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Abstract: Influenced by the complexity of ocean environmental noise and the time-varying of
underwater acoustic channels, feature extraction of underwater acoustic signals has always been a
difficult challenge. To solve this dilemma, this paper introduces a hybrid energy feature extraction
approach for ship-radiated noise (S-RN) based on complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) combined with energy difference (ED) and energy entropy (EE).
This approach, named CEEMDAN-ED-EE, has two main advantages: (i) compared with empirical
mode decomposition (EMD) and ensemble EMD (EEMD), CEEMDAN has better decomposition
performance by overcoming mode mixing, and the intrinsic mode function (IMF) obtained by
CEEMDAN is beneficial to feature extraction; (ii) the classification performance of the single energy
feature has some limitations, nevertheless, the proposed hybrid energy feature extraction approach
has a better classification performance. In this paper, we first decompose three types of S-RN into
sub-signals, named intrinsic mode functions (IMFs). Then, we obtain the features of energy difference
and energy entropy based on IMFs, named CEEMDAN-ED and CEEMDAN-EE, respectively. Finally,
we compare the recognition rate for three sorts of S-RN by using the following three energy
feature extraction approaches, which are CEEMDAN-ED, CEEMDAN-EE and CEEMDAN-ED-EE.
The experimental results prove the effectivity and the high recognition rate of the proposed approach.

Keywords: complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN);
energy difference (ED); energy entropy (EE); hybrid energy feature extraction; ship-radiated
noise (S-RN)

1. Introduction

Due to the complexity of ocean ambient noise and the time-varying of underwater acoustic
channels, feature extraction of underwater acoustic signals has always been a difficult problem in
the area of underwater acoustic signal processing [1,2]. In order to solve this problem, some feature
extraction approaches for underwater acoustic signals have been proposed, including a time domain
analysis, a spectral analysis, a time–frequency analysis, a high-order statistics analysis and a complexity
analysis. In recent years, with the development of mode decomposition, feature extraction approaches
have been proposed based on mode decomposition [3].

After Empirical mode decomposition (EMD) was first proposed as a classical mode decomposition
approach, it has become widely used [4,5]. The research history and the current status of EMD
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mainly include two parts. On the one hand, it is the improvement of EMD, in particular for
mode mixing. Two of the revised EMD approaches are generally accepted to be effective, they are
ensemble EMD (EEMD) [6] and complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) [7]. In addition, CEEMDAN is an upgrade of EEMD, which can better suppress mode
mixing than EEMD. On the other hand, their application areas are expanding and deepening gradually.
EMD has been widely used in different fields, such as short-term wind speed forecasting combined
with hybrid linear and nonlinear models [8], the detection and location of pipeline leakage [9],
the detection of incipient damages for truss structures [10], denoising for grain flow signal [11],
biomedical photoacoustic imaging optimization [12] and heart rate variability analysis [13]. Many
scholars have also applied EEMD to their research fields, such as wind speed forecasting combined
with the cuckoo search algorithm [14], machine feature extraction combined with a kernel-independent
component [15], feature extraction for motor bearing combined with multi-scale fuzzy entropy [16],
a bearing fault diagnosis combined with correlation coefficient analysis [17], a partial discharge feature
extraction combined with sample entropy [18] and monthly streamflow forecasting combined with
multi-scale predictors selection [19]. In addition, CEEMDAN is used in machinery, electricity and
medicine, such as impact signal denoising [20], daily peak load forecasting [21], health degradation
monitoring for rolling bearings combined with multi-scale sample entropy [22], planetary gear fault
diagnosis combined with permutation entropy [23], denoising for gear transmission system [24],
friction signal denoising combined with mutual information [25] and electrocardiogram signal
denoising combined with wavelet threshold [26]. Generally, the three EMD approaches can solve
practical problems in different fields. Some comparative studies have also proven that CEEMDAN has
a better decomposition performance.

