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Abstract: A palm oil mill produces crude palm oil, crude palm kernel oil and other biomass from
fresh fruit bunches. Although the milling process is well established in the industry, insufficient
research and development reported in optimising and analysing the operations of a palm oil mill.
The performance of a palm oil mill (e.g., costs, utilisation and flexibility) is affected by factors such as
operating time, capacity and fruit availability. This paper presents a hybrid combined mathematical
programming and graphical approach to solve and analyse a palm oil mill case study in Malaysia.
The hybrid approach consists of two main steps: (1) optimising a palm oil milling process to achieve
maximum economic performance via input-output optimisation model (IOM); and (2) performing a
feasible operating range analysis (FORA) to study the utilisation and flexibility of the developed design.
Based on the optimised results, the total equipment units needed is reduced from 39 to 26 unit,
bringing down the total capital investment by US$6.86 million (from 18.42 to 11.56 million US$) with
23% increment in economic performance (US$0.82 million/y) achieved. An analysis is presented to
show the changes in utilisation and flexibility of the mill against capital investment. During the peak
crop season, the utilisation index increases from 0.6 to 0.95 while the flexibility index decreases from
0.4 to 0.05.

Keywords: mathematical programming; graphical approach; feasible operating range analysis;
utilisation index; flexibility index

1. Introduction

Oil palm (Elaeis guineensis) is cultivated for the production of fresh fruit bunches (FFBs) due to
its stability, high yield and low cost [1,2]. FFBs are then can be converted into a variety of products
including foods, cosmetics, detergents and biofuels. To date, approximately 85% of global crude
palm oil (CPO) is produced in Indonesia and Malaysia [3]. CPO is extracted from FFBs in processing
facilities known as palm oil mills (POM). A typical milling process consists of several operational units
as shown in Figure 1. FFBs undergo sterilisation, threshing, digestion and pressing to produce pressed
liquid and cake. The pressed liquid is clarified and purified to produce CPO, while the pressed cake
undergoes nut separation, nut cracking, kernel separation and drying to produce palm kernel (PK).
Most POMs in Malaysia will send the PK to a kernel crushing plant for crude palm kernel oil (CPKO)
production [4] before refinery processes where CPO and CPKO are refined into higher quality edible
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oils and fats [5]. Throughout the milling process, biomass such as palm kernel shell (PKS), pressed
empty fruit bunch (PEFB) and palm pressed fibre (PPF) are generated as by-products. Meanwhile,
large amounts of strong wastewater, which is known as palm oil mill effluent (POME) are produced
during sterilisation and clarification operations.
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POMs are usually located near to the plantations, which usually are in remote areas to minimise
logistics costs. In Malaysia, 63% of the active POMs are positioned far away (>10 km) from electrical
grid connection point [7], leaving them at a disadvantage as they would require steam and electricity
for CPO extraction. Abdullah and Sulaiman [8] estimated that 0.075–0.1MWh electricity and 2.5 t of
low-pressure steam (LPS) are required per ton of CPO produced. In current practice, over three-quarters
of over 400 POMs in Malaysia met the process steam and electricity demands by burning PPF and a
portion of PKS generated from the milling process [9,10] via co-generation [11]. Excess PKS can then
be sold as an alternative solid fuel around the world [12,13], while PEFB is returned to plantations as
mulching materials [14] or composted to produce biofertilizer [15]. The biomass can also be used for a
range of other applications (e.g., pellet, dried long fibre, etc.). Meanwhile, pond-based wastewater
treatment systems are commonly used to treat POME before discharge [16].

Yu-Lee [17] stated that the processing capacity of a plant or system depends on the labour,
equipment, technology and materials available. In this sense, POMs would have their unique design
features and the operations of each mill may differ between one another. For instance, the capacity
of a typical POM could range between 20 to 90 t/h of FFB, with operations up to 19 h every day [18].
Besides, ripe FFBs collected from plantations must be transported and processed immediately in POMs
to prevent degradation of CPO quality due to increased free fatty acid content [19]. The amount of
FFBs supplied to a POM could vary depending on location and time, due to seasonal crop changes
and possible unforeseen circumstances in the plantations [6,20]. To overcome these issues, most plants
or systems including POM are often built with an excess capacity to ensure higher flexibility [21] and
lower processing costs (i.e., labour, service and maintenance costs) [22]. However, this affects the
utilisation and economic performance of POM, especially during the lean crop season.
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According to the literature, there are several methods developed to optimise and analyse the
performance of systems; one of the commonly used methods is input-output (IO) model. IO model
was first developed by Leontief [23] to deal with the interdependencies between system components
(e.g., materials, processes, costs) using systems of linear equations. IO models are used to study the
behaviour of a system when the input or output of one system component changes quantitatively [24].
Some notable works on IO model have been presented to analyse economic networks [23], industrial
networks [25], chemical industry supply chains [26], food manufacturing plants [27] and life cycle
assessment [28,29]. IO optimisation models (IOM) have also been developed based on the general IO
methodology. IOM has been successfully applied for industrial complexes [30,31], biorefineries [32],
sustainable industrial systems [33], human resources [34] and palm oil plantations [35] to make the
best use of situation, goods or production capacity.

Apart from IOM, graphical approaches have been developed to analyse system performance.
Graphical approaches provide visual assistance in analysing scientific data and communicating
quantitative information [36]. Some of the well-known graphical approaches are the insight-based
pinch analysis technique [37] and process graph, also known as P-graph [38]. Detailed information
and applications of such approaches have been reviewed and discussed by Linnhoff [39], Foo [40],
and Teng et al. [41]. Recently, Andiappan et al. [42] proposed the feasible operating range analysis (FORA)
to examine the real-time feasible operating range of an energy system graphically. Such approach
allows the range output (i.e., maximum and minimum of each output) of a system to be determined,
considering material input and capacity constraints of individual unit operations. Besides, it also
provides insight into potential design modifications based on variations in output demand and process
bottleneck [43].

