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Abstract: Arsenic contamination in industrial and mining effluents has always been a serious concern.
Recently, nano-sized iron particles have been proven effective in sorptive removal of arsenic, because
of their unique surface characteristics. In this study, green synthesis of iron nanoparticles was
performed using a mixed extract of two plant species, namely Prangos ferulacea and Teucrium polium,
for the specific purpose of arsenic (III) removal from the aqueous environment. Results of UV-visible
spectrometry, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR)
analyses confirmed the formation of iron nanoparticles from Prangos ferulacea (Pf) and Teucrium polium
(Tp) extracts. The synthesized Fe nanoparticles morphology was studied via microscopy imaging.
The particle size was 42 nm, as assessed by dynamic light scattering (DLS) analysis. Adsorption
experiments were also designed and performed, which indicated 93.8% arsenic removal from the
aqueous solution at 200 rpm agitation rate, 20 min agitation time, pH 6, initial concentration of
0.1 g/L, and adsorbent dosage of 2 g/L. Adsorption isotherm models were investigated, and the
maximum uptake capacity was determined to be about 61.7 mg/g. The kinetic data were best
represented by the pseudo-second kinetic model (R2 = 0.99). The negative value of Gibbs free energy,
the enthalpy (−7.20 kJ/mol), and the entropy (−57 J/mol·K) revealed the spontaneous and exothermic
nature of the adsorption process. Moreover, the small quantity of the activation energy confirmed
the physical mechanism of arsenic adsorption onto iron nanoparticles and that the process is not
temperature sensitive.

Keywords: arsenic adsorption; isotherm model; process optimization; thermodynamics;
kinetics study

1. Introduction

Arsenic is known as a carcinogenic element that may enter # aquatic environments through either
natural processes, such as weathering, biological activities, and volcanic emissions, or anthropogenic
practices, including mining and metallurgical activities or glass and ceramic manufacture [1]. With an
average concentration of 6 mg/kg, arsenic is the twentieth most abundant element within the earth’s
crust, being present in over 2000 mineral compounds [2]. It may exist in the form of arsenate (60%),
arsenite (20%), sulfide, and sulfur-containing salts (20%). Inorganic arsenic in natural waters is usually
found in the form of arsenate oxyanions (As (V)) or arsenite (As (III)). Arsenite is 25–60 times more
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toxic than arsenate, more mobile in aqueous environments, and more hazardous to the environment.
Long-term consumption of arsenic-contaminated water is a threat to human health [3]. Among the
chronic effects of exposure to arsenic are the spread of cancers, skin diseases, and infertility. According
to World Health Organization (WHO) and United States Environmental Protection Agency (USEPA),
the maximum arsenic concentration limit in drinking water is 10 µg/L [4].

Several methods have been proposed for removal of arsenic from aqueous solutions, each having
their unique limitations and benefits. The available strategies generally include the oxidation-based [5,6],
coagulation, settlement, and filtration methods [7,8]; and membrane [9], ion-exchange [10], and
adsorption processes [11,12]. Most arsenic removal methodologies are non-effective for arsenite ions,
which are predominantly non-charged at pH < 9.2 [5]. The precipitation, adsorption, and ion-exchange
methods are, therefore, less applicable for removal of trivalent arsenic. Accordingly, the optimum
arsenic removal methods are usually composed of two individual stages: initial oxidation of arsenite
to arsenate, and subsequent removal of arsenate [13].

In spite of the availability of biological and chemical methods (chemical oxidation, electrochemical
acidification) to remove arsenic from the aqueous solutions, the efficiency of some natural and
agro-based sorbents, such as banana peel [14], rice husk [15], red mud [16], clay minerals [17], and
polymeric materials [18], has been investigated. Among the other sorbents tested, metallic nanoparticles,
such as titanium, zirconium, and iron, have shown higher sorption efficiencies towards arsenic ions.
In recent years, iron nanoparticles (FeNPs) have attracted much attention in the field of organic and
inorganic contaminant removal. Successful results have been obtained in the utilization of FeNPs for
arsenic decontamination [19].

The fate and contamination of nanoparticles synthesized through chemical processes and their
unwanted toxic by-products are of concern. However, through the production of bio-based methods,
safe production of nanomaterials has considerably increased. The conventional chemical methods
in the fabrication of nanoparticles are being substituted with green chemistry methodology. Unlike
physical and chemical methods, this novel method does not rely on high input energy, pressure,
temperature, or utilization of chemical reagents.