In the past three years, the mode decomposition approach has been applied to the underwater
acoustic field. Two frequency feature extraction approaches were proposed, based on maximum
energy intrinsic mode function (IMF) by using EEMD and variational mode decomposition (VMD),
respectively [27,28]. In addition, two complexity feature extraction approaches were proposed
based on the permutation entropy of maximum energy IMF by EMD [29] and the multi-scale
permutation entropy of maximum energy IMF by VMD [30]. Energy feature extraction approaches for
underwater acoustic signals were seldom proposed by scholars. In Reference [31], an energy feature
extraction approach was put forward based on EEMD, which extracted the energy difference between
the high-frequency and the low-frequency bands as a new energy feature. However, this energy
feature extraction approach has limited recognition ability for different sorts of ship-radiated noise
(S-RN) signals.

In this paper, we propose a new energy feature extraction approach to effectively extract the
energy feature for underwater acoustic signals. The method we propose, named CEEMDAN-ED-EE,
is based on CEEMDAN, energy difference (ED) and energy entropy (EE). We use CEEMDAN to
decompose three sorts of S-RN signals into IMFs. According to the rule of ED and EE, we can obtain
the features of ED and EE for three sorts of S-RN. Compared with CEEMDAN-ED and CEEMDAN-EE,
the proposed CEEMDAN-ED-EE approach can extract energy features more effectively and has a
relatively higher recognition rate.

The following section presents the theory related to CEEMDAN, ED and EE; the novel energy
feature extraction approach for underwater acoustic signal is presented in Section 3; the proposed
energy feature extraction approach is used to three sorts of S-RN signals in Section 4; finally,
the concluding remarks are made in the last section.

2. Theory

2.1. CEEMDAN

In this study, we use the CEEMDAN approach for two main reasons: (i) CEEMDAN has a better
anti-mode mixing performance than EMD and EEMD and (ii) thus far, an energy feature extraction
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approach using CEEMDAN has not been found for underwater acoustic signals. The main procedures
of CEEMDAN can be summarized as follows:

CEEMDAN, as an improved algorithm of EMD and EEMD, can adaptively decompose complex
signals into IMFs in order. The specific steps of CEEMDAN are summarized as follows [8]:

(1) Construct the noise signal fi(t) by combining the original signal f (t) and white noise ni(t), N
noisy signals fi(t) can be obtained:

fi(t) = f (t) + ni(t), i = 1, 2, · · · , N (1)

(2) Decompose each fi(t) by using EMD in order to get the IMF1 ci1(t) and its residual item, ri(t):

f1(t)
f2(t)
· · ·
fi(t)
· · ·

fN(t)


EMD−−−→



c11(t) r1(t)
c21(t) r2(t)
· · · · · ·

ci1(t) ri(t)
· · · · · ·

cN1(t) rN(t)


(2)

(3) Calculate the average value of ci1(t) to get the IMF1 c1(t) of CEEMDAN:

c1(t) =
1
N

N

∑
i=1

ci1(t) (3)

(4) Subtract c1(t) from f (t) to get the residual item R1(t):

R1(t) = f (t)− c1(t) (4)

(5) White noise ni(t) participates in subsequent decompositions at different scales. Here we use
EMD to decompose white noise as follows:

n1(t)
n2(t)
· · ·

ni(t)
· · ·

nN(t)


EMD−−−→



cn11(t) cn12(t) · · · cn1 j(t) rn1(t)
cn21(t) cn22(t) · · · cn2 j(t) rn2(t)
· · · · · · · · · · · · · · ·

cni1(t) cni2(t) · · · cni j(t) rni (t)
· · · · · · · · · · · · · · ·

cnN1(t) cnN2(t) · · · cnN j(t) rnN (t)


(5)

where cni j(t) is the j-th IMF of the i-th white noise ni(t), and rni (t) is the residual item of ni(t). For
convenience, we define Ej(gi(t)) as a set, which consists of the j-th IMFs of gi(t). Therefore, E1(ni(t))
can be expressed as:

E1(ni(t)) =
(

cn11(t) cn21(t) · · · cni1(t) · · · cnN (t)
)T

(6)

