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Abstract: Online prediction of key parameters (e.g., process indices) is essential in many industrial
processes because online measurement is not available. Data-based modeling is widely used for
parameter prediction. However, model mismatch usually occurs owing to the variation of the feed
properties, which changes the process dynamics. The current neural network online prediction
models usually use fixed activation functions, and it is not easy to perform dynamic modification.
Therefore, a few methods are proposed here. Firstly, an extreme learning machine (ELM)-based
single-layer feedforward neural network with activation-function learning (AFL–SLFN) is proposed.
The activation functions of the ELM are adjusted to enhance the ELM network structure and
accuracy. Then, a hybrid model with adaptive weights is established by using the AFL–SLFN as a
sub-model, which improves the prediction accuracy. To track the process dynamics and maintain
the generalization ability of the model, a multiscale model-modification strategy is proposed. Here,
small-, medium-, and large-scale modification is performed in accordance with the degree and the
causes of the decrease in model accuracy. In the small-scale modification, an improved just-in-time
local modeling method is used to update the parameters of the hybrid model. In the medium-scale
modification, an improved elementary effect (EE)-based Morris pruning method is proposed for
optimizing the sub-model structure. Remodeling is adopted in the large-scale modification. Finally,
a simulation using industrial process data for tailings grade prediction in a flotation process reveals
that the proposed method has better performance than some state-of-the-art methods. The proposed
method can achieve rapid online training and allows optimization of the model parameters and
structure for improving the model accuracy.

Keywords: adaptive hybrid modeling; extreme learning machine; multiscale modification strategy

1. Introduction

Data-based modeling is becoming important in the field of engineering [1]. However, such models
may become inaccurate or ineffective owing to process dynamics and disturbances, such as variations
of the feed properties, the process conditions, and aging equipment [2,3]. In particular, for systems
with high complexity, uncertainty, or stochastic characteristics, the mechanism may not be clear; thus,
an accurate process model cannot be built. For example, in the grinding and flotation processes in
mineral processing, the variation of the feed properties is frequent and is large in long-term production.
Additionally, the process structure may be modified to adapt to the feed properties. Thus, the model
usually becomes increasingly ineffective, because its generalization ability is limited in data-based
modeling [4]. If the model cannot accurately reflect the behavior of the process, the model-mismatch
problem occurs. Therefore, model online modification is significant. Meanwhile, considering that
model mismatch may be caused by different reasons, an effective modification strategy is also necessary.
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Two kinds of methods are typically used to solve model-mismatch problems [5,6]. The first
involves retraining the model using the most recent samples. For example, Feng et al. [6] used
the object-reidentification method to deal with object changes. The second kind involves adjusting
the structure and parameters of the model according to the original model [7–9]. Reidentification
of the model parameters cannot always maintain good model performance, because the model
structure is important. Thus, updating the model at different scales is necessary. For online updating,
the computation time of the algorithm is also significant.

As for retraining and updating the model parameters, in a common method, the most recent
samples are used to re-estimate the model parameters offline or online. For example, Feng et al. [6] used
an object-reidentification method to deal with changes in the object model and object-mismatch
problems. Wang et al. [10] used a four-step recursive algorithm to estimate the weights of a
neural network. Here, online spatiotemporal measurements were performed to obtain time-varying
model parameters.

In recent years, for selecting related samples and building a local model, just-in-time learning drew
the attention of many researchers. For just-in-time modeling, it is important to select a set of samples
that are similar to the query sample. Usually, the samples in the neighborhood of the tested samples are
selected for the local modeling. Liu et al. [11] proposed a time–space similarity criterion that combined
temporal relevance and spatial relevance according to the Euclidean distance. This method had the
capability to resolve both the nonlinearity of the space and the time-varying issues of the process.
Cheng and Chiu [12] and Ding et al. [13] used a similarity index, combining the Euclidean distance
and the angular distance to select optimal samples for local modeling. A different similarity index
was used when the angular distance was different. Xiong et al. [14] used the Euclidean norm to select
the most relevant data to the query sample for constructing a just-in-time learning model to track
the process dynamics. Fujiwara et al. [15] used the weight fusion of the Q statistic and T2 statistic as
a measure of the similarity of samples and selected the optimal dataset for modeling according to
the correlation of the variables for modeling. Fujiwara et al. [16] also used the cosines of the angles
between samples to select samples whose correlation coefficients were larger than a threshold and
then used the fusion of the Q statistic and the T2 statistic to select the samples with a strong linear
correlation to perform just-in-time learning modeling.

Yu and Grauman [17] proposed a large-scale multi-label classification method in which the
Euclidean distance was used to compute the proximity of a new sample to other samples, and then
neighborhoods of the new sample were selected by considering the distance and balancing the category
label composition in the neighborhood. This method estimates both the composition and the size
of the training subset likely to yield an accurate local model. Uchimaru and Kano [18] selected
previous samples that were useful for constructing an accurate local model using an elastic net,
then constructed a sparse regression model to estimate the query, and used the derived regression
coefficients to evaluate the similarity for conducting locally weighted partial least squares. Niu and
Liu [19] employed a time-order cumulative similarity factor for the selection of samples to improve the
real-time performance of just-in-time modeling. Yuan et al. [20] proposed a method for selecting the
samples for local modeling by considering both the input and the output information. In this method,
partial least squares regression is firstly utilized to extract a lower-dimensional latent structure. Then,
the distance between the i-th sample and the query sample is computed with the supervised latent
variables using the Euclidean distance.

The just-in-time learning model can reflect the change of the working conditions in real time
and has good prediction performance. Traditionally, most local modeling methods only consider the
distance factor or design new indicators combining the distance, angle, or time according to different
datasets; however, the fusion of these indicators requires the assignment of weights and has high
sensitivity to the data. The method proposed herein considers the Euclidean distance and the cosine
information between the input sample and the historical database sample and defines a new similarity
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index, which does not need to consider the weight distribution of the two samples and improves the
local modeling dataset reliability.