Among the biological methods, the utilization of plant extracts seems to be more feasible, as the
metal ions are mitigated quickly. Nanoparticles are synthesized within a few minutes or hours,
considering the plant type and phytochemical concentration, while in microbial methods, considerably
longer processing time is required [20]. Therefore, utilization of plants and their derivatives in
the fabrication of nanomaterials is prioritized, in which green synthesis of metal nanoparticles is
facilitated by using various plant organs, such as leaves, stems, roots, and seeds [21]. Plant-derived
polyphenolic and flavonoid compounds, L-ascorbic acid (vitamin C), proteins, caffeine, theophylline,
and antioxidants accelerate the synthesis of nanoparticles [22]. Herein, some of the mentioned
substances act as reducing agents, while some others act as stabilizers and dispersants [23].

To the best of our knowledge, the plant-mediated synthesis of FeNPs has not been reported
with the Prangos ferulacea and Teucrium polium extracts. This selection was based on the abundance,
low-cost, and availability of the corresponding plant species in the area of study, the novelty of their
incorporation, and their chemical specifications. The phenolic content of Prangos ferulacea and Teucrium
polium is 65 [24] and 150 mg [25], respectively. These plants act as both reducing and capping agents.

The study aims to prepare iron nanoparticles (FeNPs) using an eco-friendly approach in one step
by reduction of FeSO4 with polyphenols from Prangos ferulacea and Teucrium polium. The resulting
product is non-toxic, eco-accommodating, and cost-effective. Hence, it can be used as an economical
alternative for FeNP production on a large-scale. Also, the synthesized nanoparticles were fully
characterized, and consequently, the sorptive behavior of FeNPs was assessed through equilibrium
and kinetic adsorption tests for arsenic removal from mining effluents, which has not yet been reported.
Adsorption efficiency was investigated in different experimental conditions and was compared with
that of conventional sorbents.
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2. Material and Methods

2.1. Synthesis of Iron Nanoparticles

The collected plant samples were thoroughly rinsed with deionized water, air dried, and pulverized.
Next, 15 g of plant powder was agitated with 250 mL deionized water for 1 h at 80 ◦C [26] using a
magnetic hotplate stirrer (HSD330, MTops, Gyeonggi-do, Korea). The final extract was filtered using
a vacuum pump (PLATINUM, Aurora, IL, USA). Iron sulfate (0.1 M) and sulfuric acid (0.1 M) were
added into the solution to minimize and reduce Fe2+ oxidation. The extract solution was mixed with
0.1 M iron sulfate solution at a ratio of 2:1, while agitating the mixture for 30 min at room temperature.
The nitrogen gas was injected into the mixture because the dissolved oxygen had been removed.
Immediately after mixing, the solution changed color from light brown to dark black. This phenomenon
is attributed to the formation of iron nanoparticles based on previous studies [20]. The nanoparticles
were carefully filtered and dried at 50 ◦C for 24 h in a vacuum oven.

2.2. Characterization of Iron Nanoparticles

UV-visible spectrometry (Shimadzu UV2550, Kyoto, Japan) detected nanoparticles within
190–700 nm absorbance spectra. Mineral phases in the specimens were detected using X-ray powder
diffraction (XRD) analysis (Philips pw1730, Amsterdam, The Netherlands). Field emission scanning
electron microscopy (FESEM) (BEL SORP mini, Osaka, Japan), transmission electron microscopy
(TEM) under an accelerating voltage of 100 kV (Zeiss EM 10C), and dynamic light scattering (DLS)
(ZEN 3600, Malvern, Worcestershire, UK) were applied to study the size and morphology of the
material. The surface functional group responsible for reduction, covering, and stabilization of the
reduced nanoparticles was identified by interpreting the Fourier-transform infrared spectroscopy
(FTIR) spectrum (BRAIC WQF-510, Beijing, China). The pH of zero points of charge (pHZPC) of the
sorbent was estimated by preparing several samples at different pHs and detecting their zeta potentials
using a Nano ZS ZEN3600 device (Malvern, Worcestershire, UK).