(6) Construct f new1(t) by combining R1(t) and E1(ni(t)). We can decompose f new1(t) as follows:

f new1(t) = R1(t) + E1(ni(t)) (7)
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f new1(t) = R1(t) +



cn11(t)
cn21(t)
· · ·

cni1(t)
· · ·

cnN1(t)


EMD−−−→



cr1n11(t)
cr1n21(t)
· · ·

cr1ni1(t)
· · ·

cr1nN1(t)


(8)

(7) Calculate the average value of cr1ni1(t) to get the IMF2 c2(t) of CEEMDAN, c2(t). Residual
item R2(t) of CEEMDAN can be expressed as follows:

c2(t) =
1
N

N

∑
i=1

cr1ni 1(t) (9)

R2(t) = R1(t)− c2(t) (10)

(8) In order to get the rest of IMFs cj(t) and the residual item Rj(t), we can construct f newj−1(t)
and repeat step (6) and step (7). We can express f newj−1(t) cj(t) and Rj(t) as follows:

f newj−1(t) = Rj−1(t) + Ej−1(ni(t)) (11)

cj(t) =
1
N

N

∑
i=1

crj−1ni 1(t) (12)

Rj(t) = Rj−1(t)− cj(t) (13)

(9) If the new IMF cannot be extracted from Rj(t), we make Rj(t) equal to R(t). We can express
f (t) as follows:

f (t) =
M

∑
j=1

cj(t) + R(t) (14)

where M and R(t) are the number of IMFs and the residual item of f (t).

2.2. ED

According to the definition of energy difference in Reference [31], we define an instantaneous
frequency that is equal or less than 1 kHz as the low-frequency band, and an instantaneous frequency
that is more than 1 kHz as the high-frequency band. Therefore, ED is defined as the difference
between the high-frequency band energy and the low-frequency band energy. In this paper, the specific
calculation steps of ED for S-RN are as follows:

(1) Decompose S-RN into IMFs by CEEMDAN, and then process each IMF ci(t) through the
Hilbert transform:

ci(t) =
1
π

∫ ∞

−∞

ci(τ)

t− τ
dτ (15)

(2) The analytic signal of each IMF is represented as:

zi(t) = ci(t) + jĉi(t) = λi(t)ejθi(t) (16)

(3) We can obtain the instantaneous amplitude λi(t), instantaneous phase θi(t) and instantaneous
frequency fi(t) as follows:

λi(t) =
√

c2
i (t) + ĉ2

i (t) (17)

θi(t) = arctan(
ĉi(t)
ci(t)

) (18)

fi(t) =
1

2π

dθi(t)
dt

(19)
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(4) Calculate the instantaneous energy intensity of each sampling point by using the instantaneous
amplitude of each sampling point. For example, the q-th sampling point of p-th IMF is bpq,
the instantaneous energy intensity Qpq of this sampling point can be represented as:

Qpq = b2
pq (20)

(5) Calculate the high-frequency band energy PH and the low-frequency band energy
PL, respectively.

PH = 10 log
m

∑
k=1

QHk (21)

PL = 10 log
n

∑
k=1

QLk (22)

where QHk and QLk are the instantaneous energy intensity of the k-th sampling point in the
high-frequency and the low-frequency bands, respectively.

(6) ED is represented as:
∆P = PH − PL (23)

2.3. EE

The difference in time–frequency distribution can be expressed by the uncertainty of energy
distribution in different time–frequency bands. Time–frequency bands can be provided by using IMFs.
In this paper, we propose an energy feature extraction approach for S-RN, based on CEEMDAN and
EE. The specific calculation steps of EE for S-RN are as follows:

(1) Decompose S-RN into M IMFs by CEEMDAN. The energy sum of each IMF equals the total
energy of the S-RN signal without considering the residual item.

E =
M

∑
i=1

Ei (24)

where E and Ei are the energy of the S-RN signal and the energy of i-th IMF.
(2) Calculate the energy proportion of each IMF in the S-RN signal.