Optimizing the structure of models is another kind of important method. For neural-network
models, structural growth and pruning is proposed to optimize the network structure to suit to new
samples. Sensitivity analysis is a typical and efficient pruning method. Morris [21] proposed the
elementary effect (EE) to evaluate the influence of inputs on outputs and reduced the number of
network nodes according to the EE values. The Morris method is an important “factor-screening
method” that analyzes the importance of factors at low computational cost. Engelbrecht [22] proposed
a statistical pruning heuristic algorithm that used sensitivity analysis to quantify the relevance of input
and hidden units for determining which unit should be pruned. Here, the basic idea is that a parameter
with a variance in sensitivity close to zero is irrelevant and can be removed. The partial rank correlation
coefficient of inputs was proposed by Khoshroo et al. [23] to perform sensitivity analysis for a neural
network. Ibrahim et al. [24] conducted a comprehensive sensitivity analysis to evaluate models and
optimize the input pattern. The sensitivity of the input to the output was controlled by optimizing the
spread of the Gaussian radial basis function (RBF). Sensitivity analysis can elucidate the behavior of a
model and the interactions between different parts of the model. Typically, there are multiple neurons
in a computational model, and each run can be time-consuming and expensive. Therefore, a suitable
algorithm is needed to determine which neurons significantly influence the output of the model.

Among the aforementioned methods, the Morris method can evaluate the model parameters in
the global circumference, that is, evaluate the degree of influence on the output when the parameters
change within a relatively large range. In the standard EE-based Morris pruning method, the input
values of a variable must be mapped to the range [0, 1], and the distribution of the input value is usually
uniform. However, in practice, the value of a variable may vary in a large range and be distributed
nonuniformly. Additionally, different input variables may have different types of distributions. Thus,
herein, an improved EE is proposed. Moreover, all the aforementioned methods consider the influence
of the input node on the neural network without considering the role of hidden-layer nodes.

Some researchers used learning accuracy to evaluate the importance of the nodes. Huang et al. [25]
proposed a growing and pruning strategy for a generalized growing and pruning RBF neural network.
Here, the significance of the nearest or intentionally added new neuron is linked to the required
learning accuracy. Hayashi et al. [26] proposed a pruning method in which the input of the network is
pruned as long as the network reaches the minimum preset precision requirement. Yin [27] proposed
an index called the normalized error reduction ratio, which is essentially the network accuracy, for
evaluating the individual contribution of existing hidden units and pruning those neurons that make
small contributions to the current dynamic from the network. Henríquez and Ruz [28] presented
a non-iterative method for pruning hidden nodes in randomized single-layer feedforward neural
networks (SLFNs). Garson’s algorithm was used to determine the relative importance of hidden
neurons. Mohammed and Lim [29] used an index called the confidence factor, which is related to
the classification accuracy of the enhanced fuzzy min–max neural network, to reduce the network
complexity in the presence of noise data and to improve the classification performance. Han et al. [30]
proposed an adaptive growing and pruning algorithm in which the competitiveness of hidden neurons
related to the radius of the hidden neuron, the correlation coefficient between the hidden-layer output
and network output, and the active state of the hidden neuron are defined. Thus, the hidden neurons
of the recurrent self-organizing neural network can be added or pruned to improve the generalization
performance. Because the activation function of the hidden layer of this pruning algorithm is fixed,
applying the algorithm is equivalent to resetting the hidden-layer structure and then retraining.
It is essential to investigate the effects of different neurons on the model output; thus, a method for
optimizing the activation-function learning (AFL) neural network via a pruning method is proposed.

The extreme learning machine (ELM) [31,32] is a fast learning algorithm for single-hidden-layer
feedforward neural networks. However, it is difficult for a single model to achieve high prediction
accuracy for an industrial dataset. Thus, an ELM-weighted hybrid modeling method [33] and
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activation-function learning for a single-layer feedforward neural network (AFL–SLFN) was proposed
by our research group. In this study, to further improve the model accuracy and make the modelling
method more effective for online application in industrial process, an adaptive weighted hybrid
intelligent modeling method with a multiscale online modification strategy is proposed and validated
using the flotation process. This paper makes the following contributions:

(1) This paper combines ELM and AFL–SLFN. This allows the activation function of ELM to change
adaptively. It is convenient for pruning to obtain a simpler network structure. In general, a single
model does not perform well. Then, a hybrid model with adaptive weights is established by
using the AFL–SLFN as a sub-model, which improves the prediction accuracy.

(2) To track the process dynamics and maintain the generalization ability of the model, a multiscale
model-modification strategy is proposed. That is, small-, medium-, and large-scale modification
is performed in accordance with the degree and the causes of the decrease in model accuracy.
In the small-scale modification, the just-in-time learning model can quickly reflect the change
of working conditions. In order to improve the prediction accuracy of the just-in-time learning
model, the spatial distance and cosine value between the input sample point and the historical
sample point are fully considered to calculate their similarity and to improve the quality of
the just-in-time dataset. In the medium-scale modification, the Morris method is improved
by redefining the elementary effect (EE)-based Morris, where the model input parameters are
mapped to a new interval and, therefore, its scope of application is expanded. Simulation results
obtained using industrial data from a flotation process are presented and analyzed.

The remainder of this paper is organized as follows: Section 2 describes the ELM and
AFL–SLFN-based adaptive hybrid modeling method. In Section 3, the online modification strategy
is proposed. Simulation results are presented and discussed in Section 4. Lastly, the conclusion and
future work are presented in Section 5.

2. ELM and AFL–SLFN-Based Adaptive Hybrid Modeling Methodology

In industrial processes, particularly those where natural resources are used as raw materials,
e.g., mineral processing, metallurgical processes, and petrochemical processes, the process performance
is related to not only the process conditions but also the properties of the raw materials. The process
becomes more complicated and varies with time owing to the variation of the feed and the process
conditions; thus, the process models used for prediction, control, and optimization usually become
worse over time. Hence, an online modification method must be adopted to enhance the adaptability
of the model. Additionally, owing to the requirement of real-time production, online modification
with fast learning is necessary. Therefore, in this study, a modeling method based on an ELM and
an AFL–SLFN is proposed for the prediction or soft-sensing of key process parameters. However,
owing to the complexity of the industrial process, a single network is not adequate. According to the
measurement theory, the average value of multiple measurements can approach the true value. Thus,
an AFL–SLFN model base is established, and the adaptive weighted average of the values of multiple
networks is used as the final prediction value.

