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Abstract: To overcome the difficulty of accurately determining the load state of a wet ball mill
during the grinding process, a method of mill load identification based on improved empirical
wavelet transform (EWT), multiscale fuzzy entropy (MFE), and adaptive evolution particle swarm
optimization probabilistic neural network (AEPSO_PNN) classification is proposed. First, the concept
of a sliding frequency window is introduced based on EWT, and the adaptive frequency window
EWT algorithm, which is used to decompose the vibration signals recorded under different load states
to obtain the intrinsic mode components, is proposed. Second, a correlation coefficient threshold
is used to select the sensitive mode components that characterize the state of the original signal for
signal reconstruction. Finally, the MFE of the reconstructed signal is used as the characteristic vector
to characterize the load state of the mill, and the partial mean value of MFE is calculated. The results
show that the mean value of MFE under different load states varies. To further identify the load state,
a characteristic mill load vector is constructed from the MFE values of the reconstructed signal under
different load conditions and is used as the input of the AEPSO_PNN model, which then outputs the
predicted ball mill load state. Thus, a load state identification model is established. The feasibility of
the method is verified based on grinding experiments. The results show that the overall recognition
rate of the proposed method is as high as 97.3%. Compared with the back propagation (BP) neural
network, Bayes discriminant method, and PNN classification, AEPSO_PNN classification increases
the overall recognition rate by 8%, 5.3%, and 3.3%, respectively, which indicates that this method can
be used to accurately identify the different load states of a ball mill.

Keywords: load identification; EWT; multiscale fuzzy entropy; PNN

1. Introduction

As the main type of mechanical equipment used for ore grinding, ball mills are widely used
in the beneficiation process in mining operations [1]. It is imperative but challenging to develop
effective modeling, monitoring, and control techniques for complex industrial systems [2–4]. Due
to their complexity, it is difficult to investigate the internal charge dynamics of ball mills. Energy
consumption is obviously related to rotational speed and mill load, and scholars have examined the
influence of rotational speed on the energy consumption of mills and achieved good results [5]. For the
mill load, it is important to be able to quickly and accurately identify the internal load of a ball mill to
ensure that the mill is operating under the best possible working conditions, not only to reduce energy
consumption during mineral processing, but also to ensure high grinding efficiency and output [6,7].
Therefore, a method of increasing the load recognition rate for ball mills would have great application
value for improving the stability and economic benefits of the grinding process, and efforts to develop
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such methods have attracted the attention of many scholars at home and abroad [8,9]. To this end,
studies have shown that the vibration signal generated by a ball mill during the grinding process is
correlated with the load [10].

The vibration signal of a ball mill is nonlinear and nonstationary. Currently, the most widely
used methods for processing such signals include the wavelet packet algorithm, empirical mode
decomposition (EMD), variable mode decomposition (VMD), local mean decomposition (LMD), and
the complete integrated empirical decomposition algorithm (CEEMDAN) [11–14]. Liu et al. [15]
combined the EMD algorithm with principal component analysis (PCA) to extract the vibration signal
from the cylinder of a wet ball mill. The results showed that this method can distinguish among
different load states, but that the recognition rate requires improvement. Tang et al. [16,17] reported a
method of extracting the vibration signal characteristics of a ball mill based on ensemble empirical
mode decomposition (EEMD) and interval partial least squares (iPLS) modeling and extended this
method to the study of ball mill sound signals. Although the signal features were successfully
extracted, there was residual noise in the intrinsic mode functions (IMFs) after decomposition, and
white noise with a different amplitude was added each time. Although the above methods can
be used to successfully extract signal features, they face problems related to noise residuals and
computational burden. Therefore, the key to mill load identification is to find an effective method of
extracting the characteristic information of the vibration signal of the ball mill cylinder. The proposed
empirical wavelet transform (EWT) algorithm effectively compensates for the above shortcomings.
This algorithm not only suppresses the modal aliasing problem and reduces residual noise, but also
improves the completeness of decomposition. In reference [18], the EMD, EEMD, and EWT algorithms
were compared and analyzed. The EWT algorithm was found to have the best processing effect.
Specifically, the EWT algorithm had a better processing speed and better ability to extract modal
component signals than the other algorithms. However, in practical engineering, especially under
the harsh working conditions of a ball mill, the Fourier spectrum of the EWT segmentation signal
easily encounters interference from background noise and must be further improved. In this paper,
the adaptive frequency window is used to improve EWT. Compared with traditional EWT and other
signal processing algorithms, the denoising effect is more significant.