The studies presented thus far provide evidence for the applications of mathematical
programming and graphical approaches (i.e., IOM and FORA) to optimise and analyse problems
in various fields. However, limited works were reported for a hybrid approach to deal with such
issues. None of the contributions discussed has focused on palm oil milling processes apart from
Foong et al. [6], in which a mathematical programming approach alone is presented. Based on
the previous work [6], operational variables such as operating hours and labour costs are yet to
be considered. Besides, analysis on a real-time feasible operating range and the bottleneck of the
developed design is not performed in the previous work. In addition, the operational performance
of the milling process can be quantified in terms of utilisation and flexibility indices, introduced by
Grossmann et al. [44] to measure the usage and expected deviation from a nominal design state that a
process can handle. These research gaps are dealt with in this study, developing a hybrid approach
consisting of IOM for palm oil mill optimisation, followed by FORA to analyse the feasible operating
range of the developed system. In particular, this work provides an extended account of FORA,
whereby production rates, flexibility and utilisation indices and capital expenditure are considered
simultaneously to provide a visualisation tool for process improvement.

In the following section, the problem statement for this work is presented, followed by a detailed
formulation for IOM in Section 3. Next, an existing POM flowsheet is optimised using the input-output
approach described in Section 4. Following this, the economic performance, utilisation and flexibility
of the POM are then compared to highlight the improvements achieved. Lastly, the conclusions and
prospective future works are described in the final section.

2. Problem Statement

The problem addressed by the proposed approach is divided into two parts, stated as follows.
The palm oil milling processes consist of a set of technology te ε TE with interchangeable material
m ε M. Firstly, an IOM is developed where A is the input and output matrix composed of the fixed
interaction ratios, am,te between material m and technology te. Each crop season s has a fixed fraction
of occurrence, αs, to indicate the proportion of each year that it takes up. Different levels of supply
of material m are available in each crop season s. The number of equipment units operated, Ute
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determined from the nominal capacity, CAPte available in the market. Each material m and technology
te associated with a given material cost, Cm, operating cost, OCte, capital cost, CCte and electricity
consumption, Ete, respectively. In the event where annual operating time, AOT exceeds the annual
shift time, AST, additional overtime cost, OTC and operating costs, OPEX required. The objective is to
maximise the economic performance, EP of the POM as shown in Equation (1).

Maximise EP (1)

Based on the optimised POM design, the Ute determined is set as the maximum units operated,
Umax

te to identify the technology bottleneck, Bte from the maximum capacity, CAPmax
te of each technology

te. Next, FORA is then performed to evaluate the developed system using utilisation and flexibility
indices, UI and FI, respectively. The following section further explains the approach developed for
this work.

3. Hybrid Approach Formulation

As mentioned previously, a hybrid approach is developed in this work to optimise the palm oil
milling process via IOM, followed by FORA to analyse the developed system. The italic notations
represent the variables determined by the model and non-italic notations represent constant parameters
defined in the proposed approach. Meanwhile, matrix and vector symbols are represented by
bold notations.

3.1. Input-Output Optimisation Model (IOM)

In this model, each crop season in which material flows would vary is represented by index s.
It is assumed that a linear correlation for material flows in the milling process is given in Equation (2)

A(xte)s = (ym)s ∀m, ∀s (2)

where A is the matrix consists of fixed interaction ratios, am,te for material input and output ratios, to
and from technology te. Each column in matrix A corresponds to different technology te, while its rows
correspond to material m flows. am,te are expressed in negative values for material inputs, positive
values for material outputs or zero if there are no interactions between material m and technology te.
xte is the processing capacity vector of technology te, in which positive values obtained for technologies
operated and zero when it is not. Meanwhile, ym is the flow rate vector of material m (i.e., input
or output). Final and by-products are indicated with positive values while process feedstocks are
indicated with negative values and intermediates denoted with zeros. Note that both xte and ym are
expressed in material flow rate (t/h) or power generation (kW).

In the process, electricity is also being consumed to operate technology te for material conversions.
However, electricity demand, EDemand of a POM relies on the number of units operated for technology,
Ute rather than linear correlation as shown in Equation (3).

(
EDemand

)
s
=

TE

∑
te=1

(Ute)sEte ∀s (3)

Ete is a diagonal matrix for electricity consumption specified per unit technology te operated. Vector
for the number of units of technology operated, Ute is determined based on the inverse of a nominal
capacity diagonal matrix, CAPte available in the market (CAP−1

te ) obtained from Equation (4).

(Ute)s ≥ (xte)sCAP−1
te ∀s, ∀te (4)

Ute consists of positive integers and the inequality in Equation (4) ensures that the products of Ute and
CAPte to be greater or equal to xte for the process to operate.
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In the presence of power supply from grid connection, the system produces and utilises electricity
generated onsite. To ensure that the process is self-sufficient without interruption, an additional
constraint, Equation (5) is included whereby the output of electricity produced, yelectricity in the process
is greater or equal to the electricity demand, EDemand in each crop season s.(

yelectricity

)
s
≥
(

EDemand
)

s
∀s (5)

Note that the focus of this work is to model the interdependency of each equipment with one another in
a single system or plant. For conservative measurement, the power consumption and process efficiency
for maximum loading is assumed for each operating equipment to prevent underestimation of power
demand needed, regardless of the process throughput for each equipment. Every technology unit te is
sized based on these conservative values to ensure the reliability of system developed. As such, every
time an equipment is selected, a conservative energy consumption value (or maximum) is activated.

