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Abstract: A method of directly computing the average behavior of stochastic populations is
established, which obviates the time-consuming process of generating detailed sample paths. The
method relies on suitably discretized time intervals in which nonlinearities are quasi-linearized
to produce random variables with known expectations and variances. The pair of equations is
directly solved to obtain the average behavior of the system at the end of a time interval based on
its knowledge at the beginning of the interval. The sample path requirement for this process is
considerably lower than that for the process over the entire simulation period. The efficiency of the
method is demonstrated on the transfer of antibiotics resistance between two bacterial species which
is a problem of mounting concern in fighting disease.
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1. Introduction

Population balance equations are mean field equations that are designed to calculate the average
behavior of particulate entities distributed in physical space and/or a space of internal coordinates.
Computation of such average behavior can come about either by solving the population balance
equation or by Monte Carlo simulation (e.g., Shah et al., [1], Ramkrishna, [2]). Estimation of average
behavior by the latter approach is made from a suitably large number of “sample paths” of the process.
With small populations, sample paths yield both average behavior and fluctuations about the average.
Evolution of the system occurs through convective and diffusive movement of individual entities,
and by processes such as fragmentation and aggregation replacing existing entities with new ones.
Although many traditional applications of population balance have been deterministic, more recent
effort with biological systems has had to engage stochastic effects since one encounters particulate
entities in small numbers which change randomly in time. The field of biology is replete with signal
transduction processes that are concerned with a large variety of applications of the methodology
pertinent to this conference. We will consider in this paper one such example which is of importance
to the transfer of drug resistance between bacterial species. Because the computational demands on
simulation of these systems are severe, the focus of the paper is on ways to ameliorate them.

The Chemical Master Equation (CME) can be written to formulate the behavior of these systems.
However, its solution is combinatorially complex, so that the system behavior must necessarily be
obtained by stochastic simulation. In this regard, the exact method of Gillespie [3] or the equivalent
quiescence interval approach of Shah et al. [1] provide an alternative route to solving for the system
behavior. This simulation method relies on creating every constituent event by generating random
numbers satisfying exactly calculated distributions for the time interval between events. However,
the strategy of capturing every single event in the exact method results in a substantial computation
time. Moreover, biochemical systems are generally large and complex networks, which are composed
of a large number of species, at a wide range of molecule numbers, undergoing reactions at different
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time-scales. As a result, the usage of the exact algorithm can become computationally expensive for
obtaining solutions for those systems. A modified version of the exact method was introduced by
Gibson and Bruck [4]. Several approximation strategies, such as tau-leaping methods [5–8], have been
proposed in subsequent years in an attempt to reduce CPU time without sacrificing much accuracy.
The tau-leaping strategy at any instant is contingent upon satisfying an approximation of the process
at a future time. Since any specific realization of the process may, however, be in conflict with the
proposed approximation, Ramkrishna et al. [9] incorporated the Chebyshev inequality to produce
a modified tau-leap strategy to assure the validity of the approximation with a suitably specified
probability. As this significantly reduces the number of “delinquent” sample paths, the simulation is
made more efficient. A further attempt to speed up simulations was accomplished in [10] by simulating
over each infinitesimal interval multiple trajectories in parallel. Since simulation is performed over
a prescribed time interval, this modified strategy, which allows some trajectories to advance faster
than others, provides for termination of those sample paths that have met the time constraint. This
parallelization results in the reduction of CPU time because the number of sample paths diminishes in
the course of time.

The foregoing simulation methods generate the sample paths of the entire process over a chosen
period of time, which approximate the probability space of the stochastic process being analyzed. The
collection of sample paths serves as the source of probabilities of any information associated with the
system. Modelers, however, are often satisfied with the temporal evolution of the system in terms of
only its average behavior and the average fluctuation (such as the standard deviation) of the system
over a period of time. This paper is concerned with enabling the calculation of the aforementioned
averages without undergoing the enormous computational burden of computing entire sample paths.
This approach has been demonstrated for a reaction-diffusion system (Tran and Ramkrishna, [11]) by
combining a method of Grima [12] based on quasi-linearization for reactions with an operator-theoretic
formulation of discretized diffusion.