In recent years, many nonlinear dynamic methods, such as multiscale entropy (MSE), singular
value entropy (SVE), permutation entropy (PE), and fuzzy entropy (FE), have been widely used for
fault diagnosis, classification, and recognition because of their good performance in terms of feature
extraction [19–21]. Miao Y et al. [22] applied SVE to the identification of the optimal frequency band.
Zhao L et al. [23] completed the fault diagnosis of a gearbox using PE optimization and modified the
modal decomposition algorithm. Chang J L et al. [24] applied MSE for load recognition in machine
tools. Liu H et al. [25] reported an example of MSE applied for the fault diagnosis of rolling bearings,
but the recognition accuracy required further improvement. To diagnose the problem of rolling bearing
faults, Zheng H D et al. [26] adopted the method of multiscale fuzzy entropy (MFE), which effectively
overcame the defect in the MSE mutation, and the diagnosis result was improved. Compared with the
above methods, MFE has some advantages for feature extraction because of its unique performance
and ability to accurately reflect the feature information of the original signal.

As a tool for recognition and classification, an artificial neural network is a model abstracted
based on neural network theory that originates from the field of physiology. Such models can be used
for arbitrary data clustering and pattern classification and are widely used for tasks such as pattern
recognition [27–29]. Specifically, a probabilistic neural network (PNN) is an artificial neural network
with the advantages of a fast training speed, simple parameter adjustment, and good classification
performance [30]. However, the classification effect of a probabilistic neural network is greatly
influenced by the smoothing parameter σ, and if the selection of σ is not appropriate, then inaccurate
results may be obtained. To solve this problem, an adaptive evolutionary particle swarm optimization
(AEPSO) algorithm is proposed in this paper to optimize the smoothing parameters in a probabilistic
neural network (PNN) so that the optimized network can identify the load state of a ball mill. In
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this paper, the AEPSO algorithm is used to improve the PNN clustering method; compared with the
traditional PNN clustering method and other clustering methods, it has the advantages of high speed
and high accuracy.

Considering the nonstationary and nonlinear characteristics of the vibration signal from the
cylinder of a ball mill, a load identification method for ball mills is proposed in this study based on
improved EWT, MFE, and AEPSO_PNN classification. First, the vibration signals are decomposed
using improved EWT, and the mode components of the reconstructed signals are selected using a
correlation coefficient threshold. Then, the load state of the ball mill is determined based on the
magnitude of the calculated MFE. Finally, AEPSO_PNN is used for learning and classification to enable
the recognition of a different load state.

2. Principles of the Load State Identification Method

2.1. Principles of Improved EWT

2.1.1. Principles of EWT

EWT is a widely used method for the adaptive segmentation of signals [31]. The segmentation
principle involves adaptively segmenting the Fourier spectrum by marking maximum points in the
frequency domain, and a set of bandpass filters suitable for processing signals is constructed in the
frequency domain to extract amplitude modulation and frequency modulation (AM-FM) components
from the Fourier spectrum.