2.3. Adsorption Experiments

Batch adsorption experiments were designed and performed using 25-mL flasks containing 20 mL
aqueous arsenic solution with a dose of adsorbent added, and then agitated by an orbital shaker at
room temperature (25 ± 1 ◦C). According to Table 1, the effects of 5 different parameters on arsenic
removal were assessed: pH, time, agitation rate, adsorbent dosage, and initial concentration (test series
1–5, respectively). Factors were changed one at a time, while the others were kept constant. The pH
adjustments were made by adding proper amounts of HCl (37%, c) and 0.1 M NaOH (BDH chemicals
Co, Hull, UK) to the solution. Samples were withdrawn at predetermined time intervals, filtered, and
then analyzed for their arsenic content by AAS (ContrAA700, Jena, Germany). Each experiment was
repeated three times, and the mean value was reported. The standard solution was analyzed to achieve
stability and accuracy.

The arsenic removal at a time (t) was then calculated according to Equation (1). The amount of
arsenic adsorbed at time t, qt (mg/g), was calculated by Equation (2).

Removal (%) =
(C0 −Ct)

C0
∗ 100 (1)

qt =
(C0 −Ct)V

W
(2)

where C0 is the initial arsenic concentration, and Ct is the concentration at time (t). V is the volume of
the arsenic solution (L), and m is the mass of adsorbent (g).

Test series five was also used to study the equilibrium isotherm model. Table 2 lists the details of
the isotherm models and their parameters selected for this study.
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Table 1. Summary of the design of adsorption experiments.

Parameters

pH Time (min) Agitation Rate
(rpm)

Adsorbent Dose
(g/L)

Initial Arsenic
Concentration (mg/L)

Series 1 4, 5, 6, 7, 8,9 15 150 2 75

Series 2 6 5, 15, 20, 40, 60,
80, 100, 120 150 2 75

Series 3 6 20 100, 150, 200, 250 2 75

Series 4 6 20 200 0.5, 1, 1.5, 2, 2.5, 3 75

Series 5 6 20 200 2 25, 50, 75, 100, 150

Table 2. Isotherms and their linearized expressions.

Isotherms Equations Linear Expression Plot Parameters

Freundlich qe = LnKF(Ce)
1/n lnqe = LnKF +

1
n lnCe lnqe vs. lnCe

KF = exp(intercept)
n = (slope)−1

Langmuir qe =
(qmKLCe)
(1+KLCe)

Type(I)
Ce
qe

=
(

1
KLqm

)
+

(
Ce
qm

) (
Ce
qe

)
vs. Ce

qm = (slope)−1

KL = slope/intercept

Temkin qe = qm ln(KTCe) qe = qmlnKT + qmlnCe qe vs. lnCe

qm = exp
(intercept/slope)

KL = slope

Redlich-Peterson qe =
ARPCe

1+BRPCg
e

ln
[(

ARPCe
qe

)
− 1

]
=

glnCe + lnBRP
ln

[(
ARPCe

qe

)
− 1

]
vs. lnCe

G = slope
BRP = exp (intercept)

ARP *

Koble–Corrigan qe =
AKCCp

e
1+BKCCP

e

1
qe

=

(
1

AKCCP
e

)
(

BKC
AKC

) 1
qe

vs. 1
CP

e

AKC = (slope)−1

BKC = intercept/slope
P *

Note: * optimized using a trial and error method.

To study the kinetics model, the sorption experiments were performed at an initial arsenic
concentration of 75 mg/L, sorbent dosage of 0.04 g/L, pH 6, and agitation rate of 150 rpm. Samples were
withdrawn at predetermined time intervals (5, 15, 20, 40, 60, 80, 100, and 120 min) during agitation.
The kinetic data were analyzed using well-known kinetic models, as given in Table 3.

Table 3. Kinetic models and their linearized expressions.

Kinetic Model Equations Linear Expression Plot Parameters

Zero order qt = qe − k0t qt = qe − k0t qt vs. t k0 = −slope
qe = intercept

First order qe = qtexp (k1t) Ln(qe/qt) = k1t ln(qt) vs. t k1 = −slope
qe = exp (intercept)

Pseudo-first
order qt = qe[1 − exp (k1pt)] Ln(qe − qt) = lnqe − k1t ln(qe − qt) vs. t k1 = −slope

qe = exp (intercept)

Pseudo-second
order qt = k2pqe

2t/(1 + qek2pt) t
qt
= 1

k2pq2
e
+ t

qe
t
qt

vs. t k2p = (slope)2/intercept
qe = (slope)−1

Elovich qt =
1
β ln(αβt) qt =

1
β ln(αβ) + 1

β lnt qt vs. lnt
B = (slope)−1

α = (slope) exp
(intercept/slope)

Exponential
function qt = ktv Lnqt = lnk + vlnt Lnqt vs. lnt V = slope

K = exp(intercept)
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The best-fit isotherm and kinetic models were determined according to the coefficient of
determination (R2 value).