2.1. ELM-Based AFL–SLFN

In neural-network modeling, the activation functions are determined before the training of
the network and are not subsequently changed. However, these activation functions do not have
physical meaning. For some actual processes, the relationship between the inputs and outputs can be
represented by a set of simple functions. Therefore, to improve the adaptive ability of the network and
make it match the physical relationship between the inputs and outputs more closely, a new type of
SLFN with learning for the activation function is proposed. The structure of the single-hidden-layer
neural network with multiple inputs and one output is illustrated in Figure 1.
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where x = [x1, x2, · · · , xi, · · · , xn] is the input of the neuron, and y is the output of the neuron; w and b
are randomly determined weight and bias parameters. They are not changed after they are initially
determined.

{
ϕ1,ϕ2, · · · ,ϕm

}
is a cluster of base functions, such as the trigonometric sines {sin(x),

sin(2x), sin(3x), . . . } or polynomial functions {1, x, x2, x3, . . . }. We can select the activation function
according to the characteristics of the data. The activation function and parameters β are not fixed;
they are regulated in the training procedure to obtain optimal network performance. For a general
description of the activation-function learning neural network, please refer to our previous work [34].

ELM is used as the learning algorithm. In this algorithm, the weight and bias parameters of
the input to the hidden layer are randomly assigned, and only the weights of the output layer are
regulated [35–37]. Thus, it has fast learning and high accuracy [38–40], making it suitable for online
learning. For details regarding the extreme learning algorithm, please refer to References [35,36].

2.2. Adaptive Hybrid Model Based on Multiple AFL–SLFNs

In application, the simultaneous training of multiple SLFNs online is time-consuming. Thus,
to reduce the computation time, an SLFN model base is constructed using the historical data of the
process. Then, when a new sample is obtained, multiple SLFNs are activated and combined to obtain
the prediction results.

We previously developed a hybrid model based on multiple excellent ELM models, which combines
the advantages of each sub-model [33]. However, the weights and activation functions of the different
sub-models are the same. Considering the differences in performance among the sub-models,
an adaptive weighted hybrid model based on an AFL–SLFN was proposed, and the weights were
calculated with prediction errors.

The structure of the hybrid model based on multiple SLFNs is shown in Figure 2. In Figure 2,
there are R sub models for hybrid modeling, and the prediction value after data fusion ŷnew is

ŷr
new = fr(xnew), (4)

ŷnew =
R∑

r=1

pr ŷr
new, r = 1, 2 · · ·R, (5)
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where pr is the weight of the r-th model.Processes 2019, 7, x FOR PEER REVIEW 6 of 23 
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The same weight is not optimal for all the SLFNs. Thus, an adaptive weight is assigned to
each SLFN.

R∑
r=1

pr = 1. (6)

The mean and variance equations of the single model are shown in Equations (7) and (8),
respectively. Then, the variance of the hybrid model is calculated using Equation (9).

yr =
1
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ns∑
j=1

ŷr
jnew

, (7)

σ2
r =

1
ns − 1

ns∑
j=1

(
ŷr

jnew − yr
)2

, (8)

where ŷr
jnew

is the prediction data at the j-th moment from the r-th SLFN. The measured output value for
the new sample is denoted as ynew. The sample interval is selected by sliding the window to maintain
the number of samples as ns.

σ2 = E
[
(ynew − ŷnew)

2
]
= E


ynew
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pr ŷr
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2, (9)

σ2 =
R∑

r=1

(pr(ynew − ŷr
new))

2. (10)

Then, we obtain

σ2 =
R∑

r=1

p2
rσ

2
r , r ∈ [1, R], (11)

where σ2 is a second-order function f (pr) of the model weight pr. We can determine the optimal weight
pr for obtaining the minimum σ2

min.
This yields an optimization problem with the objective function f (pr). It is easy to mathematically

prove that the model with optimal weight for different sub-models is more accurate than the model with
the average weight for the sub-models. Additionally, this was proven by the examples in Reference [41].
The mathematical proof is omitted here.
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pr =
1

σ2
r

R∑
r=1

1
σ2

r

, (12)

σ2
min =

1
R∑

r=1

1
σ2

r

. (13)

To estimate the performance of the hybrid model, the root-mean-square error (RMSE), mean relative
error (MRE), correlation coefficient (R2), and average runtime (Time) are used as evaluation indicators.
The RMSE, MRE, and R2 are frequently used statistical indicators. Time indicates the computation
time of the modification procedure. If the RMSE, MRE, and Time are closer to 0, the performance is
better. If R2 is closer to 1, the regression is better.

RMSE =

√√√
1
N

N∑
i=1

(ŷi − yi)
2, (14)

MRE =
1
N

N∑
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∣∣∣∣∣ ŷi − yi

yi

∣∣∣∣∣, (15)
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(
N
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, (16)

where yi is the measured value, ŷi is the predicted value, and N is the number of samples.

3. Online Modification Method of Hybrid Process Model

In Section 2, an adaptive hybrid model was established. Because the mechanism and dynamics
of industrial processes are usually complex and time-varying, when the feed properties and
operating conditions change, the hybrid model may not adapt to the new samples. Thus, an online
model-modification strategy, which includes small-scale modification, medium-scale modification,
and large-scale modification, is designed to update the model parameters or model structure or
rebuild the model, respectively. In a period of production time, the distribution of prediction errors is
statistically analyzed, and the corresponding modification strategies are made for the hybrid model.

The absolute value of the error, relative error, or RMSE can be used to evaluate the model for
updating. The absolute value of the error is calculated as

AE =
∣∣∣pi − p̂i

∣∣∣, (17)

where pi represents the measured output of the i-th sample, and p̂i represents the corresponding
predicted value.