The Fourier axis [0, π] is divided into n consecutive parts, that is, Λn = [ωn−1,ωn](ω0 = 0,ωn = π),
where ωn is the boundary point between two parts and the corresponding value is the minimum
between the two adjacent maximum values in the Fourier spectrum of the signal. Figure 1 [32] shows
the division diagram of the Fourier axis. In the figure, ωn is defined as the center point of Λn. Then, a
transition region with a width of Tn = 2τn is obtained.
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Referring to the wavelet construction method of Littlewood–Paley and Meyer, the empirical
wavelet function is constructed. After Λn is determined, the empirical wavelet is used as a bandpass
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where
β(x) = x4(35− 84x + 70x2

− 20x3) ;
τn = γωn γ < minn(

ωn+1−ωn
ωn+1+ωn

)
(3)

After the EWT, the approximation coefficient W f 1(0, t) and the detail coefficient W f 2(n, t) can be
expressed as follows.

W f 1(0, t) =< x,φ1 >=
∫

x(τ) φ1(τ− t) dτ

= F−1[x(ω)
_
φ1(ω)]

(4)

W f 2(n, t) =< x,ψn >=
∫

x(τ) ψn(τ− t) dτ

= F−1[x(ω)
_
ψn(ω)]

(5)

Then, the functional expression of the reconstructed original signal a is as follows:

x(t) = W f 1(0, t) ∗ϕ1(t) +
N∑

n=1
W f 2(n, t) ∗ψn(t)

= F−1
[
∧

W f (n,ω)ϕ1(ω) +
N∑

n=1

∧

W f (n,ω)
∧

ψn(ω)

] (6)

where “∗” is a convolution operation and
∧

W f 1(0,ω) and
∧

W f 2(n,ω) are the Fourier transforms of the
approximate coefficient W f 1(0, t) and the detail coefficient W f 2(n, t), respectively. Finally, the signal f
is decomposed into the sum of several single component signals.

x(t) =
N−1∑
k=0

xk(t) (7)

2.1.2. Principle of the Adaptive Frequency Window EWT Algorithm

The division rules of the spectral boundaries of the traditional EWT algorithm are determined by
the frequency domain extreme points, but a ball mill is vulnerable to strong noise, resulting in the
disorderly arrangement of frequency domain extreme points. Considering these deficiencies, this paper
uses the adaptive frequency window EWT to divide the spectral boundaries, as shown in Figure 2.
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Figure 2. Diagram of empirical wavelet transform (EWT) spectral boundary division with an adaptive
frequency window.

In Figure 2, the frequency window is represented as [ωa,ωb], where ωa,ωb is the central frequency
of the lower cutoff band of the window. The shaded area represents the transition region of the
segmented portion of the spectrum with width 2τ. The range of the d support interval is [0,π]. The
frequency window can slide freely in the interval, and the width range is adaptively variable.

After the frequency window segmentation is improved, Equations (1) and (5) are modified
as follows.
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∧

ψn(ω) =


1, (ωa + τ ≤ |ω| ≤ ωb − τ)

cos
{
π
2 β

[
1

2τ (|ω| −ωb + τ)
]}

, (ωb − τ ≤ |ω| ≤ ωb + τ)

sin
{
π
2 β

[
1

2τ (|ω| −ωa + τ)
]}

, (ωa − τ ≤ |ω| ≤ ωa + τ)

0, (others)

(8)

W′(t) =< x,ψ >=
∫

x(τ) ψ(τ− t) dτ

= F−1[x(ω)
_
ψ(ω)]

(9)

Additionally, Equation (8) must be satisfied as follows.{
β(x) = x4(35− 84x + 70x2

− 20x3)

τ = γωa γ < (ωb −ωa)/(ωb +ωa)
(10)

Therefore, the modal component signal can be reconstructed as follows:

x∗(t) = W′(t) ∗ψ(ω) = F−1
[
∧

W(ω)
∧

ψ(ω)

]
(11)

where
∧

ψ(ω) is a Fourier transform of ψ(ω) and x∗(t) is an AM–FM component signal for improving
EWT extraction.