Moreover, to study the thermodynamics of the adsorption, experiments were performed at an
initial arsenic concentration of 100 ppm, pH 6, adsorbent dosage of 2 g/L, agitation rate of 200 rpm,
and five different temperatures (20, 40, 50, 60, and 70 ◦C) for 20 min.

3. Results and Discussion

3.1. Characterization of the Synthesized Nanoparticles

As mentioned earlier, the color of the solution changed during nanoparticle formation. The color
change in the mixture of extracts after their addition to the iron solution indicates the formation of the
nanoparticle [27].

Figure 1 shows the absorption spectra in the case of mixed extracts, iron sulfate, and the synthesized
nanoparticles. The spectrum showed a peak at 240 nm, which indicates the presence of Fe(II) ion.
The resonance wavelength for iron nanoparticles lies in the range of 400–500 nm. A peak range of
390–450 nm was attributed to the zero-valent iron state, which is in full agreement with the results of
other reports using various plants such as goua, papaya, and neem leaf extracts [28].
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Figure 1. UV-Vis spectra related to the plant extracts, iron solution, and the synthesized nanoparticles.

After 10 min, the reaction was finished, and the peak disappeared, representing the complete
reduction of Fe(II) ions to FeNPs. According to the UV-Vis analysis, the presence of the iron nanoparticle
was confirmed, and further characterization studies focused on the synthesized FeNPs by mixture
of extracts.

The FTIR spectra showed several peaks at different regions, which indicated the biological nature
of the iron complexes. In Figure 2a (before the adsorption process), the band at 3407 cm−1 was
attributed to hydroxyl (OH) groups. The band at 1625 cm−1 represented the C=C aromatic ring
stretching vibration and confirmed the existence of poly-phenolic compounds (aromatic cycles) in the
extracts. The absorption band in the C–H region showed the polyols, and vibrations at 1100 cm−1 were
attributed to the C–O bond. The peak at 590 cm−1 was assigned to the Fe–O bond [29].

Overall, the peaks confirm the presence of protein, phenolic, and amide groups in the extract
mixture, which are responsible for the reduction of salt precursors to nanoparticles. Flavonoids are
thermodynamically able to reduce the Fe2+ to Fe0 because of their lower redox potential (0.23 < E <

0.75 V). Therefore, the Fe–O bond appeared at 590 cm−1, confirming the presence of Fe nanoparticles.
Figure 2b shows the shift of peaks at 3407, 2925, 1625, 1100, and 590 cm−1 to new positions at 3419, 2900,
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1621, 1089, and 572 cm−1 (after the adsorption process), respectively. These changes in the vibration
peaks indicate the higher sorption intensity, and confirm the arsenic adsorption onto iron nanoparticles.

The mechanism of nanoparticle production via biomolecules is challenging. However, the
researchers found that phenolic compounds, such as flavonoids, derived from a plant may control the
reduction of ferrous cations, and also act as capping agents [30].

The XRD results (Figure 3) confirmed the crystalline form of produced FeNPs, with the peaks at
(2θ) 44.38◦ and 34.38◦ corresponding to the zero valent iron (Fe0) and magnetite (Fe3O4), respectively.
Also, the detected peak at the 2-Theta of 27.13◦ is related to iron hydroxide (FeOOH). The polyphenolic
compound is observed as a sharp peak at 17.58◦ [31]. This observation is significant for nanoparticles,
which mainly consist of maghemite and hydroxide partially oxidized on their surface.
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Figure 2. Fourier-transform infrared spectroscopy (FTIR) spectrum of iron nanoparticles (NPs) (a) before
and (b) after the adsorption process (resolution = 4, scan times = 10).
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The morphology and structure of the synthesized nanoparticles were studied using field emission
scanning electron microscopy (FESEM). The results of FESEM imaging at two different magnifications
of 1 µm and 200 nm are given in Figure 4a. The particles were mostly spherical, with an average size
of 30–70 nm. The size range was in agreement with many recent studies (50–100 nm). Okoth et al.
reported an average size of 1–2 µm for synthesized iron nanoparticles from banana peel extract [32],
while aqueous sorghum bran produced smaller particles (200 nm) [33]. Wang et al. reported that the
average size distribution obtained from a mixture of green tea and eucalyptus was about 100 nm [34].Processes 2019, 7, 759 8 of 20 
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Figure 4. Field emission scanning electron microscopy (FESEM) analysis of synthesized iron
nanoparticles at two different magnifications. (a) Transmission electron microscopy (TEM) micrograph
of iron exposed by a mixture of extracts (b).