Meanwhile, the economic performance, EP of the process is evaluated based on Equation (6)

EP = GP− CRF × CAPEX (6)

where GP, CRF and CAPEX represent the gross profit, capital recovery factor and capital costs required,
respectively. To ensure that the developed system can sustain itself economically, EP must be greater
or equal to zero. Next, Equation (7) is used to calculate GP

GP = ∑
s
αs

[(
AOT

M

∑
m=1

ymCm −OPEX−OTC

)
s

− LC

]
(7)

whereby AOT, αs, Cm, OPEX, OTC and LC are the annual operational time, fraction of occurrence,
material, total operating, overtime and labour costs, respectively. Equation (7) is subject to

∑
s
αs = 1 (8)

in which the inclusion of αs assessed the performance of the system developed in all crop season s.
Each fraction of occurrence represents the time fraction where a season occurs. The summation of
these fractions must equal to one as shown in Equation (8) as the time fraction is obtained by dividing
the duration of a crop season s with the total duration considered. AOT is determined by Equation (9)

(mmax)s ≥ (AOT × ym)s ∀s (9)

where mmax is the maximum material demand (positive value) or available (negative value) per annum,
depending on the constraint set for each season s. Equation (9) is subject to

(AOT)s ≤ AOTmax ∀s (10)

where AOTmax is the maximum annual operating time of the process.
CRF is used to annualise CAPEX over a specified operation lifespan tmax

te and discount rate, r,
determined via Equation (11).

CRF =
r (1 + r)tmax

te

(1 + r)tmax
te − 1

(11)

CAPEX is calculated based on the units of technology installed during the high crop season,
(Ute)H while OPEX depends on the units of technology operated, Ute in the process as shown in
Equations (12)–(13).

CAPEX =
TE

∑
te=1

(Ute)HCCte (12)
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(OPEX)s =
TE

∑
te=1

(Ute)sOCte ∀s (13)

CCte and OCte represent the capital and operating costs per unit of technology te, expressed in diagonal
matrixes. Meanwhile, Equations (14) and (15) determine OTC and LC required.

(OTC)s = COTnwk[ (AOT)s −AST] ∀s (14)

LC = Clabnwknws (15)

where COT and Clab are the specific overtime cost and labour cost; nwk and nws represent the number
of workers and working shifts per day; AST is the annual shift time of the process.

3.2. Feasible Operating Range Analysis (FORA)

It is worth mentioning that the optimal design obtained using IOM is only optimised for a
given set of conditions. When changes arise in the near future, it is important to have sufficient
flexibility to cater for such changes. As such, FORA provide a clear visualisation to avoid the system
developed from over- or under-designed. In fact, it provides flexibility for the decision maker to
decide on the required design flexibility based on how much CAPEX to be invested. Based on the
IOM developed previously, FORA is performed to analyse the feasible operating range of the POM
designed. The analysis begins by setting the maximum units of technology installed, Umax

te as the Ute

of the design with the smallest capacity (i.e., during low crop season) as given in Equation (16).

Umax
te = (Ute)L (16)

The product of Umax
te and CAPte gives the maximum capacity, CAPmax

te as shown in Equation (17)
and the inverse matrix, (CAPmax

te )−1 is used in Equation (18) to identify the technology bottleneck, Bte

of the system. Bte ranges from zero to one where zero indicating that technology te is not utilised,
while one shows the bottleneck of the entire system in which the capacity of that particular technology
te is utilised to its maximum potential.

CAPmax
te = Umax

te CAPte ∀te (17)

(xte)s(CAPmax
te )−1 = (Bte)s ∀s, ∀te (18)

In this work, the milling process is optimised with the objective function given in Equation (1) by
deactivating the material input constraint, Equation (8) to determine the maximum product output of
the system, ymax

m . At this point, the technology bottleneck of the system is indicated by Bte equal to
one (Bte = 1), representing that a particular technology has been fully utilised, capping the ym of the
entire system. It is assumed that process intensification of the technology bottleneck is not possible
and additional equipment unit will be needed to increase ymax

m , where Bte serves as an indicator to
pinpoint the additional technology equipment for purchase/upgrade.

Following that, the objective function is modified into Equation (19) to determine the minimum
output of the system, ymin

m while ensuring the system is economically stable to sustain its operation
(i.e., EP equal to zero). In the event where minimum EP is required at a targeted value, additional
constraints may be added to the formulation. The changes in ymax

m and ymin
m are measured for each

incremental step in summation of Umax
te (

TE
∑

te=1
Umax

te ) by one equipment unit at a time to determine the

feasible operating range of each design.

Minimise EP (19)
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The utilisation index, UI and flexibility index, FI for each incremental unit of Umax
te is determined

via Equations (20) and (21) to measure the operational performance of the system

(UI)s =
(ym)s
ymax

m
∀s (20)

(FI)s =
ymax

m − (ym)s
ymax

m
∀s (21)

where UI and FI range between zero to one. In the event where UI equals to zero, the process is not
utilised while UI equals to one indicates that the process is operating at 100% of the processing capacity
installed. Meanwhile, zero in FI represents that the process has no flexibility in its operation and vice
versa. To better illustrate the proposed FORA, a generic process where ymax

m , ymin
m , UI and FI are plotted

against CAPEX as shown in Figure 2a. Several key features to be highlighted from the analysis are
as follows:

1. Cross and plus markers in Figure 2a represent ymax
m and ymin

m of different system design with
different Umax

te (x-axis on the left) and a corresponding CAPEX required (y-axis). The area shaded
in grey between ymax

m and ymin
m represented the feasible operating range of the developed system

where ym (yellow line) must fall in between this region. This is to ensure that the system output
is always less than or equal to the maximum production capacity, while greater or equal to the
minimum output to sustain its operation.

2. ymax
m and ymin

m changes with the system design, during the addition or removal of the equipment
unit. Hence, step changes are observed in ymax

m and ymin
m (black lines) when CAPEX increases.