The accuracy of the hybrid model is evaluated via simulation online. The sample interval is
selected by sliding the window to maintain the number of samples as ns, and the absolute value of
the error is statistically analyzed. If the prediction error of the hybrid model is below a threshold
determined by technicians according to the benefit of the process, the model is considered to be
accurate. Otherwise, the reason why the model is inaccurate is analyzed, and the model is modified at
a different scale according to the variation range of the model error. The modified model is monitored
for a time period to ensure that the modification is effective. Otherwise, the modification process
continues. The more detailed modification procedure, as shown in Figure 3, is described below.
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The prediction error for a single sample is denoted as ε, and the thresholds of the prediction error
are ε0, ε1, and ε2, with 0 < ε0 < ε1 < ε2. In a time period, the numbers of errors in [0, ε0], [ε0, ε1],
[ε1, ε2], and [ε2,+∞] are denoted as n0, n1, n2, and n3, respectively. The probability of the error in the
four ranges is calculated in Equation (18).

pri =
ni

3∑
i=0

ni

, (i = 0, 1, 2, 3). (18)

Suppose that the four thresholds for the probability are Pi(i = 0, 1, 2, 3). Then, the modification is
performed according to the relationship between pri and Pi.

If pr0 ≥ P0, the model is considered to be accurate, and no modification is needed. If the distribution
pr1 has pr1 ≥ P1, the error of the prediction model is slightly too large; thus, the requirement of the
process is not satisfied. Usually, this is not caused by a large variation of the feed properties. Thus,
only the parameters of the sub-models are modified. An improved K-neighbor just-in-time learning
algorithm is proposed to retrain the SLFN models for improving the accuracy, which is called
“small-scale modification”. Details of the method can be found in Section 3.1.

If the distribution pr2 has pr2 ≥ P2, the error of the prediction model is large. Then, structure
modification is performed on the SLFN sub-model by using the structure pruning method, and the
model is updated. This is called “medium-scale modification”. Details of the method can be found in
Section 3.2.

If pr3 ≥ P3, the model error is very large, and the variations of the feed properties and the working
conditions are considered at the same time. Firstly, all the hybrid SLFN models are modified by
updating the model parameters and structure updating. If the model is still not accurate, it is not
applicable to the current working conditions, and remodeling is considered. This is called “large-scale
modification”.
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3.1. Improved K-Neighbor Just-In-Time Learning for Small-Scale Modification

In this section, a small-scale modification method using just-in-time modeling is described. Here,
a method is proposed to select a better modeling dataset for the just-in-time method, and the original
model is then retrained to update the model parameters. When the just-in-time learning method is
used for online modeling, firstly, the samples most similar to the current sample are selected, and then
the selected samples are employed to construct a new model or retrain the existing model. The current
input sample is denoted as xq(1× n), where n is the number of input variables. This is also called a
query vector.

The historical input samples are denoted as X(N × n), with i = 1, 2, · · · , N, where xi represents the
i-th historical input sample with n inputs, which is also called the response vector, and N represents
the number of the samples. Then,

xq =
(
xq1, xq2, · · · , xqn

)
, (19)

xi = (xi1, xi2, · · · , xin). (20)

The Euclidean distance dqi and the cosine of the vectoral angle cos
(
θqi

)
of xq and xi are given as

follows:

dqi =

√√√ n∑
j=1

(
xqj − xi j

)2
, j = 1, 2, · · · , n, (21)

cos
(
θqi

)
=

xqxT
i

‖xq‖2‖xi‖2
, (22)

where xi j is the j-th variable of sample xi.
Then, the similarity between the query vector xq and the response vector xi is evaluated to

select samples for just-in-time modeling. Usually, the following Equation is used to calculate the
similarity [12,13]:

sqi = λ

√
e−d2

qi + (1− λ) cos
(
θqi

)
. (23)

In Equation (23), λ ∈ [0, 1] is an unknown parameter that is usually determined by experience.
According to many studies [12–20], the samples used for just-in-time learning significantly affect

the performance of the model. In order to improve the quality of the dataset selected for just-in-time
learning modeling, a new similarity-evaluation Equation is proposed below.

cqi = cos
(
θqi

)
∗

√
e−d2

qi , (24)

where cqi represents the similarity of the samples xq and xi, with cqi ∈ [−1, 1].
When cqi < 0, the cosine angle of the two samples is large, the similarity is small, and xi is not

suitable for just-in-time modeling. When cqi > 0, the similarity is larger. If cqi is close to 1, the sample xi
is selected for just-in-time modeling.

The first k samples in descending order of the similarity are selected for just-in-time modeling,
which can be expressed as follows:

Ωk =
{
((x1, y1), (x2, y2), · · · , (xk, yk))

∣∣∣cq1 > cq2 > · · · > cqk
}
. (25)

Furthermore, the modeling samples can be optimized in a principal component analysis (PCA)
model. From the viewpoint of the correlation among variables, Q is described as distance and T2 is
used to guarantee the samples in local region. Then, the two indices are fused to obtain a novel index,
whose minimum corresponding to k is the optimal size for local samples [15]. In this study, k = 8.
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Then, the SLFN models in the model base are retrained using the ELM and the method described in
Section 2.2.

3.2. Morris-Based SLFN Structure Pruning for Medium-Scale Modification

For medium-scale modification, the structure of the SLFNs is regulated. Based on the influence
of neurons on the output of the model, the pruning is carried out to optimize the network structure.
An improved EE is used to evaluate the contribution of a node to the output of the network. If the EE
is below a threshold, the node is deleted. When determining the influence of the input layer on the
model output, the input variable refers to the input feature (the input of the model). When determining
the influence of the hidden layer on the output, the input variable refers to the output of the hidden
layer neuron.

The EE was defined by Morris in 1991 [21]. In the standard EE-based Morris pruning method,
the values of the input variables are mapped to the range [0, 1], and the space of the input variables
is a super-cube with dimension K. If the output y is differentiable, ∂i(x) = ∂y/∂xi can be used as an
index to evaluate the influence of the input variable xi on the output y. Then, ∂i(x) may be equal to 0
or a nonzero constant for all input vectors x. It may also be a non-constant function of xi or one or
more xi( j , i). These situations correspond to four cases where the influence of xi on y can be ignored,
is linearly addable, or is nonlinear and depends on other variables.