2.1.3. Simulation and Comparative Analysis of Improved EWT

To verify the ability of the improved EWT method to extract the feature components of the signal,
a simulation with the improved EWT approach is performed, and the results are compared with those
of the traditional EWT. The simulation signal x (t) is constructed as follows in Equation (12):

x1(t) = 2t2

x2(t) = 1.1 sin(34πt)

x3(t) =
{

0.7 cos(56πt) 0 < t < 0.5
0.8 cos(64πt) t ≥ 0.5

x(t) = x1(t) + x2(t) + x3(t)

(12)

where x (t) is white noise, the signal-to-noise ratio (SNR) is set to 3, and t ∈ [0, 1]. Figure 3 shows the
improved EWT and traditional EWT decomposition results for the simulation signal x (t).
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In Figure 3, the components f2–f5 correspond to the signals x3(t)~x1(t), respectively. Figure 3a
shows that the noise contained in the signal is well decomposed by the improved EWT and that the
degree of coincidence of each component is close to 90%. The two modes that originally belonged to the
same component are decomposed because the two modal components obviously have distinct energy
signals and can be regarded as two independent modes. Figure 3b shows that traditional EWT can
decompose noise, but the components x1(t), x2(t), and x3(t) are deformed because the traditional EWT
segmentation method is too simple. When analyzing local noise or nonstationary signals, some local
maxima generated by noise and nonstationary components may appear and erroneously remain in the
peak sequence, and some useful maxima may not be kept in the peak sequence, resulting in improper
segmentation. The improved EWT uses the adaptive frequency window for spectrum segmentation,
which can reduce the effects of noise and nonstationary components and greatly increase the reliability
of spectrum segmentation.

This comparative study of simulated signals indicates that the improved EWT method can
effectively detect the modal components in power spectra, extract components similar to the original
signal components, and suppress modal aliasing. Thus, the decomposition effect of the improved EWT
method is better than that of the traditional EWT method.

2.2. Principle of Multiscale Fuzzy Entropy

2.2.1. Principle of Fuzzy Entropy

FE is the probability of identifying a new pattern in a time series when the dimension changes,
which reflects the complexity and irregularity of the time series. The larger the probability of the time
series, the greater the FE value [34]. During the operation of a ball mill, the change in the load state
will cause the characteristics of the vibration signal of a cylinder to change in an obvious manner, and
FE can effectively characterize the state characteristics of the signal in each frequency band during the
sampling time. Therefore, it is feasible to introduce FE as the characteristic parameter of the vibration
signal of a ball mill cylinder. The algorithm steps are as follows.

1. The m-dimensional vector is obtained by processing the time series:

Xm
i =

{
u(i) , u(i + 1), . . . , u(i + m + 1)

}
− u0(i)

u0(i) = 1
m

m−1∑
j=0

u(i + j) i = 1, 2, . . . , i + m + 1
(13)

where Xm
i is the result of removing the mean u0(i) of the time series.

2. Calculate the maximum distance between Xm
i and Xm

j :

dm
i j = d[Xm

i , Xm
j ] = max

k∈(0,m−1)
{|u(i + k) − u0(i) − (u( j + k) − u0( j))|} (14)

where i, j = 1, 2, · · ·, N −m, i , j .

3. The similarity between Xm
i and Xm

j is defined by a fuzzy function as follows:

Dm
i j = u(dm

i j, n, r) = e−(d
m
i j/t)n

(15)

where u(dm
i j, n, r) is an exponential fuzzy membership function and n and r are the boundary gradients

and widths of the fuzzy membership functions, respectively.

4. Define the functions as follows:

φm(n, r) =
1

N −m

N−m∑
i=1

(
1

N −m− 1

N−m∑
j = 1
j , i

Dm
i j) (16)
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where i, j = 1, 2, · · ·, N −m, i , j .