Unlike the exact and tau-leaping methods, one can also approximate the solution of the master
equation by formulating the equations in a continuous version (i.e., Stochastic Differential Equations
(SDE)) [13–15]. SDE has shown its potential in describing system behaviors accurately in various
applications in chemistry, physics, and biology [16,17]. Two main approaches for solving these types
of equations are known as explicit and implicit numerical methods. In the explicit approach [18–21]
approximate variables at each time point can be computed using the previous time-point values.
This strategy is easy to implement and works well for non-stiff problems. However, due to the poor
stability property, explicit methods are required to reduce step sizes significantly when applied to
systems associated with stiff behaviors. To solve this issue, various types of implicit methods have
appeared in the literature [22–29]. These versions have a higher stability property and hence can be
used to capture stiff systems more accurately. However, the implicit methods involve solving a high
number of algebraic equations at each time step and therefore can also result in adding to CPU time.
Yin et al. [30] proposed a modified version of the Milstein method, which avoids solving nonlinear
algebraic equations. The explicit equation is coupled with another correction equation in which a
correct term is introduced to reduce the errors associated with the explicit approximation. The method
also shows good mean-square stability.

Each sample path contains little information towards the actual average behavior of the system.
On the other hand, algorithms for solving SDE’s invariably are crafted over intervals small enough
to permit truncation of Taylor series expansion of nonlinearities in the system to retain at most the
second order terms to produce the random process state at the (n + 1)st discrete instant conditional
on specification of the process at the nth instant and random variables (which arise from stochastic
integration with known expectation for their average and variance). Thus, one obtains algebraic
equations for process average and its standard deviation from it at the (n + 1)st discrete instant in terms
of those at the nth instant. By avoiding the simulation of a large number of trajectories, the method can
speed up the simulations significantly.
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2. Milstein’s Method and Its Advanced Version for Stiff Systems

Generic d−dimensional SDE has the following form (see, for example, Gardiner [31]):

dX(t) = f (t, X(t))dt +
m

∑
j=1

gj(t, X(t))dW j(t), X(t0) = X0 t ∈ [t0, T] (1)

where f : Rd → Rd is the drift coefficient, gj, j = 1, 2, . . . , m : Rd → Rd are the diffusion coefficients
and {Wj(t), j = 1, . . . , m} are independent standard Wiener processes with the property that ∆Wj(t) =
Wj(t+∆t)−Wj(t) is a Gaussian random variable with mean zero and variance ∆t The SDE interpreted
in the Ito sense, for the case d = 1, has three main schemes [21–26]:

• The explicit Milstein method:

Xn+1 = Xn + f (tn, Xn)h + g(tn, Xn)∆Wn +
1
2
(g(tn, Xn)g′(tn, Xn))(∆W2

n − h) (2)

where tn = nh, h = tn+1 − tn (the integration step) and Xn = X(tn).
• The semi-implicit Milstein method:

Xn+1 = Xn + f (tn+1, Xn+1)h + g(tn+1, Xn+1)∆Wn +
1
2
(g(tn, Xn)g′(tn, Xn))(∆W2

n − h) (3)

• The implicit Milstein method:

Xn+1 = Xn + f (tn+1, Xn+1)h + g(tn+1, Xn+1)∆Wn +
1
2 (g(tn+1, Xn+1)g′(tn+1, Xn+1))(∆W2

n − h) (4)

The improved Milstein method for stiff systems:

Zn+1 = Zn+1 + (1− h f ′(Zn+1))
−1h( f (Zn+1)− f (Zn)) (5)

Zn+1 = Zn + h f (Zn) + g(Zn)∆Wn +
1
2

g′(Zn)g(Zn)(∆W2
n − h) (6)

where Zn is the approximation of the exact solution X(t) at time tn = nh. The term
(1− h f ′(Zn+1))

−1h( f (Zn+1) − f (Zn)) is added as a correction term and Zn+1 is computed using
the classical explicit Milstein method.