TEM and SEM analysis demonstrated the surface morphology of biosynthesized FeNPs. The
synthesized particles have a uniform spherical structure, with sizes ranging between 35 and 56 nm
(Figure 4b). The DLS analysis showed an average particle diameter of 42 nm. It is interesting to note
that some of the nanoparticles have irregular shapes because of agglomeration during their preparation
for SEM analysis. As a result, most FeNPs were spherical. However, TEM images were compatible
with SEM analysis and confirmed the distribution of iron nanoparticle sizes. Similar results using other
plant extracts have been reported in the synthesis of Fe0/Fe2O3/Fe3O4 nanoparticles (Table 4).
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Table 4. Size and morphology of Fe0/Fe2O3/Fe3O4 nanoparticles synthesized by various plant
extracts [35].

Plants Part Used Size and Morphology

Green tea Leaf 40–60 nm, Amorphous

Tea Tea powder 40–50 nm, Spherical

Pomegranate Leaf 100–200 nm

Azadirachta indica Leaf 50–100 nm, Spherical

Melaleuca nesophila and Rosemarinus officinalis Leaf 50–80 nm, Spherical

Grapes Leaf 15–100 nm, Quasi-spherical

Tridax procumbens Leaf 80–100 nm, Crystalline, irregular sphere shapes

Eucalyptus tereticornis Leaf 40–60 nm, Cubic

3.2. Optimization of Arsenic Sorption onto Iron Nanoparticles

The influence of the main operating parameters, such as pH, contact time, stirring speed, initial
arsenic concentration, adsorbent dosage, and temperature, on arsenic removal from contaminated
water was investigated.

The pH plays a role in wastewater treatment processes. Therefore, arsenic removal at different
acidity levels was investigated in the range of 4 to 9. Figure 5 illustrates the effects of different initial
pHs on arsenic (III) removal efficiency. As can be seen, arsenic removal gradually increased up to pH
6, and then it leveled off, with no further changes for the higher pH values tested. Accordingly, the
maximum arsenic removal was found to occur at neutral pH, and therefore, this pH was selected for the
rest of the experiments. Low adsorption efficiency at pH 4 was attributed to the competition between
As (III) and the protons for the available sorption sites over the sorbent. At pH values higher than 9.2,
the negative charge of H2AsO3

− leads to electrostatic repulsion [36]. The maximum arsenic removal
capacity in the previous studies was also reported at about pH 6–8 [37]. Negative zeta potential at this
range of pH confirmed the physical adsorption of arsenic on the adsorbent.
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Figure 5. Effect of pH solution on the arsenic removal efficiency (initial arsenic concentration: 0.075 g/L;
sorbent dosage: 2 g/L; agitation rate: 150 rpm; time: 15 min).

The effect of contact time on arsenic removal efficiency is illustrated in Figure 6. According to
the results, 48.62% of the arsenic was removed during the initial adsorption stage (0–5 min), and as
time passed, the arsenic content of the solution decreased at a higher rate so that after 20 min, 93.18%
removal was achieved with no specific further change afterward. Thus, to ensure the achievement of
equilibrium, the contact time was fixed at 20 min for the rest of the batch experiments. Generally, the
rate of adsorption was high at first, and then it experienced a gradual increase until the equilibrium
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occurred. This fact may relate to a large number of the vacant surface site at an initial stage, and after a
few minutes, the occupation of the rest is difficult due to repulsive forces between the solute molecules
in solid and bulk phases [38].
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Figure 6. Effect of contact time on arsenic removal efficiency (initial arsenic concentration: 0.075 g/L,
sorbent dosage: 2 g/L, agitation rate: 150 rpm, pH = 6).

The agitation rate influences the solute distribution bulk and the thickness of the Nernst boundary
film. As can be seen in Figure 7, arsenic uptake increased as the agitation rate was raised to 200 rpm
because of lower boundary-layer resistance. Similar results were reported by many researchers [38].
The negative effect of higher stirring speed on adsorption (250 rpm) can be attributed to excessive
turbulence of the solution.
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Figure 7. Effect of agitation rate variation on arsenic removal efficiency (initial arsenic concentration:
0.075 g/L, sorbent dosage: 2 g/L, contact time: 20 min, pH = 6).