We know that all the input values are in the range [0, 1]. The input values are discretized, and the
input variable xi is set equal to one of the values in

{
0, 1/(p− 1), 2/(p− 1), · · · , 1

}
, where p is an even

number determined by experience.
The EE of xi is defined as

di(x) = [y[(x1, x2, · · · , xi−1, xi + ∆, xi+1, · · · , xk) − y(x)]/∆, (26)

where ∆ is a predetermined multiple of 1/(p− 1).
That is, one EE value is obtained by running the model twice. The first time, the value of the

input variable x j( j = 1, 2, 3, · · · , k) can be randomly selected, and, the second time, the input value
should have an increment of ∆. Then, the significance of the input to the output can be determined
by running the model for a number of times proportional to k or k2. For each input, numerous
pk−1(p− ∆(p− 1)) EE values are obtained. In the Morris method, it is assumed that the “basic factor
(EE)” obeys a certain distribution Fi. The mean quantifies the individual effect of the input on the
output, whereas the standard deviation estimates the combined effects of the input due to nonlinearities
or interactions with other inputs. These sensitivity measures can be used to rank the inputs according
to their relative importance and determine non-influential parameters that may be fixed in subsequent
model calibration.

In the standard EE-based Morris pruning method, the input values of a variable must be mapped to
the range [0, 1], and the distribution of the input value is usually uniform [42,43]. However, in practice,
the value of a variable may vary in a large range and be distributed nonuniformly. Mapping all the
values in a large range to the range [0, 1] may result in an unreasonable sample density. Additionally,
different input variables may have different types of distributions. In such cases, the standard EE-based
Morris pruning method is not suitable. Thus, herein, an improved EE is proposed.

The input variables are denoted as x = [x1, x2, · · · , xk], and the output variable is denoted as y,
where k is the number of input variables. Suppose that there is only one output. The range of the i-th
input variable xi is denoted as [ai, bi], and different variables have different types of distributions.

abi = bi − ai, (27)

abmin = min(abi), i = 1, 2, 3, · · · , k, (28)
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0 < ∆ < abmin/p, (29)

bai = bi − ∆ − ai. (30)

To minimize the number of model evaluations which are required to compute the sensitivity
measures, Morris designed a random orientation matrix B* = (Jm,1X* + (∆/2)[(2B − Jm,k) D* + Jm,k]) P*,
where B* is constructed using B, B is an m × k strictly lower triangular matrix of ones, Jm,k is an m ×
k matrix of ones, D* is a k × k diagonal matrix with elements chosen randomly from the set [−1, 1],
and P* is a k × k matrix constructed by randomly permuting the columns of a k × k identity matrix.
For more information on the sampling design, please refer to References [21,42].

The acquisition of the above matrix is a randomization process. Suppose the two rows of B which

differ only in their i-th elements (i = 1, 2, . . . , k) B(i) =

[
x1 x2 · · · xi−1 xi,1 xi+1 · · · xk
x1 x2 · · · xi−1 xi,2 xi+1 · · · xk

]
and the result of only the first two stages of the randomization process on these rows, then J2,1X* +

(∆/2)[(2B(i) − J2,k)D* + J2,k] can be obtained. In this study, for the input variable xi, let li = abi/(p − 1).
Then, calculate the probability of xi in the ranges [ai, ai + li), [ai + li ai + 2li), . . . , [ai + (p − 3) li, ai + (p −
2) li), [ai + (p − 2) li, ai + bai), and [ai + bai, bi]. It is clear that, in any column except the i-th, the two
elements are equal and have one of the values in [ai, ai + li, ai + 2li, . . . , (bi − ∆)] and [ai + ∆, ai + li + ∆,
ai + 2li + ∆, . . . , (bi − ∆) + ∆], and each has equal probability. Then, for an input vector x, the improved
EE of the i-th input is defined by Equation (26), but the range of xi is different, that is, xi ∈ [ai,bi] and xi
≤ bi − ∆. Therefore, its scope of application is expanded.

The distribution of the EE of the input xi is denoted as Fi, that is, di(x) ∼ Fi. The number of EE
values is 2k−1pk, with the distribution Fi. Then, by analyzing Fi in the same way as the standard EE
method does, the significance of the input variable is determined. The number of times that the model
must be run for obtaining the EE values should be designed economically to limit the computation
time. For more detail, please refer to References [21].

According to the modification strategy, when the accuracy of the hybrid model worsens
and pr2 ≥ P2, the improved EE-based Morris pruning method is activated to improve the model.
The procedure for SLFN structure optimization using the pruning method is as follows:

Step 1: Using Equation (12), determine the weights of all the sub-models. In the sub-models
which were never modified, the one with the largest weight is modified.

Step 2: Input the sampling matrix into the sub-model with the largest input weight. Then,
calculate the EE value of each hidden-layer neuron and its statistical analysis value.

Step 3: Calculate the mean and standard deviation of the neuronal EE values and optimize the
neural-network structure by pruning.

Step 4: Retrain the network model. Then, use the test data to test this model, and calculate the
model error again.

Step 5: If the model is still in the medium-scale modification region and there are unpruned
sub-models, return to Step 1.

3.3. Large-Scale Modification

When the error of the model is too large and pr3 ≥ P3, more process data are collected, and all the
models are constructed from the first step.

4. Case Study: Online Simulation Using Industrial Data

In this section, a case study is presented, in which the foregoing modeling method and
model-modification strategy are employed for modeling and prediction of the tailings grade in
mineral processing. In mineral processing, the particle size in the grinding-classification process,
recovery rate, concentrate grade, and tailings grade are key indices. However, in many actual processes,
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these indices are measured offline, causing delays for process control. Additionally, owing to the
complexity of the process and the frequent changes of the feed property, prediction models for the
indices using neural networks and other methods cannot adapt to the variation of the process. To solve
these problems, online simulation using the proposed AFL–SLFN modeling method and the multiscale
modification strategy is used to predict the tailings grade, which can improve the computation and
model updating speed and the precision of the model.

4.1. Preprocesing of the Dataset

The froth features, process conditions, ore compositions and grade, concentrate grade, and tailings
grade were collected in a bauxite beneficiation plant. Then, Pearson correlation analysis and significance
test analysis were performed to reduce data redundancy. The variables with a coefficient larger than
0.25, as shown in Table 1, were used as inputs to predict the tailings grade. That is, 12 input features
were selected out of a total number of 26 features. The grade was analyzed every 8 h, and the froth
features were obtained online by analyzing froth videos and photographs. According to the flowchart
of the process, it takes approximately 10 min for the ore to pass from the first scanning cell to the
tailings. Therefore, the froth features between 10 and 20 min before the sampling time of the tailings
were averaged and used for prediction of the tailings grade. Finally, 450 groups of data were obtained.
Thus, the data covered 150 days of production. Among these data, 360 groups were used as training
sets, and the remaining 90 groups were used as test sets.