Expanding the formula to the vector case when d > 1 we then have the classical Milstein method
as follows:

Xn+1 = Xn + f (tn, Xn)h + g(tn, Xn)∆Wn +
m

∑
j2=1

m

∑
j1=1

Lj1 gj2(Xn)I(j1,j2), (7)

where

Lj1 =
d

∑
i=1

gi,j1 ∂

∂xi , (8)

I(j1,j2) =
∫ tn+1

tn

∫ s2

tn
dW j1(s1)dW j2(s2) (9)

with xi and gi,j2 are the ith element of the vector functions x and gj1 .
And so, the formula to approximate X is:

Zn+1 = Zn+1 + (I − h f ′(Zn+1))
−1h( f (Zn+1)− f (Zn)) (10)

Zn+1 = Zn + h f (Zn) +
m

∑
j=1

gj(Zn)∆W j
n +

m

∑
j2=1

m

∑
j1=1

Lj1 gj2(Zn)I(j1,j2) (11)
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where I is the d−dimensional identity matrix and f ′, g′ stand for Jacobian matrix of the vector-valued
function f , g.

Development of Direct-Average Calculation

Let us first apply Taylor’s expansion on Equation (10) followed by taking expectations of both
sides of Equations (10) and (11):

EZn+1 = EZn+1 + E(I − h f ′(Zn+1))
−1h( f (Zn+1)− f (Zn)) (12)

EZn+1 = EZn + Eh f (Zn) + E
m

∑
j=1

gj(Zn)∆W j
n + E

m

∑
j2=1

m

∑
j1=1

Lj1 gj2(Zn)I(j1,j2) (13)

Derivation of the entire development can be found in the Supplementary Materials. The final
forms of Equations (12) and (13) are as follows:

EZj
n+1 = EZj

n+1 + h{ f j(EZn+1) + 1/2E[(Zn+1 − EZn+1)
T H f j(Z)|EZn+1

(Zn+1 − EZn+1)]+

− f j(EZn)− 1/2(Zn − EZn)
T H f j(Z)|EZn(Zn − EZn)}+

+h2{ f j(EZn+1)D( f j2)
j3(Zn+1)|EZn+1

+

+1/2E{(Zn+1 − EZn+1)
T{(DD( f j2)

j3(Z)D f j(Z)T |EZn+1
+ D( f j2)

j3(Z)H f j(Z)T |EZn+1
+

+D f j(Z)DD( f j2)
j3(Z)]|EZn+1

+ f j(EZn+1)HD( f j2)
j3(Z)]|EZn+1

}(Zn+1 − EZn+1)}}−
−h2{ f j1(EZn)D( f j2)

,j3(Z)|EZn+1

+1/2E{ f j1(EZn)(Zn+1 − EZn+1)
T HD( f j2)

,j3(Z)|EZn+1
(Zn+1 − EZn+1))}

+E{(Zn+1 − EZn+1)
T D f j1(Z)|EZn+1

DD( f j2)
,j3(Z)|EZn+1

(Zn − EZn)}
+1/2{(Zn − EZn)

T H f j1(Z)|EZn+1
D( f j2)

,j3(Z)|EZn+1
(Zn − EZn))}}

(14)

EZj
n+1 = EZj

n + h f j(Zn) + E
m
∑

j2=1

m
∑

j1=1
gj1 D(gj2)

j
(Zn)EI(j1,j2)

= EZj
n + h f j(Zn) + gj1(EZn)D(gj2)

j
(Z)|EZn

+1/2E{(Zn − EZn)
T{(DD(gj2)

j
(Z)Dgj1(Z)T |EZn

+D(gj2)
j
(Z)Hgj1(Z)T |EZn+

+Dgj1(Z)DD(gj2)
j
(Z)]|EZn + gj1(EZn)HD(gj2)

j
(Z)]|EZn}(Zn − EZn)}∗

∗E
(∫ tn+1

tn

∫ s2
tn

dW j1(s1)dW j2(s2)
),j

(15)

where Zj
n+1 is the jth component of Zn+1. H, D, and I are Hessian matrix, matrix of partial

derivatives and identity matrix, respectively. Every term on the right-hand side of Equations
(14) and (15) can be evaluated directly at the mean value of the previous point, therefore we can
compute directly EYn+1 once we can compute E(Zj1

n+1 − EZj1
n+1)(Zj2

n+1 − EZj2
n+1). In order to evaluate

E(Zj1
n+1 − EZj1

n+1)(Zj2
n+1 − EZj2

n+1), at each current time point we generate a sample of 100 points at
next time step using Equations (10) and (11).