The effect of adsorbent dosage on removal efficiency was shown in Figure 8. The efficiency of As
adsorption considerably increased with the increase of the amount of adsorbent as the maximum static
uptake of arsenic (about 93.8%) was achieved for an adsorbent-to-solute ratio of 2 g/L. The reason may
be attributed to the fact that the exchangeable sites or surface area are more available for the solute at
the higher dosage of the adsorbent [39]. However, a further increase in adsorbent dosage (>2.0 g/L)
did not affect the As adsorption due to the completion of adsorption of all arsenic. Thus, 2.0 g/L of iron
nanoparticle in contaminated water was chosen for further experiments. The results of this section are
in agreement with previous findings by Bazrafshan et al. [40] and Yao et al. [39].
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Figure 8. Effect of adsorbent dosage on arsenic removal efficiency (initial arsenic concentration: 0.075
g/L, contact time: 20 min, agitation rate: 150 rpm, pH = 6).

Moreover, Figure 9 illustrates the effect of an initial arsenic concentration on removal efficiency.
At an initial concentration of 25 mg/L, 99.92% arsenic removal is achieved by increasing the initial
arsenic content, the efficiency is substantially decreased to 64.72%. This may be due to the less
availability of the exchangeable sites or mitigation of nanoparticles effective surface area for arsenic
capture at higher adsorbate concentration. The maximum capacity of iron nanoparticle for arsenic
adsorption was achieved about 61.7 mg/g, which is considerable regarding adsorbent.
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Figure 9. Effect of initial arsenic concentration on arsenic removal efficiency (sorbent dosage: 2 g/L,
contact time: 20 min, agitation rate: 150 rpm, pH = 6).

3.3. Arsenic Adsorption Isotherm

The process of adsorption is generally studied through adsorption isotherm curve. This graph
shows the distribution of molecules between liquid and solid phase at the equilibrium state, which is
considered as a fundamental factor in determining the sorption capacity [41]. To assess the sorption
behavior of the iron nanoparticles, some well-known isotherms, namely Langmuir, Fruendlich, Temkin,
Redlich–Peterson, and Koble–Corrigan, were considered to describe the phenomena. The results of
As adsorption on adsorbents were analyzed by using the linear form of the models. The parameters
associated with the adsorption behavior were calculated from the slope, and intercept of the plot.
In each isotherm, adsorption capacity increased by raising the equilibrium concentration of arsenic.
Isotherms models and their linearized expressions for the arsenic sorption are given in Table 5. The
results of adsorption isotherms showed that there exist high correlation coefficients between the
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isotherms and experimental data. By comparing the coefficient values, the Redlich-Peterson isotherm
had the highest correlation coefficient (R2 = 0.9987), although only slightly (Figure 10).

Table 5. Arsenic adsorption modeling through different isotherms and their respective parameters.

Isotherms Parameters R2

Freundlich KF = 25.81 mg g−1 (L mg−1)1/n

n = 3.75
0.9901

Langmuir qm = 64.51 mg g−1

KL = 0.49 L mg−1 0.9849

Temkin qm = 8.0041 mg g−1

KL = 45.02 L mg−1 0.917

Redlich-Peterson
g = 1.361

BRP = 32.52 (L mg−1)
ARP = 2 mg g−1 (L mg−1)

0.9987

Koble–Corrigan
AKC = 0.052 mg g−1 (L mg−1)

BKC = 0.012 (L mg−1)P

P = 0.2
0.9974Processes 2019, 7, 759 12 of 20 
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Figure 10. The linearized Redlich–Peterson isotherm model for arsenic sorption onto iron nanoparticles.

3.4. Adsorption Kinetics

By understanding the kinetic sorption model, the mechanisms of the adsorption process are
determined, such as mass transfer or chemical reaction. Several kinetic models, such as zero-order,
first-order, second-order, pseudo second-order, Elovich, and exponential functions, were used to test
the experimental data. The kinetic models, their linear expression form, and the model parameters are
summarized in Table 3. The correlation coefficient (R2) was used for the evaluation of the best kinetic
model (Table 6). Among all models, the pseudo-second order kinetic model had a good correlation
coefficient, and it fit best with experimental data (Figure 11).
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Table 6. Kinetic parameters for arsenic removal using synthesized iron nanoparticles.