3. The technology bottleneck and additional equipment unit to be added for each step are identified
by Bte when Bte = 1. Increments in ymax

m and ymin
m are not proportional to the increment in CAPEX

as the capital and capacity of each technology varies according to the market. Occasionally, more
than one technology bottlenecks might occur. In that respect, multiple types of equipment and
greater CAPEX are needed to increase the capacity of the system.

4. The increment in ymax
m (black line) reduces the UI (green line) while increases the FI (blue line)

of the system in the same behaviour due to the changes in production capacity as shown in the
x-axis on the right.

In the event where ym is increased to ymax
m , the first design becomes infeasible (area shaded in

red) as ynew
m falls out of the area shaded in grey as shown in Figure 2b. At the same time, a budget

constraint is applied where only an increment up to a maximum capital cost, CAPEXmax can be
invested. Based on the diagram, design 2 is required to cope up with such changes and CAPEX2 falls
within the constraint (CAPEX2 < CAPEXmax). As such, the expansion from first to second design is
feasible and the system will have more flexibility in product output up to ymax

m 2 level. On the other
hand, when ynew

m is further increased as shown in Figure 2c, the CAPEX required falls beyond the
constraint (CAPEX3 > CAPEXmax). This shows that none of the design is suitable for such increment in
ym. Hence, the decision maker may only expand up to ymax

m 2 with CAPEX2, sacrificing the additional
output between ynew

m and ymax
m 2 .
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Besides targeting for changes in ym, the proposed approach allows for decision making based
on FI or UI. For instance, the same investor is interested in changing the system slightly, allowing for
more flexibility, FInew to tolerate greater fluctuation in ym which may occur in the future. Similarly,
budget constraint is capped at CAPEXmax. As presented in Figure 2d, FInew is greater than FI1 but
lesser FI2. Therefore, flexibility up to FI2 can be achieved based on the constraint set. This analysis
serves as a powerful tool to plan for increment in product output expected in the future, under
different constraints.

The following section presents a typical POM case study in Malaysia to illustrate the proposed
approach. An IOM is developed to optimise the milling process, followed by FORA to study the feasible
operating range within its design capacity. The developed mixed-integer linear programming model
was solved via LINGO (v16, LINDO Systems, Inc., Chicago, USA) to achieve a global solution [45], with
an Intel® Core™ i5 (2 × 3.20 GHz), 8 GB DDR3 RAM desktop unit. Alternatively, other optimisation
software such as MATLAB and Statistics Toolbox (Release 2012b, The MathWorks, Inc., Natick,
MA, USA) and General Algebraic Modeling System (GAMS) (Release 24.2.1, GAMS Development
Corporation, Washington, DC, USA) could be used to achieve the same solution, depending on
user preference.
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4. Case Study

In this case study, the hybrid approach presented is demonstrated using a POM design adopted
from Foong et al. [6] as the baseline design. It is assumed that the mill operator is interested to further
optimise the milling process to improve economic performance, EP by taking operational factors such
as operating hours, labour costs and FFB availability into account. Besides, an analysis to study the
feasible operating range, utilisation and flexibility of the POM design is performed, providing a better
insight for any changes in system design to cater for any variation in production output in the future.
FFBs obtained from plantations are divided into three crop seasons, that is, low, medium and high
seasons, each with a given fraction of occurrence, αs and availability, yFFB as shown in Table 1.

Table 1. The fraction of occurrence and FFB availability for different crop seasons.

Crop Season Fraction of Occurrence, αs FFB Availability, yFFB (t/y)

Low αL = 0.417 −195,800
Medium αM = 0.333 −261,000

High αH = 0.250 −369,800

Average −261,000

Reprinted (adapted) with permission from [6], copyright (2018) American Chemical Society.

A typical POM operates in batches for 12 h daily, usually divided into two workings shifts
(i.e., annual shift time, AST = 4350 h/y). It is assumed that the POM is located in a remote area
where power grid connection is not available and electricity required to operate the milling process is
produced by cogeneration of biomass resources such as PPF and PKS. Fifteen operators with a labour
cost, Clab of US$4500/y is required for each shift to operate the milling process. It is further assumed
that the POM will have an operation lifespan, tmax

te of 15 years with a discount rate, r of 5% per annum.
The baseline POM design is shown in Figure 3 with the material and energy flows reported in a range
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for low and high crop seasons while the values stated in bracket represents the equipment units of
each technology needed. Economic parameters such as CAPEX, OPEX, LC, GP and EP are summarised
in Table 2 while additional information on material flows, technology units, process matrix table and
other specifications of the system (i.e., CAPte, Ete, CCte, OCte and Cm) provided in Tables 3–7.

Table 2. Economic parameters for baseline POM design.

Economic Parameters Low Season Medium Season High Season Average

Total capital costs, CAPEX (million US$) 18.42 18.42
Annualised CAPEX (million US$/y) 1.77 1.77

Labour costs, LC (million US$/y) 0.14 0.14
Total operating costs, OPEX (million US$/y) 1.13 1.33 1.87 1.38

Gross Profit, GP (million US$/y) 3.89 5.64 8.10 5.53
Economic Performance, EP (million US$/y) 2.12 3.87 6.32 3.75

Reprinted (adapted) with permission from [6], copyright (2018) American Chemical Society.

Table 3. Material and energy flows for baseline POM design.

Material Flows
Low Season Medium Season High Season Average

(t/h) (t/y) (t/h) (t/y) (t/h) (t/y) (t/h) (t/y)

Low pressure steam, LPS −15.3 −66,600 −20.3 −88,300 −28.8 −125,300 −20.3 −88,500
Utility water −13.4 −58,300 −17.8 −77,400 −25.3 −110,000 −17.8 −77,500

Crude palm oil, CPO 9.3 40,500 12.4 54,000 17.6 76,600 12.4 54,000
Palm kernel, PK 3.3 14,500 4.5 19,500 6.4 28,000 4.5 19,500

Palm pressed fibre, PPF 0 0 0 0 0 0 0 0
Palm kernel shell, PKS 1.4 6000 2.9 12,800 4.3 18,800 2.6 11,500

Pressed empty fruit
bunch, PEFB 8.5 37,000 11.3 49,000 15.9 69,000 11.3 49,000

Palm oil mill effluent,
POME 31.3 136,000 41.7 181,500 59.1 257,000 41.7 181,500

Energy Flows (kW) (MWh/y) (kW) (MWh/y) (kW) (MWh/y) (kW) (MWh/y)

Electricity demand,
EDemand (kW) 990 4292 1100 4967 1600 6933 1200 5178

Reprinted (adapted) with permission from [6], copyright (2018) American Chemical Society.