3. Application of the Method to a Biological System: Transfer of Drug Resistance

We consider, for demonstration of the effectiveness of direct averaging of this paper, a stochastic
model for the transfer of drug resistance. The background for the model is discussed by Chatterjee et
al. [32–34]. For a chemical/biological system which is composed of d species undergoing m reactions:

s1,jX1 + s2,jX2 + · · ·+ sd,jXN
kj→ r1,jX1 + r2,jX2 + · · ·+ rd,jXd, j = 1, 2, . . . , m
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f and g can be represented using regular macroscopic rate law (or written in propensity functions
when converted into particle numbers):

f =
m

∑
j=1

νjaj(X)

The diffusion coefficient term can also be computed as follows:

g =
m

∑
j=1

νj

√
aj(X)

Specifically, for our system of plasmid transfer, most variables exist in low numbers, and hence it
explains the usage of power series shown in the Supplementary Materials.

Example

To illustrate how the method works, we select the system of Enterococcus faecalis, which is
composed of 17 variables and 45 reactions displayed in Tables S1 and S2. Enterococcus faecalis utilizes the
mechanism of conjugation to transfer antibiotic resistance from plasmid-harboring antibiotic-resistant
donors to plasmid-free antibiotic-sensitive recipients. The plasmid carrying the tetracycline resistance
is known as pCF10. Two types of signaling molecules which regulate conjugative transfer of the
plasmid pCF10 are inhibitor iCF10 and inducer cCF10. The cCF10 molecules, responsible for inducing
conjugation, are generated by recipient cells. Donor cells, on the other hand, produce iCF10, whose
role is to repress conjugation. When the inducer concentration is high, several cascade reactions occur
and result in activation of conjugation between the resistant and non-resistant species. QL, one of the
key variables, indicates the level of conjugation. Therefore, QL level increases when more inducer is
present and decreases when the concentration of inhibitor is high.

4. Results and Discussion

The system that is not only composed of a complex reaction network but also includes variables
with stiff behaviors is indeed a good example to test the usefulness of this method. We simulate and
compare the dynamics of key variables under different conditions using different methods by using
SSA (Stochastic Simulation Algorithm) [1,2] as the benchmark. Results generated by utilizing the
regular sample path method and the proposed direct-average method are presented together. Figure 1
below shows QL dynamics when the concentration of extracellular inducer is high.

