

∑
i=1

F2
ij

σ2
Ci
+∑J

j=1 α2
Fij

S2
j

)−1/2

. (16)

Then we can get the following ESMC-CMB algorithm:
Algorithm ESMC-CMB: Given the initial receptor and source profile data Ci, σCi , Fij, σFij ,

i = 1, 2, · · · , I j = 1, 2, · · · , J, the number of source and receptor components I, the number of
source J, obj = 10100, the number of simulation times N, n = 0.
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Step 1: Generate random variables with the enhanced sampling Monte Carlo method proposed in this
paper: Sj ≥ 0j = 1, 2, · · · , J.

Step 2: If
J

∑
j=1

Sj ≥ C, go to step 1.

Step 3: n = n + 1, Calculate χ2, if χ2 < obj, then obj = χ2 objSj = Sj.

Step 4: if n < N then step 1.

Step 5: Calculate χ2, ηj =
objSj

C , σSj .

4. Application to a Realistic Case

This realistic case focuses on the dataset from a city in China. The profiles of the receptor and
source component are shown in Tables 1 and 2.

Table 1. Receptor component profiles.

Ele. Conc. STDE Ele. Conc. STDE

TOT 111.8677 54.19443 Co 0.000505 0.000458
Na 0.381248 0.149582 Ni 0.006908 0.00752
Mg 0.201556 0.094942 Cu 0.055663 0.076044
Al 2.647172 2.03143 Zn 0.237994 0.184731
Si 2.435858 1.56244 Pb 0.111147 0.091934
P 0.061124 0.039434 OC 20.2725 12.6826
K 1.372987 0.862706 EC 3.855547 2.132063
Ca 2.912185 1.292981 Cl 0.26934 0.560002
Ti 0.014792 0.00704 NO3 4.703921 5.350789
Cr 0.018382 0.012077 SO4 17.27229 7.314421
Mn 0.041736 0.035401 NH4 9.960722 5.706486
Fe 4.122549 6.704566

Note: Ele. = Elements, Conc. = Concentration (µg/m3), STDE = Standard Deviation.

EPA-CMB8.2 and NKCMB1.0 software can be used to solve the CMB model when the number of
sources or source categories is less than or equal to the number of species. So, firstly, we select nine
sources (Soil Dust, Construction Dust, Coal Combustion, Cooking Smoke, Biomass Burning, Industrial
Processes, NO3

−, SO4
2−, Vehicular Emissions) and nine components (Al, Si, K, Ca, Fe, OC, EC, NO3,

SO4), and use EPA-CMB8.2 and NKCMB1.0 to calculate source apportionment with the data in Tables 1
and 2; the results are shown in Figures 2 and 3.
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Table 2. Source component profiles.

Ele.
Raise Dust Soil Dust Construction Dust Coal Combustion Cooking Smoke Biomass Burning Industrial Processes NO3

− SO4
2− Vehicular Emission

Conc. STDE Conc. STDE Conc. STDE Conc. STDE Conc. STDE Conc. STDE Conc. STDE Conc. STDE Conc. STDE Conc. STDE