5. The m+1 vector is constructed based on the above four steps.

φm+1(n, r) =
1

N −m

N−m∑
i=1

(
1

N −m− 1

N−m∑
j = 1
j , i

Dm+1
i j ) (17)

6. The calculation formula of the FE value can be summarized as follows:

FuzzyEn(m, n, r) = lim
N→∞

[lnφm(n, r) − lnφm+1(n, r)] (18)

where i, j = 1, 2, · · ·, N −m, i , j .

7. When N is limited, Equation (18) is transformed into the following formula.

FuzzyEn(m, n, r, N) = lnφm(n, r) − lnφm+1(n, r) (19)

2.2.2. Principle of Multiscale Fuzzy Entropy

The characteristic frequency band and complexity of the vibration signal of a cylinder under
different load conditions in a ball mill are different at different scales. Considering the FE of the
vibration signal at different scales can improve the recognition accuracy, therefore the concept of
multiple scales is introduced based on FE. The steps in the MFE algorithm are as follows.

1. Construct a new coarse granularity vector for the original time series Xi = {x1, x2, · · ·, xn} as
follows:

y j(τ) =
1
τ

jτ∑
i=( j−1)τ+1

xi 1 ≤ j ≤
N
τ

(20)

where τ = 1, 2, · · ·, n represents the scale factor. When τ = 1, the coarse-grain vector is the original
sequence. For a given τ, the original sequence is divided into coarse granularity vectors of length N/τ,
and Figure 4 shows the coarse granularity process for τ = 2 and τ = 3.
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2. The FuzzyEn of each coarse-grained sequence is determined by the standard deviation of the
original sequence. The FuzzyEn value can be expressed as a function of the scale factor in MFE analysis.

2.2.3. Parameter Selection for MFE

According to the definition of MFE, the calculation of MFE is related to the embedding dimension
m, similarity tolerance r, exponential function gradient n, and data length N. The selection rules are
as follows.
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1. A large embedding dimension m produces more information when the time series is dynamically
reconstructed, and the data sequence N = 10m

∼ 30m; thus, m is set to 2.
2. The similarity tolerance r represents the width of the boundary of the exponential function. If r is

too large, then a large amount of statistical information will be lost, and if r is too small, then the
sensitivity to noise will be high. r is usually set from 0.1 SD to 0.25 SD (SD denotes the standard
deviation of the original time series). Considering the working characteristics of the ball mill, r is
set to 0.15 SD.

3. n is a weighting factor in the calculation of FE vector similarity. A large n will result in a
large gradient, but an overly small n will lead to the loss of detail. To obtain as much detailed
information as possible, a small integer is usually used, and n is set to 2 in this case.

4. To obtain an accurate MFE calculation result, the data length N should be greater than 100τmax.
In addition, the maximum scale factor τmax should also be considered when calculating the MFE,
and the value of τmax is usually between 10 and 20; thus, a = 20 is used in this study.

2.3. Principle of the AEPSO_PNN

2.3.1. PNN Principle

A PNN is a type of radial basis network that was first proposed by Dr. D.F. Speeht in 1989.
The PNN is a supervised network classifier based on the Bayes minimum risk criterion [35]. As a
feed-forward network, a PNN has the advantages of a fast training speed and simple parameter
adjustment. Currently, PNNs are widely used in pattern classification [36]. Compared with other
network classifiers, a PNN can not only guarantee real-time performance, but also produce classification
and recognition results that are minimally influenced by complex parameter settings.

The signal sample vector can be represented as X = [x1, x2, . . . , xi, . . . , xn] with states Y =

[y1, y2, . . . , yi, . . . , yn]. Then, the prior probability, posterior probability, and class-specific probability
density functions for each state can be represented by P(yi), P(yi/X), and P(X/yi), respectively. For a
given identification target, P(yi) is a known parameter, and P(X/yi) can be estimated using the Parzen
function. The corresponding formula is as follows:

P(X/yi) =

Ni∑
j=1

exp(−
‖X−xi j‖

2

2σ2 )

Ni(2π)
d
2 σd

(21)

where Ni is the total number of samples of the ith class, d is the dimensionality of the feature vector,
xij is the jth sample of the ith class, and σ is the width of the Parzen function window, that is, the
smoothing parameter.