In Figure 1, the three curves show similar expected results for QL response plotted against the
concentration Cex of inducer cCF10. At a low concentration of inducer in the environment, QL level
stays low, indicating that the cells stay inactivated and are not ready for any conjugation process. It is
significant that the direct averaging method here is closer to the SSA even with a substantially smaller
number of sample paths than that employed in the regular sample path averaging method. The two
curves associated with the SSA method and the regular sample path method are both generated by
averaging results from 100,000 independent sample paths. On the other hand, to evaluate the direct
average of variables at each following time step in the direct method, 100 sample points are generated
to approximate both variance and covariance shown in both Equations (4) and (5). The argument
to justify our sampling of only 100 points to approximate variance and covariance comes from the
fact that the fluctuation associated with the sample points is very small. At any given time point, the
calculation is done based on the previous average time point directly. Because of that, even though
each variable can fluctuate, it cannot fluctuate too much away from the actual average value. Unlike
this proposed method, in both SSA or the regular sample path methods, each trajectory is independent
from one another. Calculation at each time point depends only on the previous point in that same
trajectory. As time progresses, this fluctuation can accumulate and can potentially drift from the
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calculated values far away from its actual average value. This phenomenon explains why usage of SSA
or the regular sample path method requires a high number of trajectories in order to obtain accurate
results. This system is also known to be stiff, and so an investigation of a scenario where QL changes
drastically is needed for a complete evaluation of this method. Figure 2 below represents QL response
at a high concentration of inducer in the environment:
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Figure 2 shows good agreement among results generated from all three methods. The same
number of trajectories is utilized to compute the average in the SSA and the regular sample path
methods. A high concentration of inducer immediately results in a stiff increase of QL, indicating
a high sensitivity level of QL with respect to the inducer. In both cases shown in Figures 1 and 2,
the curves generated by the direct average method show less deviation from the “actual” solution
(generated by the SSA method). The small deviation is a result of computing variable at each time
point directly using the average values from the previous time point. The errors associated with the
results generated by the regular sample path method and the direct average methods using SSA as the
benchmark are 16% and 7% in the first case, and 11% and 6% in the second case, respectively. Figure 3
below shows the full-scale dynamic simulation for QL at various inducer levels in the environment.
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This full range of calculations can serve to provide an overall picture of how the system
would respond under different conditions. These results can also be used to provide inputs for
experimentalists to develop the experimental design space in the most effective way. To complete
the evaluation of the current method, simulation time is utilized for comparison among methods.
The average step size of SSA method is selected to be a base unit from which the step sizes for other
methods can be chosen. Time steps for the regular sample path and the direct average methods are
both pre-selected to be ten-fold larger than the base unit. Figure 3 below provides a comparison in
simulation times required by the three methods.

Figure 4 has on the ordinate the ratio between required simulation times for the direct method as
well as the regular sample path method (i.e., using tau-leap) and the SSA. For various levels of cCF10,
our direct method of generating sample paths for the mean and standard deviation of the stochastic
process with Milstein’s method requires about two-fold less in CPU time as compared to that in the
SSA. The parallelization strategy [10] developed by our group has also been implemented in obtaining
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results in the sample path methods using Milstein’s algorithm and SSA. The direct average method
shows its advantage over the regular sample path strategy by reducing the simulation time by about
half. Both methods become more effective as the concentration of cCF10 increases. The explanation for
this comes from how the system or QL specifically in this case is sensitive with an increase of inducer
in the environment. As the stiffness increases, the change in variables drastically increases, which in
turn results in finer discretization steps for SSA, and hence increasing the simulation time for SSA.
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5. Conclusions

Stochastic differential equations are widely used as approximate methods to obtain solutions
for the master equation. The advantage of utilizing this type of equation is to smooth out solution
behaviors (continuous responses) and to reduce the time steps in simulations. However, the explicit
versions of SDE show little capability for capturing systems with stiff behaviors. Moreover, due to
the unbounded features, it is also known that the methods can sometimes inaccurately predict results
in some systems. Implicit SDE methods can describe stiff behaviors with a high efficacy but involve
solving a large number of algebraic equations at each time point, resulting in a large increase in the
CPU time. Recent work of Yin et al. [30] proposed an improved Milstein method for stiff systems.
The method has the advantage of capturing solutions for systems with stiff behaviors. However, it
still requires considerable time to obtain the average simulated results by generating independent
sample paths. Moreover, from the experimental perspective, average dynamic behaviors of variables
in a stochastic system are much more important and needed for cross-validations. The strategy of
computing directly the average system behavior and its variance presented in this paper circumvents
the need for a large number of time-consuming sample paths. The effectiveness of this method is
demonstrated by testing on a large complex biological system. The results generated by the proposed
methods show high accuracy with less simulation time as compared to both SSA and the regular
sample path method. This strategy can also extend to other methods and can potentially offer an
efficient way to obtain the average with a shorter CPU time. The development shown in this paper
involved Taylor series expansion up to the second order term only. Testing this method on many other
examples would help assess whether higher order terms in the Taylor expansion would be needed for
increased accuracy level.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/3/132/s1,
Table S1: Reactions and kinetic parameters; Table S2: Degradation rates for different species.
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