Na 0.004722 0.001744 0.007309 0.004183 0.002478 0.000735 0.006365 0.004774 0.008617 0.005742 0.002959 0.002666 0.008600 0.000100 0 0.000001 0 0.000001 0.009363 0.005199
Mg 0.007276 0.001945 0.014675 0.006636 0.008546 0.002448 0.011922 0.008209 0.017405 0.012709 0.004460 0.003831 0.015600 0.000400 0 0.000001 0 0.000001 0.010941 0.006701
Al 0.088236 0.011353 0.118910 0.038482 0.069371 0.031392 0.239006 0.182281 0.012367 0.007308 0.031969 0.026745 0.005300 0.000100 0 0.000001 0 0.000001 0.010639 0.007285
Si 0.137211 0.033887 0.232882 0.076667 0.098363 0.022080 0.081033 0.081762 0.013954 0.014697 0.051409 0.047943 0.013100 0.001300 0 0.000001 0 0.000001 0.012261 0.006434
P 0.00081 0.000228 0.000874 0.000383 0.000264 0.000115 0.000311 0.000262 0.000321 0.000191 0.000126 0.000092 0.000000 0.000001 0 0.000001 0 0.000001 0.002077 0.000802
K 0.013932 0.003267 0.018596 0.006236 0.017332 0.002317 0.008941 0.007336 0.013851 0.015402 0.104925 0.065980 0.033000 0.000700 0 0.000001 0 0.000001 0.012172 0.005053
Ca 0.108035 0.028816 0.125479 0.085679 0.274893 0.043775 0.056683 0.086205 0.012212 0.007046 0.008350 0.007519 0.092000 0.001900 0 0.000001 0 0.000001 0.013024 0.006604
Ti 0.002224 0.000548 0.003509 0.001219 0.002643 0.001152 0.045129 0.030700 0.007512 0.006108 0.001460 0.001747 0.000400 0.000040 0 0.000001 0 0.000001 0.006982 0.003594
Cr 0.000138 0.000050 0.000322 0.000198 0.000084 0.000024 0.000795 0.000887 0.000449 0.000214 0.000872 0.001734 0.000300 0.000030 0 0.000001 0 0.000001 0.001887 0.002440
Mn 0.000501 0.000169 0.000722 0.000303 0.000322 0.000132 0.000193 0.000169 0.000187 0.000162 0.000079 0.000116 0.009800 0.000100 0 0.000001 0 0.000001 0.000901 0.001107
Fe 0.030867 0.009165 0.038558 0.016161 0.013179 0.007315 0.053666 0.032867 0.019319 0.014766 0.010202 0.008648 0.367000 0.000200 0 0.000001 0 0.000001 0.034335 0.022235
Co 0.000011 0.000003 0.000026 0.000012 0.000006 0.000004 0.000013 0.000017 0.000003 0.000003 0.000006 0.000013 0.000300 0.000030 0 0.000001 0 0.000001 0.000028 0.000033
Ni 0.000046 0.000019 0.000135 0.000082 0.000032 0.000004 0.000568 0.000988 0.000211 0.000131 0.000278 0.000550 0.000100 0.000100 0 0.000001 0 0.000001 0.001459 0.001336
Cu 0.000123 0.000048 0.000249 0.000149 0.000070 0.000019 0.000294 0.000233 0.000407 0.000332 0.000178 0.000147 0.000400 0.000100 0 0.000001 0 0.000001 0.001014 0.001473
Zn 0.000579 0.000181 0.000838 0.000476 0.000155 0.000050 0.000649 0.000530 0.001357 0.000918 0.000543 0.000496 0.009800 0.000900 0 0.000001 0 0.000001 0.000952 0.000729
Pb 0.000225 0.000127 0.000121 0.000065 0.000035 0.000006 0.000117 0.000088 0.000115 0.000085 0.000051 0.000036 0.003200 0.000300 0 0.000001 0 0.000001 0.000207 0.000262
OC 0.040941 0.007951 0.024068 0.005945 0.040341 0.007325 0.121996 0.115939 0.642280 0.409048 0.397684 0.092230 0.008200 0.000800 0 0.000001 0 0.000001 0.345982 0.172765
EC 0.006195 0.000620 0.000056 0.000006 0.001326 0.000133 0.013801 0.001380 0.018633 0.001863 0.042355 0.004236 0.004800 0.000480 0 0.000001 0 0.000001 0.147948 0.079996
Cl 0.002261 0.001599 0.004345 0.007539 0.001112 0.001547 0.005714 0.004869 0.008058 0.004448 0.169234 0.084954 0.007200 0.002300 0 0.000001 0 0.000001 0.004652 0.003824

NO3 0.006385 0.001638 0.006381 0.004647 0.001362 0.000347 0.006629 0.006358 0.010071 0.008292 0.004203 0.004376 0.000000 0.000001 0.794872 0.079487 0 0.000001 0.009028 0.004308
SO4 0.045996 0.014860 0.015446 0.006891 0.024699 0.004715 0.052591 0.047759 0.026123 0.020926 0.021658 0.015497 0.016600 0.002300 0 0.000001 0.727273 0.072727 0.013842 0.010331
NH4 0.001191 0.000957 0.001302 0.000726 0.000190 0.000137 0.013185 0.014081 0.010247 0.014778 0.084053 0.051916 0.000000 0.000001 0.205128 0.020513 0.272727 0.027273 0.009194 0.007708

Note: Ele. = Elements, Conc. = Concentration (%), STDE = Standard Deviation.
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Table 3. A numerical comparison of EPA-CMB8.2, NKCMB1.0, and ESMC-CMB.