Ci =
Ei
E

(25)

where Ci is the energy proportion of i-th IMF.
(3) According to the definition of information entropy, we can express EE of the S-RN signal as:

H(C) = −
M

∑
i=1

Ci ln Ci (26)

3. Hybrid Energy Feature Extraction Approach for S-RN

This paper presents a hybrid energy feature extraction approach for S-RN, based on CEEMDAN,
ED and EE. The proposed CEEMDAN-ED-EE approach, combining the advantages of CEEMDAN-ED
and CEEMDAN-EE, can reflect the energy distribution of a S-RN signal at different scales.
The flowchart of the hybrid energy feature extraction approach is shown in Figure 1. The specific steps
of the hybrid energy feature extraction approach are as follows:

Step 1: The S-RN signal decomposition.
(1) Collect S-RN signals under sensor measurement;
(2) Decompose S-RN signals into N IMFs by CEEMDAN.
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Step 2: hybrid energy feature extraction.
(1) Extract ED features for S-RN signals;
(2) Extract EE features for S-RN signals;
(3) Extract hybrid energy features for S-RN signals by combining ED and EE;

Step 3: classification and recognition.
(1) Input hybrid energy features of different S-RN signals into a support vector machine (SVM);
(2) Obtain the classification accuracy for S-RN signals.
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4. Energy Feature Extraction for S-RN

4.1. Data Measurement

In this paper, three sorts of S-RN signals were measured in the South China Sea, called Ship-1,
Ship-2 and Ship-3. In order to reduce the influence of artificial and ocean background noise,
we obtained the data under a sea state of level 1. The depths of the measurement area and the
hydrophones were about 4 km and 30 m, respectively. Each sample of S-RN had 5000 sampling points;
the three types of S-RN signals, which were normalized are shown in Figure 2.
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Figure 2. Three sorts of S-RN signals.

4.2. CEEMDAN for S-RN

Traditional feature extraction approaches usually extract features from original target signals,
which can only acquire limited features. In this study, three sorts of S-RN signals were decomposed
from a high-frequency to a low-frequency by using CEEMDAN. The CEEMNAN results for S-RN
signals are shown in Figure 3. By observing Figure 3, it can be seen that the amplitude and the number
of IMFs were different for all three types of S-RN signals.

4.3. CEEMDAN-ED

The ED of the high-frequency and the low-frequency bands can reflect the energy distribution of
S-RN signals on the macroscopic scale. The CEEMDAN-ED approach was first used to calculate the
analytic signal of each IMF; we then obtained the energy of the high-frequency and the low-frequency
bands, according to the instantaneous frequency and amplitude of each sampling point. The energy
of the low-frequency and the high-frequency bands for S-RN signals are shown in Figure 4. Finally,
the ED was obtained by a subtraction operation. The ED for S-RN signals are shown in Table 1. As can
be seen from Figure 4 and Table 1, the ED of Ship-1 was distinctly different from the other two ships,
while the EDs of Ship-2 and Ship-3 were very close.
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Table 1. The ED for S-RN signals. S-RN: ship-radiated noise, ED: energy difference.

Ship-1 Ship-2 Ship-3

−14.3713 dB −2.3841 dB −2.0176 dB
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The ED distribution for S-RN signals (20 samples for each ship) is shown in Figure 5. As can be
seen from Figure 5, the ED of the same ship remained at the same level. We could easily distinguish
Ship-1 by using ED, however, it was difficult to distinguish between Ship-2 and Ship-3, due to their
similar EDs.

Processes 2019, 7, x FOR PEER REVIEW  9 of 14 

 

 

Figure 4. The energy of the low-frequency and the high-frequency band for S-RN signals. 

Table 1. The ED for S-RN signals. S-RN: ship-radiated noise, ED: energy difference. 

Ship-1 Ship-2 Ship-3 

–14.3713 dB –2.3841 dB –2.0176 dB 

 

 

Figure 5. The ED distribution for S-RN signals. 

The ED distribution for S-RN signals (20 samples for each ship) is shown in Figure 5. As can be 

seen from Figure 5, the ED of the same ship remained at the same level. We could easily distinguish 

Ship-1 by using ED, however, it was difficult to distinguish between Ship-2 and Ship-3, due to their 

similar EDs. 