Isotherms Parameters R2

Zero-order K0 = −0.0731 mg/g h
qe = 41.784 mg/g 0.29

First-order K1 = −0.00181/h
qe = 41.09 mg/g 0.28

Pseudo-first-order K1 = 0.003 1/h
qe = 18.81 mg/g 0.32

Pseudo-second-order K2 = 0.017 g/mg h
qe = 48.87 mg/g 0.99

Elovich β = 0.24 g/mg
α = 478.1 mg/g h 0.63

Exponential function V = 0.1031
K = 31.31 mg/g h 0.61
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Figure 11. The pseudo-second-order kinetic model for arsenic removal using synthesized
iron nanoparticles.

3.5. Thermodynamic Studies

Thermodynamic parameters, such as Gibbs energy (∆G), enthalpy (∆H), and entropy (∆S), may
assist in the determination of the possibility, spontaneity, or exothermic or endothermic states of a
reaction, which are the critical aspects of an adsorption process. To calculate the thermodynamic
parameters, some experiments were carried out at various temperatures ranging 20–70 ◦C. The amount
of arsenic uptake from the solution was decreased from 90% to 73%, respectively (Figure 12). Enthalpy
and entropy values were calculated according to the van’t Hoff equation:

lnkd = −
(∆H

RT

)
+

(∆S
R

)
(3)

where ∆H and ∆S are the changes in enthalpy and entropy of the adsorption process, respectively. T is
the temperature (◦K), and kd is the distribution coefficient, which can be calculated by:

Kd = (C0 −Ce)V/CeM (4)

where C0 and Ce are the initial and equilibrium arsenic concentrations, respectively. V is the solution
volume and M is the mass of the adsorbent. By using the van’t Hoff equation and plotting lnKd against
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1/T, the values of ∆H and ∆S may be estimated through the slope and intercept of the curve (Figure 11).
Moreover, Equation (5) was used to calculate the Gibbs free energy (∆G).

∆G = ∆H − T∆S (5)

The calculated values of the thermodynamic parameters for the arsenic sorption process are
listed in Table 7. The negative ∆H value indicates the exothermic nature of arsenic sorption onto
iron nanoparticles and that the lower temperature favors the reaction (Figure 13). The negative ∆S
value also shows the adsorption of arsenic ions from the solution onto the iron nanoparticle. Finally,
the negative ∆G confirms the spontaneous nature of the adsorption and exergonic reaction at all
applied temperatures.
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Table 7. Thermodynamic parameters of arsenic adsorption onto the synthesized iron nanoparticles.

Adsorbent Initial Concentration
(mg/L) ∆H (kJ/mol) ∆S (J/mol·k) T (◦K) ∆G (kJ/mol)

Iron nanoparticles 100 −20.7 −57.3

293 −3898.3

313 −2751.9

323 −2178.6

333 −1605.4

343 −1032.2

3.6. The Activation Energy of Adsorption

For the evaluation of activation energy, some experiments were performed at the initial arsenic
concentration of 100 mg/L and at three different temperatures, 20, 40, and 60 ◦C. Samples were taken
at predetermined time intervals (5, 10, and 20 min) and analyzed for arsenic content by the authors.
Figure 14 shows the kinetics of arsenic adsorption onto iron nanoparticles during 20 min of contact time.
As can be seen, higher temperatures declined the sorption rate. The activation energy is calculated by
the Arrhenieus equation:

lnkl = lnA−
( Ea

RT

)
(6)

where kl is the pseudo-second kinetic constant, which can be calculated from Figure 12, A is a
temperature-independent coefficient (min. g−1. mm−1), Ea is the activation energy (kJ·mol−1), R is the
universal gas constant, and T is the temperature (◦K).
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Ea can be geometrically estimated by plotting the variations of lnkl against 1000/T (Figure 15).
According to Figure 16, the Ea for the arsenic sorption process is obtained as −17 kJ/mol. This negligible
amount of Ea indicates the physical nature of the adsorption process. Therefore, the reaction is not
temperature-sensitive, which confirmed that the system was controlled by the diffusion process [42].
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Figure 16. Arsenic removal from industrial mining effluents by synthesized FeNPs.

3.7. Arsenic Removal from Real Mining Effluents

Real arsenic-containing effluent samples were collected from Meiduk (Kerman province, Iran)
and Ghale Zari (South Khorasan province, Iran) copper processing plants and analyzed for their
arsenic contents. The arsenic concentration was 69 µg/L and 43 µg/L for Meiduk and Ghale Zari
samples, respectively.