Table 4. Technology units operated for baseline POM design.

Technology Units Operated (units) Low Season Medium Season High Season

Tilted steriliser 3 3 5
Rotating drum separator 1 2 2

Oil pressing screw 1 2 2
Steam injection digester 2 3 3

Double screw press 2 2 3
Depricarper 2 2 3

Rolek nut cracker 1 2 2
Four-stage winnowing column 1 1 1

Vertical clarifier 2 3 4
Vacuum dryer 2 2 3

Three-phase decanter 2 2 3
Oil recovery pit 1 2 2

Water tube boiler 1 2 2
High-pressure steam turbine 1 1 1

Medium-pressure steam turbine 2 2 3

Total 24 31 39

Reprinted (adapted) with permission from [6], copyright (2018) American Chemical Society.
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Table 5. Process matrix A for palm oil milling process.

Material/Technology te = 1 te = 2 te = 3 te = 4 te = 5 te = 6 te = 7 te = 8 te = 9 te = 10 te = 11 te = 12 te = 13 te = 14 te = 15 te = 16 te = 17 te = 18

Tilted
Steriliser

(t/h)

Rotating
Drum

Separator
(t/h)

Oil
Pressing
Screw
(t/h)

Steam
Injection
Digester

(t/h)

Double
Screw
Press
(t/h)

Depricarper
(t/h)

Rolek
Nut

Cracker
(t/h)

Four-Stage
Winnowing

Column
(t/h)

Vertical
Clarifier

(t/h)

Oil
Recovery

(t/h)

Vacuum
Dryer
(t/h)

Three-
Phase

Decanter
(t/h)

Oil
Recovery

Pit
(t/h)

PPF
Combustion

(t/h)

PKS
Combustion

(t/h)

Water
Tube
Boiler
(t/h)

HPS
Turbine

(kW)

MPS
Turbine

(kW)

m = 1 Fresh fruit bunch, FFB (t) −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m = 2 Utility water (t) 0 0 0 0 0 0 0 0 −0.696 0 0 0 0 0 0 0 0 0
m = 3 Steam lost (t) 0.12 0 0 0.116 0 0 0 0 0 0 0.138 0 0 0 0 0 0 0
m = 4 Sterilised fruit bunch (t) 0.9 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m = 5 Empty fruit bunch, EFB (t) 0 0.24 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m = 6 Sterilised fruitlet (t) 0 0.76 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m = 7 Digested fruitlet (t) 0 0 0 1.04 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
m = 8 Pressed liquid (t) 0 0 0 0 0.6 0 0 0 -1 0 0 0 0 0 0 0 0 0
m = 9 Pressed cake (t) 0 0 0 0 0.4 −1 0 0 0 0 0 0 0 0 0 0 0 0

m = 10 Palm fruit nut (t) 0 0 0 0 0 0.59 −1 0 0 0 0 0 0 0 0 0 0 0
m = 11 Cracked nut (t) 0 0 0 0 0 0 0.99 −1 0 0 0 0 0 0 0 0 0 0
m = 12 Nut lost (t) 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0
m = 13 Aqueous phase (t) 0 0 0 0 0 0 0 0 1.156 0 0 -1 0 0 0 0 0 0
m = 14 Organic phase (t) 0 0 0 0 0 0 0 0 0.54 0 -1 0 0 0 0 0 0 0
m = 15 Palm pressed fibre, PPF (t) 0 0 0 0 0 0.41 0 0.19 0 0 0 0 0 −1 0 0 0 0
m = 16 Palm kernel shell, PKS (t) 0 0 0 0 0 0 0 0.357 0 0 0 0 0 0 −1 0 0 0

m = 17 Pressed empty fruit bunch,
PEFB (t) 0 0 0.868 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

m = 18 Decanter cake (t) 0 0 0 0 0 0 0 0 0 0 0 0.113 0 0 0 0 0 0
m = 19 Crude palm oil, CPO (t) 0 0 0 0 0 0 0 0 0 0.36 0.828 0 0 0 0 0 0 0
m = 20 Palm kernel, PK(t) 0 0 0 0 0 0 0 0.453 0 0 0 0 0 0 0 0 0 0
m = 21 Recovered oil (t) 0 0 0.132 0 0 0 0 0 0 −1 0 0.02 0.0097 0 0 0 0 0

m = 22 Palm oil mill effluent, POME
(t) 0.23 0 0 0 0 0 0 0 0 0.64 0.034 0.867 −1 0 0 0 0 0

m = 23 Deoiled POME (t) 0 0 0 0 0 0 0 0 0 0 0 0 0.9903 0 0 0 0 0
m = 24 Boiler feed water (t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
m = 25 Boiler ash (t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0423 0.039 0 0 0
m = 26 Low heating value (MJ) 0 0 0 0 0 0 0 0 0 0 0 0 0 13388 17804 −5151.8 0 0
m = 27 Low pressure steam, LPS (t) −0.3 0 0 −0.156 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0316

m = 28 Medium pressure steam,
MPS (t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0735 −0.0316

m = 29 High pressure steam, HPS (t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −0.0735 0
m = 30 Electricity (kW) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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Table 6. Technology specifications for palm oil milling process.