There are some missing values in the original industrial data due to human causes and mechanical
failures. Therefore, an associated K-nearest neighbor (Knn) method was used to interpolate the missing
data. Firstly, the candidate input feature related to the input feature corresponding to each missing data
value were determined by correlation analysis, and all values of the input features were normalized
to be dimensionless. Then K samples nearest to the missing data were determined according to the
Euclidean distance between each sample of the candidate input features. The K values were then
assigned weights by distance to estimate the missing data.

Table 1. Pearson coefficient and Ps value of input features.

No. Feature Pearson Coefficient Significance Test (Ps)

1 Feeding rate −0.403262 2.234 × 10−19

2 Na2CO3 addition 0.337195 1.145 × 10−13

3 Roughing dispersant −0.254534 1.123 × 10−7

4 Cleaner_1 dispersant −0.298500 6.705 × 10−11

5 Fan frequency for air sparge −0.319802 2.251 × 10−12

6 Roughing_1 collector −0.339910 7.071 × 10−14

7 Rough scavenging collector 0.388968 4.982 × 10−18

8 Cleaner scavenging collector 0.372919 1.363 × 10−16

9 Roughing_1 froth depth −0.329549 4.342 × 10−13

10 Roughing_2 froth depth −0.289702 2.517 × 10−10

11 Cleaner_1 froth depth −0.258562 1.906 × 10−8

12 Cleaner_2 froth depth −0.255940 2.678 × 10−8

4.2. Small-Scale Mdoification of Prediction Model for Tailings Grade

R represents the number of sub-models, and H represents the number of hidden nodes.
Grid searches of R on {2, 3, . . . , 9, 12} and of H on {5, 8, 11, 14, . . . , 50} were performed to identify the
optimal values. For selecting the activation function, we firstly set up a base-function pool, including a
trigonometric function cluster, logarithmic function cluster, polynomial function cluster, or exponential
function, Gaussian function, or mixed function cluster. Each activation function was a base function,
and different base functions were used for different activation functions. Then, the base functions were
adjusted according to the learning accuracy to obtain an optimal combination of the base functions as
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activation functions. Each model had different activation functions that were randomly selected from
{1/(1 + e−x), sin x, 0.5e−x2/10, e−x, cos 2x}.

The effects of the parameters R and H on the results are presented in Table 2. To test the stability of
the models, we conducted these experiments 20 times. The results shown in Table 2 are the stable ones.

With an increase in the number of hidden-layer neurons and sub-models, model runtime only
slightly increased, the accuracy of the model was not always improved; thus, the parameters R and H
were set as six and 25, respectively, which were the optimal values. Using the training data, six SLFN
sub-models were obtained by conducting the training six times. Each SLFN model had 25 hidden
neurons, and the number of hidden neurons was determined by tests. The prediction results for the test
dataset are shown in Figure 4. Here, the prediction results represent the adaptive weighting of the six
sub-models. The error of the model was calculated using the measured and predicted values, as shown
in Figure 5. There were many points with large errors. Therefore, online modification was necessary.

Table 2. Performance comparison among different parameter sets. MRE—mean relative error;
RMSE—root-mean-square error.

R H MRE RMSE R2 Time (s)

3
10 0.0653 0.1463 0.4795 1.2163
25 0.0582 0.1248 0.6622 1.2424
40 0.0600 0.1244 0.6666 1.2815

6
10 0.0608 0.1376 0.5906 1.2525
25 0.0583 0.1211 0.6870 1.2883
40 0.0577 0.1223 0.6792 1.3946

10
10 0.0617 0.1392 0.5898 1.3412
25 0.0589 0.1214 0.6839 1.3204
40 0.0591 0.1230 0.6703 1.5452
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For model modification, the number of samples in the sliding window ns was set as nine,
corresponding to three days of production. According to the requirements of the actual production
process and the experiences of the operators and the technicians, the error thresholds ε0,ε1, and ε2

were set as 0.08, 0.15, and 0.25, respectively, and the model prediction error probability thresholds P0,
P1, P2, and P3 were set as 0.6, 0.3, 0.3, and 0.6, respectively. Here, 0.08 and 0.15 were values accepted
by the technicians in the plant, and other values were set according to experience.

Then, the distribution probability of the model error in different regions was calculated. For the
first nine samples, the number of errors in the four regions was four, four, one, and zero, as shown
in Table 3. Therefore, for the 10th sample, small-scale modification was needed. The improved
just-in-time local modeling method was then used to update the model. In this section, only small-scale
modification is considered; medium-scale modification is discussed in the next section. The online
modification procedure was as follows:

Step 1: According to the k-nearest theory, the eight closest samples to the query sample were
selected from the historical data and used for retraining to obtain six new SLFN sub-models, each having
five hidden nodes.

Step 2: The new models were then used to predict the tailings grade of the query sample. The six
old models were kept in the model base.

Step 3: The sliding window was moved ahead by one sample, and the prediction errors of the
samples in the new window were calculated.

Step 4: According to the distribution of the prediction errors, if modification was needed,
the foregoing procedure was repeated to construct new models using the just-in-time method;
otherwise, the six old models were used for prediction.

The prediction results and the corresponding errors of the small-scale modified AFL–SLFN model
are illustrated in Figures 6 and 7, respectively. In Figure 7, the point with a vertical arrow represents a
small-scale modification point.

As shown in Figures 4–7, the small-scale modification was effective for tailings grade prediction,
and the adaptability of the model was improved. However, for samples 11–20 and 38–44, the prediction
errors were large, and the small-scale modification was not adequate. Therefore, medium-scale
modification was necessary. Similarly, there were small fluctuations for samples 51–54 and 68–72.
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Table 3. Error distribution in each sliding window.