The following formula is obtained from probabilistic and statistical theory.

P(yi/X) = P(X/yi)P(yi)/P(X) (22)

If the possibility of misjudgment is not considered, the Bayes rule can be expressed as follows.

∨ j , i = 1, 2, 3, · · ·, m, i f P(yi/X) > P(y j/X), X ∈ y j (23)

However, because misjudgment can readily occur in real-world situations, it is necessary to
introduce the risk coefficient λij, yielding the following risk function R for the decision conditions.

R(yi/X) =
m∑

j=1

λi jP(y j/X) (24)

In summary, the Bayes minimum risk criterion can be expressed as follows.
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i f R(yi/X) > R(y j/X), X ∈ y j (25)

In this paper, the minimum risk criterion is used as the basis of the feed-forward network that
serves as the mill load state recognition model. By setting reasonable smoothing parameters, the
network is trained on a set of sample feature vectors to estimate the probability densities of three
distinct load states and enable the recognition of the mill load state.

2.3.2. Principle of AEPSO

The optimization speed and position updating formulas of the traditional particle swarm
optimization algorithm [37] are as follows:

Vp
k+1 = ωVk

p + c1r1(Wp −Xk
p) + c2r2(Wg −Xk

p) (26)

Xp
k+1 = Xk

p + Vk+1
p (27)

where k is the number of iterations; ω is the inertial weight of the particle; c1, c2 are the learning factors
of the particle, of which the former is the individual factor and the latter is the global factor; and r1, r2

are random numbers in the interval [0, 1], which make the particles independent and diverse.
To address the nonlinear problem of ball mill load identification, the AEPSO algorithm introduces

a nonlinear adaptive time-varying inertial weight.

ωt = ωstart − (ωstart −ωend) × exp(−
1

1 + 2t/tmax
) (28)

For the learning factors c1, c2 of particles, the traditional particle colony algorithm usually sets
c1 = c2 = 2, but this approach ignores the phase difference of the algorithm during training. The
AEPSO algorithm adopts the strategy of managing the learning factor in segment, and the formula is
as follows. {

c1 = 2.5, c2 = 1.5 t < tmax/2
c1 = 1.5, c2 = 2.5 t ≥ tmax/2

(29)

To enhance the adaptability of particle swarm optimization after iteration, the AEPSO algorithm
introduces the local search operator β in Equation (13). The revised formula is as follows:

Xp
k+1 = Xk

p + β×Vk+1
p (30)

where β = rand( )[rand( ) + 0.5] and rand( ) is a random number in [0, 1].

2.3.3. Optimization of the PNN by AEPSO

The smoothing parameter σ in the PNN has a considerable influence on the training effect. The
improper selection of the σ value makes it easy to misjudge the recognition of the mill load state.
Therefore, this paper uses an AEPSO algorithm to optimize the smoothing parameters of the PNN so
that the optimized network can effectively identify the state of the mill load. The specific steps in the
algorithm are as follows.

1. The parameters of the PSO algorithm are initialized, the smoothing parameters σ of the PNN are
used as the population particles, the number of iterations is set to 500, and a set of data (σ) is
randomly generated as an initial parameter vector.

2. The training set samples are input, and the fitness function is used to calculate the fitness value.
Then, the optimal individual fitness value and the global optimal fitness value of the group are
traversed by comparing each particle (σ). Finally, the particles are adjusted.
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3. After calculating each particle in the population, the termination condition is determined to be
satisfied or not. If not, the state is updated according to the speed and position updating formula;
then, the algorithm returns to step 2. Otherwise, the algorithm iterates until termination and
outputs the search results.

4. The PNN model trained by the optimal parameter combination (σ) is used to classify the test
sample set and output the target category.