For each sample, an adsorption experiment was performed using 0.04 g adsorbent dosage at
optimum conditions, according to the previous tests (pH 6, agitation rate of 200 rpm, 20 min contact
time) at ambient temperature. Figure 16 demonstrates the arsenic removal efficiencies in two cases.
As can be seen, more than 70% of arsenic can be removed by iron nanoparticles in both cases. Therefore,
the adsorbent was successfully confirmed as an efficient option to be considered for mine wastewater
treatment plants.

3.8. Comparison of Arsenic Sorption Capacity for Different Adsorbents

Table 8 draws a comparison with the synthesized iron nanoparticles and other reported adsorbents
in terms of arsenic adsorption capacity (mg/g). As can be seen, the proposed sorbent is 20 times higher
than activated carbon and alumina, which are the conventional materials for arsenic removal. Iron
nanoparticles synthesized by Prangos ferulacea and Teucrium polium leaf extracts still demonstrate a
remarkable uptake capacity and may be a promising arsenic removal option to be used in various
industrial applications. Note that the other iron-based nano adsorbents, which are illustrated in Table 8,
are all chemically produced.
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Table 8. The comparison of arsenic sorption capacity for different adsorbents.

No. Adsorbent Uptake Capacity (mg/g) Ref.

1 Granular ferric hydroxide (GFH) 1.1 [43]
2 a-FeOOH nanoparticles 76 [43]
3 Ultra-fine δ-FeOOH 37.3 [43]
4 Hematite 0.2 [44]
5 Magnetite–maghemite nanoparticles 3.71 [43]
6 Red mud 0.94 [44]
7 Fe3O4 nanoparticles 46.06 [43]
8 Alumina 25 [43]
9 Activated carbon 3.15 [43]
10 γ-Fe2O3 nanoparticles 2.9 [43]
11 Fe3O4–γ-Fe2O3 nanoparticles 3.71 [43]
12 Nano zero valent iron (NZVI) 1.8–2.0 [43]
13 NZVI/montmorillonite 59.9 [43]
14 Fe–Al layered double hydroxide 40.6 [43]
15 Nano-iron/oyster shell 0.9 [43]
16 NZVI-synthetized by mint 86.53 [44]
17 Iron oxide coated fungal biomass 5.4 [43]
18 Modified iron oxide 0.73 [44]
19 PVA–alginate-supported iron oxide nanoparticles (IONPs) 40.3 [35]
20 chitosan-alginate-supported IONPs 34.4 [35]
21 Iron nano particle/Pf-Tp 61.7 Present study

4. Conclusions

Arsenic is one of the toxic and dangerous pollutants in the industrial and mineral processing of
wastewater. The purpose of this study is to synthesize biological nanoparticles using the extracts of
Prangos ferulacea and Teucrium polium herbs, and consequently, the application of produced FeNPs for
arsenic (III) removal from aqueous solutions. The results of this study can be drawn as follows:

• Iron nanoparticles were synthesized via green chemistry methods. XRD, UV-Vis, and FTIR
analyses confirmed the successful formation of iron nanoparticles using Prangos ferulacea and
Teucrium polium leaf extracts, and the morphology was determined as spherical particles of average
40 nm diameter by SEM and TEM analysis.

• The influence of parameters such as contact time, pH, adsorbent dosage, initial arsenic
concentration, temperature, and agitation rate was investigated. Results showed that 93.9%
of arsenic was eliminated at a stirring speed of 200 rpm, pH 6, 2 g/L nanoparticle dosage, and
initial concentration of 0.075 g/L within 20 min.

• The synthesized nanoparticles were able to absorb 61.7 mg/g arsenic from the solution at 298 ◦K,
which is a considerable capacity in comparison with most of the available sorbents. This was also
confirmed through post-sorption FTIR analysis.

• The adsorption behavior of the synthesized nanoparticles is represented by different
isotherm models.

• Thermodynamic adsorption investigations showed the negative values for enthalpy and entropy
of the adsorption process, which revealed its exothermic and spontaneous nature. Moreover, the
activation energy for arsenic removal was obtained as −17 kJ/mol, which indicated the physical
sorption mechanism and that the process is not temperature-sensitive.

• Arsenic adsorption tests performed over the real industrial effluent samples collected from two
different mines confirmed that the proposed adsorbent is capable of removing more than 70% of
arsenic contamination in real cases.

• The comparison of arsenic sorption capacity shows that iron nanoparticles synthesized by Prangos
ferulacea and Teucrium polium leaf extracts still demonstrate a remarkable uptake capacity and may
be a promising arsenic removal option to be used in various industrial applications.
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