No. Sliding
Window [0, 0.08) [0.08, 0.15) [0.15, 0.25) [0.25,∞] Query

Sample
Modification

Strategy

1 Samples 1–9 4 4 1 0 10 Small
2 Samples 2–10 4 4 1 0 11 Small
3 Samples 3–11 3 4 2 0 12 Small
4 Samples 4–12 4 3 2 0 13 Small
5 Samples 5–13 4 2 2 1 14 None
6 Samples 6–14 5 1 2 1 15 None
7 Samples 7–15 4 1 3 1 16 Medium
8 Samples 8–16 4 2 2 1 17 None
...

...
...

...
...

...
...

...
81 Samples 81–89 9 0 0 0 90 None
82 Samples 82–90 9 0 0 0 None None

4.3. Medium-Scale Modification of Prediction Model for Tailings Grade

As depicted in Figure 6, the measured value of the tailings grade changed significantly for
samples 11 and 38 and deviated for several consecutive samples. According to the distribution of
errors listed in Table 3, for sample 16, a medium-scale modification was needed. Thus, the improved
Morris pruning method was used to update the sub-model with the largest weight. The pruned
model and the other five sub-models were then used to predict the next sample, and the errors
were calculated and checked to determine whether further modification was needed. For the 90
samples, two medium-scale modifications were performed. For sample 40, another medium-scale
modification was required. Details regarding the pruning method are presented below, taking the
second medium-scale modification as an example.

For the second medium-scale modification, the sub-model with the second-largest weight was
modified. We knew that there were 25 neurons in the hidden layer of the model. The learning process
of the sub-model for the 360 training samples is shown in Figure 8, where the threshold value of the
mean square error for training was 0.1. As shown in Figure 8, the training stopped at the 17th iteration.
The RMSEs were 0.093518 and 0.099472 for the training and test, respectively. To accurately describe
the effect of each hidden-layer neuron on the overall prediction output of the network model, the EE
value corresponding to each neuron was calculated using the improved Morris population sampling
method. According to the Morris method [21,42,43], the number of EE values of each input was set
as r, and then the average of the r EE values was determined. Here, r (≥2) was set randomly. Here,
according to experience, the following values were used: r = 6, p = 8, and k = 12. After the model
ran once, six independent EE values were obtained for each hidden-layer neuron, and the economy
of the model was 12/13. The mean value was taken as the abscissa, and the standard deviation was
taken as the ordinate, as shown in Figure 9. To further describe the role of each neuron in the model,
the evaluation index is shown in Figure 10.

As shown in Figures 9 and 10, the mean and the standard deviation of the 21 EE values were
relatively large, indicating that the corresponding neurons had great influence on the output and could
be considered as important neurons. The mean and standard deviation of the ninth, 13th, 14th, and 17th
EE values were close to zero. Thus, the corresponding neurons were considered to be unimportant
and ignored. Therefore, the ninth, 13th, 14th, and 17th neurons of the hidden layer were deleted.
Additionally, as shown in Figure 9, the 22nd input had strong nonlinearity or interaction with other
inputs. Hence, the previous 360 samples (counting back from the current query sample) were used as
training samples to retrain the pruned sub-model. The simulation results after pruning are shown in
Figures 11–13.
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Following the pruning of the sub-model structure, the raining stopped after the seventh iteration.
The training and test RMSEs were 0.071579 and 0.081624, respectively. Thus, the training speed and
model accuracy were both improved.

The simulation results of the AFL–SLFN hybrid model with the multiscale modification strategy
are illustrated in Figure 14, where small-scale and medium-scale modification was performed by
simulating online prediction. The prediction errors are depicted in Figure 15. The distribution of the
model errors in all the sliding windows and the modification are presented in Table 3.

As indicated by Table 3, the sample was in the small-scale modification area in the first sliding
window, and the local sample set was constructed using the improved K-nearest neighbor just-in-time
learning algorithm to predict the 10th test sample. In the fifth sliding window, the error probability
of each region was below the threshold value; thus, modification was not necessary, and the initial
model was used to predict the 14th test sample. In the seventh sliding window, the sample was in the
medium-scale modification area, and the sub-model with the largest weight was selected. The Morris
pruning method based on the improved EE value was used to optimize the sub-model structure.
After updating the model, the 16th test sample was predicted.
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Figure 13. Effect of each hidden neuron on the model after pruning.



Processes 2019, 7, 893 18 of 23

Processes 2019, 7, x FOR PEER REVIEW 18 of 23 

 

 
Figure 13. Effect of each hidden neuron on the model after pruning. 

 
Figure 14. Prediction results for the multiscale modification strategy. 

 
Figure 15. Prediction error for the tailings grade with the multiscale modification strategy. 

In the eighth sliding window, the error probability of each region was below the threshold; thus, 
modification was not necessary, and the 17th test sample was predicted using the updated model. By 
analogy, all predictions were finally obtained. 

The distributions of the model errors in Figures 5, 7, and 15 are plotted in Figure 16. The statistics 
of the errors for different modifications, as well as the time consumed (including model modification 
and prediction), are presented in Table 4. 

Figure 16a–c present the error distributions under no modification, small-scale modification, and 
multiscale modification, respectively. The prediction error had a normal distribution, and the 
normality of the data was verified by a D-normality test. The results indicated that the models with 
and without modification were valid. As shown in Figure 16c, the prediction-error distribution for 
the multiscale modification strategy was the most consistent with the normal distribution, and this 
strategy yielded the highest accuracy. 
  

0 20 40 60 80
Sample number

1

1.5

2

2.5

Ta
ilin

gs
 g

ra
de

Real value
Predicted value

Figure 14. Prediction results for the multiscale modification strategy.

Processes 2019, 7, x FOR PEER REVIEW 18 of 23 

 

 
Figure 13. Effect of each hidden neuron on the model after pruning. 

 
Figure 14. Prediction results for the multiscale modification strategy. 

 
Figure 15. Prediction error for the tailings grade with the multiscale modification strategy. 

In the eighth sliding window, the error probability of each region was below the threshold; thus, 
modification was not necessary, and the 17th test sample was predicted using the updated model. By 
analogy, all predictions were finally obtained. 

The distributions of the model errors in Figures 5, 7, and 15 are plotted in Figure 16. The statistics 
of the errors for different modifications, as well as the time consumed (including model modification 
and prediction), are presented in Table 4. 