Technology Specifications te = 1 te = 2 te = 3 te = 4 te = 5 te = 6 te = 7 te = 8 te = 9 te = 10 te = 11 te = 12 te = 13 te = 14 te = 15 te = 16 te = 17 te = 18

Tilted
Steriliser

Rotating
Drum

Separator

Oil
Pressing
Screw

Steam
Injection
Digester

Double
Screw
Press

Depricarper
Rolek
Nut

Cracker

Four-Stage
Winnowing

Column

Vertical
Clarifier

Oil
Recovery

Vacuum
Dryer

Three-
Phase

Decanter

Oil
Recovery

Pit

PPF
Combustion

PKS
Combustion

Water
Tube
Boiler

HPS
Turbine

MPS
Turbine

Capacity, CAPte (t/h.unit or
kW/unit) 20 50 10 20 25 10 10 15 10 100 8 20 41 100 100 25 1000 500

Electricity, Ete (kW/unit) 75.4 28 15 18 40 69 31 29 32 0 35 50 5.5 0 0 0 0 0
Capital costs, CCte (million

US$/unit) 1.2 0.23 0.12 0.15 0.18 0.25 0.18 0.25 0.15 0 0.39 0.30 0.03 0 0 2.00 0.83 0.61

Operating costs, OCte
(million US$/unit.y) 0.18 0.03 0.02 0.02 0.04 0.03 0.04 0.01 0.02 0 0.06 0.04 0 0 0 0.08 0.02 0.01
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Table 7. Material costs, Cm for palm oil milling process.

Material Costs,
Cm (US$/t)

m = 1 m = 2 m = 15 m = 16 m = 16
Fresh Fruit Bunch,

FFB Utility Water Palm Pressed
Fibre, PPF

Palm Kernel
Shell, PKS

Palm Kernel
Shell, PKS

121 0.55 23 45 45

m = 17 m = 18 m = 19 m = 20 m = 24
Pressed Empty

Fruit Bunch, PEFB Decanter Cake Crude Palm
Oil, CPO

Palm Kernel,
PK

Boiler Feed
Water

8 43 548 389 1.14

Intermediates associated with zero costs (Cm = 0) are not listed here.

The assumption that the milling process can only be operated for 4350 h a year due to the working
shifts of operators causes its capacity to be underutilised. In that case, more equipment units are
required, resulting in greater CAPEX needed to process all the FFBs supplied, especially during the
peak crop season. This shows a limitation in the previous study [6] during optimisation of a palm oil
milling process. A more common practice in the industry is to increase the annual operating time,
AOT of the process. In the industry, POM may operate up to 19 h/day or 7000 h/y (AOT ≤ 7000).
In that sense, the total capital costs, CAPEX needed can be reduced as lesser equipment units are
required. However, the increment in AOT on top of 4350 h/y AST requires overtime cost; OTC paid
for operators working extra time and operating costs, OCte for service and maintenance of technology
units. In this study, overtime costs, COT of US$5/h and an additional 20% for OCte are considered for
operations exceeding 4350 h/y.

5. Results and Discussion

In order to achieve higher EP, an IOM was developed based on Equations (2)–(15) to optimise
the baseline POM design with an objective function given in Equation (1). The model consists of 419
continuous variables with 54 integer variables and 622 constraints, solved in 17 s to achieve a global
solution. The optimised POM design is presented in Figure 4 and the results (Table 8) showed that an
EP of US$4.57 million/y EP is achieved (22% increment) as compared to US$3.75 million/y reported in
the baseline design. This is mainly due to the reduction in CAPEX required, from US$18.42 to 11.56
million as the units of technology required, Umax

te reduce from 39 (Table 4) to 26 units as shown in
Table 9.

Data from Table 10 is compared with Table 3, showing that the same annual output is achieved,
despite a smaller throughput (material flow per hour) in the optimised design by operating 5580,
5640, 4698 and 6656 h/y on average, low, medium and high crop seasons, respectively. In this respect,
additional OTC by US$0.10, 0.03 and 0.17 million/y required for different crop seasons (an average
of US$0.09 million/y). Besides, an additional 20% OCte is required to operate the equipment due
to longer operational time. However, OPEX is still reduced by US$0.32 million/y on average (=
US$1.38–1.06 million/y) as the overall equipment operated decreases. It is worth mentioning that
the equipment operated is the same for medium and high crop seasons but longer AOT in the latter
case. As higher OTC is required to process all the fruits available during medium crop season with
smaller processing capacity, it is more optimal to operate the milling process with higher throughput
but lower AOT. Figure 5 shows the breakdown of costs allocation for both designs where CAPEX is
annualised into a yearly basis for 15 years. It can be seen that the total costs required by the optimised
design are lower than the baseline design by to 23% on average with 25, 18 and 25% reduction during
low, medium and high crop seasons, respectively. In the next part of this section, the milling process
is further analysed with FORA as mentioned earlier to study the feasible range of CPO output with
respect to CAPEX invested.
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Table 8. Economic parameters for optimised POM design.

Economic Parameters Low Season Medium Season High Season Average

Annual operational time, AOT (h/y) 5640 4700 6660 6520
Total capital costs, CAPEX (million US$) 11.56 11.56

Annualised CAPEX (million US$/y) 1.11 1.11
Labour costs, LC (million US$/y) 0.14 0.14

Overtime costs, OTC (million US$/y) 0.10 0.03 0.17 0.09
Total operating costs, OPEX (million US$/y) 0.94 1.40 1.40 1.21

Gross Profit, GP (million US$/y) 4.15 5.57 8.39 5.68
Economic Performance, EP (million US$/y) 3.04 4.46 7.28 4.57

Table 9. Technology units operated for optimised POM design.