  

Figure 5. The ED distribution for S-RN signals.

4.4. CEEMDAN-EE

The energy of IMF by CEEMDAN can reflect the energy distribution of S-RN signals on the IMF
scale. The CEEMDAN-EE approach was first used to calculate the energy of each IMF according to the
instantaneous amplitude of each sampling point; we then obtained the energy proportion of each IMF.
The energy proportion for S-RN signals is shown in Figure 6. Finally, the EE was calculated according
to information entropy. The EE for S-RN signals is shown in Table 2. As can be seen from Figure 6
and Table 2, the EE of Ship-2 was distinctly different from the other two ships, while the EE difference
between Ship-1 and Ship-3 was small.

Table 2. The EE for S-RN signals. EE: energy entropy.

Ship-1 Ship-2 Ship-3

1.2138 1.9125 0.9494

The EE distribution for S-RN signals (20 samples for each ship) is shown in Figure 7. As was
the case in the measurement of the ED distribution, the EE of the same ship was also at the same
level, as can be seen in Figure 7; we could distinguish Ship-2 by using EE, however, it was hard to
distinguish between Ship-1 and Ship-3 because of their similar EEs.
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4.5. CEEMDAN-ED-EE

CEEMDAN-ED and CEEMDAN-EE are all energy feature extraction approaches for S-RN signals.
The two approaches extract energy features based on the macroscopic scale and the IMF scale,
respectively. However, CEEMDAN-ED and CEEMDAN-EE have limited and different capabilities
for S-RN signals that distinguish them. In this paper, CEEMDAN-ED-EE, as a hybrid energy feature
extraction approach, was proposed because it combines the advantages of CEEMDAN-ED and
CEEMDAN-EE. The hybrid feature distribution for S-RN signals (20 samples for each ship) is shown
in Figure 8. As can be seen from the horizontal and vertical coordinates in Figure 8, representing ED
and EE respectively, the hybrid features of the same ship were distributed in a limited region, and the
hybrid features of the different ships were independent and non-overlapping. Therefore, we could
easily distinguish the three sorts of S-RN.
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In order to further prove the effectiveness of CEEMDAN-ED-EE, we used SVM for the
classification of the three sorts of S-RN. The number of samples for each ship was 100, and the
classification results for S-RN signals are listed in Table 3. As shown in the Table 3, CEEMDAN-ED
and CEEMDAN-EE had a higher recognition rate than EMD-ED, EMD-EE, EEMD-ED and EEMD-EE;
CEEMDAN-ED-EE also had a higher recognition rate than EMD-ED-EE and EEMD-ED-EE; in
addition, the classification result of CEEMDAN-ED-EE was shown to be 100%, which was better
than CEEMDAN-ED and CEEMDAN-EE.

Table 3. The classification results for S-RN signals. CEEMDAN: complete ensemble empirical mode
decomposition with adaptive noise; EMD: empirical mode decomposition; EEMD: ensemble empirical
mode decomposition.

(a)
EMD-ED EMD-EE EMD-ED-EE

67.33% 66.33% 90.67%

(b)
EEMD-ED EEMD-EE EEMD-ED-EE

70.67% 69.67% 96.33%

(c)
CEEMDAN-ED CEEMDAN-EE CEEMDAN-ED-EE

79.67% 76.67% 100%
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5. Conclusions

A hybrid energy feature extraction approach for S-RN was proposed in this paper based on
CEEMDAN, ED and EE. The main contributions to this work are as follows:

(1) CEEMDAN was first used to extract the energy features of IMF for underwater acoustic signals
in this paper.

(2) An energy feature extraction approach for S-RN was proposed in this paper based on IMFs by
CEEMDAN and EE.

(3) CEEMDAN-ED-EE was successfully applied to extract the energy feature of S-RN signals.
CEEMDAN-ED-EE can be more accurate and efficient in extracting the energy feature.

(4) Compared with CEEMDAN-ED and CEEMDAN-EE, CEEMDAN-ED-EE was shown to have a
better performance, which proves its effectivity and its high recognition rate.
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the experiments.
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