Figure 16a–c present the error distributions under no modification, small-scale modification, and 
multiscale modification, respectively. The prediction error had a normal distribution, and the 
normality of the data was verified by a D-normality test. The results indicated that the models with 
and without modification were valid. As shown in Figure 16c, the prediction-error distribution for 
the multiscale modification strategy was the most consistent with the normal distribution, and this 
strategy yielded the highest accuracy. 
  

0 20 40 60 80
Sample number

1

1.5

2

2.5

Ta
ilin

gs
 g

ra
de

Real value
Predicted value

Figure 15. Prediction error for the tailings grade with the multiscale modification strategy.

In the eighth sliding window, the error probability of each region was below the threshold; thus,
modification was not necessary, and the 17th test sample was predicted using the updated model.
By analogy, all predictions were finally obtained.

The distributions of the model errors in Figures 5, 7 and 15 are plotted in Figure 16. The statistics
of the errors for different modifications, as well as the time consumed (including model modification
and prediction), are presented in Table 4.

Figure 16a–c present the error distributions under no modification, small-scale modification, and
multiscale modification, respectively. The prediction error had a normal distribution, and the normality
of the data was verified by a D-normality test. The results indicated that the models with and without
modification were valid. As shown in Figure 16c, the prediction-error distribution for the multiscale
modification strategy was the most consistent with the normal distribution, and this strategy yielded
the highest accuracy.

Table 4. Comparison of the online modification strategies for predicting the tailings grade.

Modification Strategy RMSE MRE R2 Time (s)

No modification 0.1211 0.0583 0.6870 1.2883
Small-scale modification 0.1057 0.0474 0.7818 4.6665
Multiscale modification 0.0845 0.0316 0.8748 9.1429

Figures 15 and 16 and Table 4 indicate that the hybrid model with only small-scale modification
improved the model accuracy significantly. However, the model with multiscale modification tracked
the process dynamics with higher accuracy than that with only small-scale modification. In the
online modification process, the improved just-in-time local modeling method had to reselect the
sample, the medium-scale modification process required pruning, and both of them had to retrain
the model. Thus, the computation time increased for the multiscale modification. However, owing to
the high speed of the ELM, the runtime of the prediction model did not change significantly. Thus,
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the model had stronger dynamic adaptability and higher prediction accuracy under the joint action of
the small-scale and medium-scale modification strategy and could predict the flotation grade accurately
in a long and stable manner.
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(b) error distribution for Figure 7; (c) error distribution for Figure 15.

4.4. Model Comprasion

To better demonstrate the capability of the proposed model, its performance was compared with
that of state-of-the art algorithms, including support vector regression (SVR), the ELM, the online
sequential ELM (OS-ELM) [44], the weighted ELM [45], and the online recurrent ELM (OR-ELM) [46].
In the following experiments, we used the sigmoid function as the activation function of the basic
ELM. Grid searches of C (tradeoff constant) on {21, 22, 23, . . . , 215, 216} for the weighted ELM and of L
(hidden-layer nodes) on {5, 10, 15, 20, 25, . . . , 50} were performed to identify the optimal values for
all the models. For the SVR model, the RBF kernel was used. The kernel-function parameters were
determined using the approach described in Reference [47]. The regularization parameter was set as
four, and the kernel-function parameter was set as 1.0. The prediction results of the proposed model
and the other models are illustrated in Figures 14 and 17.

Table 5 presents the prediction performances of all the models according to the following
performance metrics: the RMSE, MRE, R2, and Time. Clearly, the AFL–SLFN hybrid model with
modification achieved the best outcomes: RMSE = 0.0845, MRE = 0.0361, and R2 = 0.8748. Regarding
the runtime, because the proposed method involved a dynamic online modification process, the overall
prediction time was longer than that of the static model, but the difference was negligible for the 8-h
tailings grade test time.

Table 5. Comparison of different models for tailings grade prediction. SVR—support vector
regression; ELM—extreme learning machine; OS—online sequential; OR—online recurrent;
AFL–SLFN—single-layer feedforward neural network with activation-function learning.

Model RMSE MRE R2 Time (s)

SVR 0.1472 0.0697 0.4755 2.7811
ELM 0.1421 0.0651 0.5405 1.0093

OS-ELM 0.1405 0.0634 0.5473 1.8993
Weighted ELM 0.1380 0.0612 0.5644 1.6771

OR-ELM 0.1326 0.0629 0.6202 1.8219
AFL–SLFN hybrid 0.1211 0.0583 0.6870 1.2883

AFL–SLFN hybrid with modification 0.0845 0.0361 0.8748 9.1429
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(b) extreme learning machine (ELM) model; (c) online sequential (OS)-ELM model; (d) weighted ELM
model; (e) online recurrent (OR)-ELM model; (f) AFL–SLFN hybrid model.

5. Conclusions

An adaptive weighted hybrid intelligent modeling method with a multiscale online modification
strategy for the prediction of industrial-process indices was proposed and verified. The hybrid
modeling method is based on an SLFN using an ELM and activation-function learning, where different
combinations of base functions are used as activation functions. Thus, the network parameters are
trained quickly, and optimization of the structure is convenient. Considering the model mismatch
caused by the process dynamics and the instability of the feed properties in industrial processes,
a multiscale modification strategy for online estimation was proposed. In this strategy, an improved
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just-in-time method is used for local modeling, i.e., small-scale modification. The weight distribution
of the Euclidean distance and the cosine information do not need to be considered, and the reliability
of the local modeling dataset is enhanced. An improved EE-based Morris pruning method is used
for optimizing the sub-model parameters and structure, i.e., medium-scale modification. Here,
the mapping range and the distribution of input variables can be generalized; thus, the model structure
can be optimized conveniently. The method was compared with other state-of-the-art methods via a
simulation using preprocessed industrial data. The results indicated that the proposed method can
achieve higher accuracy and better adaptability. Meanwhile, due to the model, the modification was
done by simulating continuous industrial production, and it can be concluded that the generalization
of the model with modification is reasonable.

In this study, only pruning was used for the modification of the network structure. However,
sometimes, neurons must be added to the networks. Additionally, adaptively increasing or decreasing
the number of input variables and neurons should be investigated for achieving the optimal network
structure. Thus, future work will continue to focus on optimizing the network structure.
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