Technology Units Operated (Units) Low Season Medium Season High Season

Tilted steriliser 2 3 3
Rotating drum separator 1 1 1

Oil pressing screw 1 2 2
Steam injection digester 2 2 2

Double screw press 1 2 2
Depricarper 1 2 2

Rolek nut cracker 1 1 1
Four-stage winnowing column 1 1 1

Vertical clarifier 2 3 3
Vacuum dryer 1 2 2

Three-phase decanter 1 2 2
Oil recovery pit 1 1 1

Water tube boiler 1 1 1
High-pressure steam turbine 1 1 1

Medium-pressure steam turbine 1 2 2

Total 18 26 26

Table 10. Material and energy flows for optimised POM design.

Material Flows
Low Season Medium Season High Season Average

(t/h) (t/y) (t/h) (t/y) (t/h) (t/y) (t/h) (t/y)

Low pressure steam, LPS −11.8 −66,600 −18.8 −88,300 −18.8 −125,300 −15.9 −88,500
Utility water −10.3 −58,300 −16.5 −77,400 −16.5 −110,000 −13.9 −77,500

Crude palm oil, CPO 7.2 40,500 11.5 54,000 11.5 76,600 9.7 54,000
Palm kernel, PK 2.6 14,500 4.2 19,500 4.2 28,000 3.5 19,500

Palm pressed fibre, PPF 0 0 0 0 0 0 0 0
Palm kernel shell, PKS 1.7 9500 1.7 7900 2.8 18,800 2.3 13,000

Pressed empty fruit
bunch, PEFB 8.5 37,000 10.4 49,000 10.4 69,000 8.8 49,000

Palm oil mill effluent,
POME 24.1 136,000 38.6 181,500 38.6 257,000 32.5 181,500

Energy Flows (kW) (MWh/y) (kW) (MWh/y) (kW) (MWh/y) (kW) (MWh/y)

Electricity demand,
EDemand (kW) 660 3744 1000 4900 1000 6940 890 4938
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FORA is performed on the milling process based on Equations (16)–(18), subject to objective
functions Equations (1) and (19) for each POM design while operational performance such as UI
and FI are computed based on Equations (20)–(21). The analysis is performed for each increment in
equipment unit added, beginning from the design with the smallest capacity of 18 units (optimised
design during low crop season) to the design with the biggest capacity, 39 units in the baseline design.
Graphical representations for FORA performed on different POM designs are presented in Figure 6
for different crop seasons and detailed information can be found in Table 11. From Figure 6a, we can
see that the CPO production during low crop season, (yCPO)L falls within the entire feasible region,
representing that each of the design can be used to achieve the output required. In this respect, the
optimal operation will be determined from the trade-off between OTC, CAPEX and OPEX as a design
with smaller capacity requires higher OTC but lower CAPEX and OPEX or vice versa. According
to Tables 8–10, the POM is operated at smallest design capacity (CAPEX = US$8.36 million) with
longer AOT of 5640 h/y (OTC = US$0.1 million/y) during the low crop season. However, the POM
is operated in a different manner during medium crop season. Figure 6b shows that (yCPO)M lies in
the feasible range for POM designs with 21 equipment units (CAPEX = US$9.18 million) and higher.
Rather than operating the process with the smallest capacity possible, it was operated at a higher
capacity (26 equipment units, CAPEX = US$11.56 million) due to lower OTC of US$0.03 million/y
(AOT = 4700). On the other hand, at least 26 equipment units are needed during high crop season as
(yCPO)H falls out of the feasible operating range for smaller POM design as shown in Figure 6c. From
the optimised results, the smallest possible design with higher OTC of US$0.17 million/y (AOT = 6660)
is operated during this crop season.
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Table 11. Feasible operating range analysis data.

Ute
(units) ymax

CPO (t/y) ymin
CPO (t/y)

CAPEX
(million US$)

Additional CAPEX
(million US$) Equipment Added CBR UIL FIL UIM FIM UIH FIH

18 50,300 14,100 8.36 - - - 0.81 0.19 - - - -

21 56,300 15,400 9.18 0.82
Vacuum dryer

Double screw press
Depricarper

3.5 0.72 0.28 0.96 0.04 - -

22 58,000 16,100 9.79 0.61 MPS turbine 2.9 0.70 0.30 0.93 0.07 - -

24 67,000 17,500 11.29 1.50 Three-phase decanter
Tilted steriliser 3.0 0.60 0.40 0.81 0.19 - -

25 68,000 17,500 11.41 0.12 Oil pressing screw 3.1 0.60 0.40 0.80 0.20 - -
26 80,500 18,000 11.56 0.15 Steam injection digester 44.3 0.50 0.50 0.67 0.33 0.95 0.05
27 84,800 18,500 11.79 0.23 Rotating drum separator 9.9 0.48 0.52 0.64 0.36 0.90 0.10
28 86,300 19,000 11.94 0.15 Vertical clarifier 5.5 0.47 0.53 0.63 0.37 0.89 0.11
29 87,000 19,000 12.12 0.18 Rolek nut cracker 1.3 0.47 0.53 0.62 0.38 0.88 0.12

31 100,600 22,000 15.32 3.21 Tilted steriliser
Water tube boiler 2.5 0.40 0.60 0.54 0.46 0.76 0.24

32 101,900 22,700 15.49 0.18 Double screw press 2.7 0.40 0.60 0.53 0.47 0.75 0.25

35 104,400 22,900 16.29 0.80
Depricarper

Vacuum dryer
Vertical clarifier

1.6 0.39 0.61 0.52 0.48 0.73 0.27

36 112,600 23,000 16.31 0.02 Oil recovery pit 415.3 0.36 0.64 0.48 0.52 0.68 0.32
37 116,000 23,600 16.92 0.61 MPS turbine 5.9 0.35 0.65 0.47 0.53 0.66 0.34

39 127,200 25,500 18.42 1.50 Three-phase decanter
Tilted steriliser 3.7 0.32 0.68 0.43 0.57 0.60 0.40
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Apart from determining the feasible operating range of each design, this approach also serves as
a tool to pinpoint the technology bottleneck, additional CAPEX needed and ymax

CPO increment for the
milling process in sequence. Table 11 shows that additional equipment units for vacuum dryer, double
screw press and depricarper technologies are needed to increase ymax

CPO from 50,300 to 56,300 t/y. Three
different bottlenecks occur at the same time and ymax

CPO can only be increased when all three equipment
units added. It is then followed by MPS turbine and three-phase decanter to increase ymax

CPO from 56,300
to 58,000 t/y and so on. It also allows the cost-benefit ratio, CBR for each step to be performed via
Equation (22), providing more insight into the effectiveness of any additional investment made.