Source Contribution
Algorithms

EPA-CMB8.2 NKCMB1.0 ESMC-CMB

Soil Dust 0.026698964 0.018464739 0.030721789

Construction Dust 0.030752527 0.027916899 0.038269989

Coal Combustion 0.051126227 0.050733701 0.04052869

Cooking Smoke 0.163715722 0.164181048 0.13384989

Biomass Burning 0.039397644 0.038893606 0.048647818

Industrial Processes 0.069811171 0.094471832 0.058153522

SO4
2− 0.263039684 0.249173003 0.294499399

NO3
− 0.054531719 0.051178676 0.04448467

Vehicular Emissions 0.202244424 0.202902245 0.214208926

Other 0.098681918 0.102084251 0.096635306

From the results of Figures 2–4 and Table 3, we can see that the results of source apportionment
calculated with the above three algorithms are very close, and the correctness of the ESMC-CMB
algorithm is verified.

If eight species such as Al, Si, K, Ca, Fe, OC, EC, and NO3
− are selected, then the software

EPA-CMB8.2 and NKCMB1.0 cannot be used because the number of species is less than the number of
sources, but the proposed algorithm ESMC-CBM can calculate the results in Figure 5.Processes 2019, 7, x FOR PEER REVIEW 12 of 15 
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As there is strong collinearity between the sources Raise Dust (RD) and Soil Dust, if RD is added
to the source profiles (Soil Dust, Construction Dust, Coal Combustion, Cooking Smoke, Biomass
Burning, Industrial Processes, NO3

−, SO4
2−, Vehicular Emissions) to participate in the calculation

using EPA-CMB8.2 and NKCMB1.0, some values of source contribution will be negative, so correct
results cannot be obtained. However, using our proposed ESMC-CMB algorithm, we can get the
correct value of the source apportionment as shown in Figure 6.
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A comparison of the above results is given in Table 4. As can be seen clearly from Table 4, in the
practical instances for source apportionment, when nine species and nine sources, with no collinearity
among them, are selected, EPA-CMB8.2, NKCMB1.0, and ESMC-CMB can obtain similar results.
However, because there is strong collinearity between source Raise Dust (RD) and Soil Dust, when
the source Raise Dust is added to the source profiles, or nine sources and eight species are selected,
EPA-CMB8.2 and NKCMB1.0 cannot solve the model, but the proposed ESMC-CMB algorithm can
come to a satisfactory results, which fully verify the robustness and effectiveness of ESMC-CMB.

Table 4. A comparison of NKCMB1.0 and MC-CMB.

Algorithms
Conditions

EPA-CMB8.2 NKCMB1.0 ESMC-CMB

Number of sources ≤ number of
species and existing no collinearity Having results Having results Having results

Number of sources > number of
species No results No results Having results

The collinearity exist in sources No results No results Having results

5. Conclusions

In this paper, a new robust algorithm for a CMB receptor model based on enhanced sampling
Monte Carlo simulation and the effective variance weighted least squares is proposed. Because of
the weaknesses of the traditional algorithms and software for CMB receptor source apportionment
model such as collinearity and the requirement that the number of chemical species be greater than or
equal to the number of sources, in many cases, software such as EPA-CMB8.2 and NKCMB1.0 cannot
obtain results for the source apportionment or some values of the source contribution are negative.
However, the proposed robust novel ESMC-CMB algorithm can overcome the above weaknesses and
achieve satisfactory results. In the realistic source apportionment experiments, firstly, we selected nine
sources (Soil Dust, Construction Dust, Coal Combustion, Cooking Smoke, Biomass Burning, Industrial
Processes, NO3

−, SO4
2−, Vehicular Emissions) with no collinearity among them and nine species (Al,

Si, K, Ca, Fe, OC, EC, NO3, SO4), and used the EPA-CMB8.2, NKCMB1.0, and ESMC-CMB algorithms
to calculate source contributions, and got similar results, but when we selected eight species and
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nine sources or added Raise Dust to the source profiles, because of the collinearity with Soil Dust,
EPA-CMB8.2 and NKCMB1.0 could not obtain correct results; however, the proposed ESMC-CMB
algorithm can calculate the right results for source apportionment. This has fully demonstrated the
robustness and effectiveness of the ESMC-CMB algorithm.

Although the ESMC-CMB algorithm has many advantages, there is often missing data in the
actual problem. How to further improve the ESMC-CMB algorithm in the case of missing data is the
next area of research to tackle.

Due to the limitations of the CMB model, in the realistic study of air pollution, the results of
source analysis from the ESMC-CMB algorithm should be referred to the calculation results of other
models, such as PMF (Positive Matrix Factorization) and CMAQ (Community Multiscale Air Quality),
to obtain more reasonable results.
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