CBR =
CCPO

(
ymax 2

CPO − ymax 1
CPO

)
CRF(CAPEX2 − CAPEX1) + (OPEX2 −OPEX1)

(22)

Based on the yCPO for each crop season, the UI and FI vary with its design. Note that UI and FI
can only be measured when yCPO falls within the feasible operating range. During high crop season,
a more significant portion of the production capacity in the optimised design has been utilised (UI
= 0.95) as compared to the baseline design with UI of 0.60. However, it reduces the flexibility from
FI of 0.40 to 0.05. This indicates that even though a higher proportion of the production capacity
utilised in the optimised design during high crop season, the flexibility is reduced. In the event where
yCPO were to increase further, it is implausible for the optimised design to cope up with such changes,
unless, additional equipment units for rotating drum separator, vertical clarifier, rolek nut cracker
and so forth are added. For instance, when (yCPO)H is increased by 30% from 76,600 to 100,000 t/y,
CAPEX of US$15.32 million and 31 equipment units will be needed to achieve the ynew

CPO as shown in
Figure 6c. However, such increment could not be satisfied if CAPEXmax is limited at US$15 million.
Thus, a maximum of 87,000 t/y CPO could be produced with such given constraint in CAPEX.

6. Conclusions

A hybrid methodology was developed in this work to optimise a typical palm oil milling process
to achieve maximum economic performance, performing an analysis for its operations and providing
a feasibility study on the developed system. This hybrid approach consists of generic formulations for
IOM and FORA to represent a palm oil milling process. The proposed approach has been illustrated
using a Malaysian palm oil mill case study with multiple crop seasons. In the case study, higher EP
is achieved from the optimised POM design with a smaller capacity but longer operational time as
compared to the baseline design used. The utilisation of the POM has been improved. However,
the flexibility of the process is also reduced proportionally. FORA serve as a decision-making tool to
determine the CAPEX required, based on the output required with other constraints considered. Future
research work will be directed to consider partial load models for changes in power consumption and
process efficiency of each equipment units, analysing the detailed performance of each equipment and
possibility for process intensification. Besides, sensitivity analysis for selling electricity, uncertainties
in product prices and raw material availability due to external reasons and FORA formulation with
multiple products output as well as the integration of downstream processes such as biorefinery can
be included for decision-making in the future.
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Nomenclature

Abbreviation
CPKO Crude Palm Kernel Oil

CPO Crude Palm Oil

FFB Fresh Fruit Bunch

FORA Feasible Operating Range Analysis

IO Input-output

IOM Input-output Optimisation Model

PEFB Pressed Empty Fruit Bunch

PK Palm Kernel

PKS Palm Kernel Shell

POM Palm Oil Mill

POME Palm Oil Mill Effluent

PPF Palm Pressed Fibre

Sets
H Index for high crop season

L Index for low crop season

M Index for medium crop season

m Index for material

s Index for crop season

te Index for technology

Variables
AOT Annual operational time

Bte Technology te bottleneck

CAPEX Total capital costs

CAPEX1 Total capital costs for design 1

CAPEX2 Total capital costs for design 2

CAPEX3 Total capital costs for design 3

CBR Cost-benefit ratio

CRF Capital recovery factor

EDemand Total electricity demand

EP Economic performance

FI Flexibility index

GP Total gross profit

LC Total labour costs

OPEX Total operating costs

OTC Total overtime costs

UI Utilisation index

Ute Number of equipment unit operated for technology te

xte Processing capacity of technology te
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xte Processing capacity of technology te

yCPO Crude palm oil output

ynew
CPO New crude palm oil output

yelectricity Electricity output

yFFB Fresh fruit bunch input

ym Input or output of material m

ymax
CPO Maximum crude palm oil output

ymax
m Maximum input or output of material m

ymax
m 1 Maximum input or output of material m for design 1

ymax
m 2 Maximum input or output of material m for design 2

ymax
m 3 Maximum input or output of material m for design 3

ymin
CPO Minimum crude palm oil output

ymin
m Minimum input or output of material m

ymin
m 1 Minimum input or output of material m for design 1

ymin
m 2 Minimum input or output of material m for design 2

ymin
m 3 Minimum input or output of material m for design 3

ynew
m New input or output of material m

Parameters
αs Fraction of occurrence for crop season s

A Matrix of material input and output ratios to and from technology te

am,te Fixed interaction ratios between material m and technology te

AOTmax Maximum annual operating time

AST Annual shift time

CAPEXmax Maximum total capital costs

CAPte Nominal capacity of technology te

CAPmax
te Maximum capacity of technology te

(CAPmax
te )−1 Inverse matrix for maximum capacity of technology te

CAP−1
te Inverse matrix for nominal capacity of technology te

CCte Capital cost for technology te

Clab Cost of material m

Cm Total overtime costs

COT Specific overtime cost

Ete Diagonal matrix for electricity consumption specified per unit technology te

FInew New flexibility index

nwk Number of workers per shift

nws Number of working shifts per day

OCte Operating and maintenance costs for technology te

r Discount rate

tmax
te Operational lifespan for technology te

Umax
te Maximum units of technology te installed
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