The network structure of the AEPSO_PNN includes four parts: the input layer, the mode layer,
the summation layer, and the output layer, as shown in Figure 4.

As Figure 5 shows, the training step of the load state identification model of a ball mill based on
the AEPSO_PNN is as follows.

1. The input layer multiplies the received feature vector of the training sample by the weighting
coefficient Wj and transmits the result to the mode layer for training. The number of neurons in
this layer is the dimension of the feature vector.

2. The mode layer first uses the exponential function gj as the activation function. Then, the
probability density of each neuron is determined, and finally, the result is transmitted to the
summation layer.

3. The probability density is the weighted average of the summation, and the resulting estimated
probability density is transmitted to the output layer.

4. Based on the Bayes minimum risk criterion, the output layer selects the category with the largest
posterior probability as the final classification result of the sample.
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3. Design of the Load State Identification Method for a Ball Mill

Based on the research on the EWT algorithm, MFE theory, and the PNN clustering algorithm
combined with the characteristics of ball mill vibration signals, a feature extraction algorithm for
vibration signals is proposed based on modified EWT, MFE, and AEPSO_PNN classification. The
specific steps in the algorithm are as follows.

1. Decompose the recorded vibration signal from the cylinder of the ball mill via the adaptive
frequency window EWT algorithm to obtain AM− FMi(i = 1, 2, · · · , n).

2. Calculate the correlation coefficients for all AM− FMi components and the original signal in
accordance with Equation (31), and select the sensitive AM − FM components based on the
threshold given in Equation (32).
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ρxy =

N∑
i=1

(xi − x)(yi − y)√
N∑

i=1
(xi − x)2

√
N∑

i=1
(yi − y)2

(31)

The correlation coefficient threshold is calculated as

µh =
max(µi)

10×max(µi) − 3
(32)

where µh is the threshold, µi is the correlation coefficient between the ith AM-FM component and the
original signal, and max is the maximum correlation coefficient value. Each AM-FM component for
which the value of the correlation coefficient with the original signal is greater than the threshold
µh is retained as a sensitive AM-FM component. Each AM-FM component for which the correlation
coefficient is smaller than the threshold µh is removed as a spurious component.

3. The sensitive AM-FM components are used to obtain the reconstructed vibration signals of
different loads in the ball mill.

4. The MFE of the reconstructed vibration signal is calculated, and the result is used as the
characteristic vector for the load classification of the ball mill.

5. The characteristic vector matrix is used as the input of AEPSO_PNN, and the load state is used as
the output. Then, the load state of the mill is identified.

Thus, the overall flow of the ball mill load identification model that is proposed in this paper
based on the modified EWT, MFE, and AEPSO_PNN classification methods can be summarized as
shown in Figure 6.
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4. Experimental Analysis of Mill Load State Recognition

4.1. Data Collection

To verify the method proposed in this paper, a grinding experiment was performed using a
Φ305 × 305 mm Bond index experimental ball mill. The experimental device is shown in Figure 7. The
material used in the experiment was tungsten ore from a mine in Jiangxi, China, with a Protodyakonov
scale of hardness of 14–18, a density of 1.8 t/m3, and five grades of particle sizes: 1–3 mm, 3–6 mm,
6–9 mm, 9–11 mm, and >11 mm. The experimental parameters considered were the fill rate,
powder-to-ball ratio, and grinding concentration. The vibration signal acquisition system of the mill
cylinder consisted of a DH5922N dynamic data acquisition instrument and a DH131 acceleration sensor,
which were used to collect the signals of various load parameters under three different load conditions.
According to the literature, the mill load was divided into the following states: the underloaded state,
corresponding to a fill rate of 10–20%; the normal load state, corresponding to a fill rate of 20–40%; and
the overloaded state, corresponding to a fill rate of 40–60% [38].



Processes 2019, 7, 725 12 of 20

Processes 2019, 7, 725 12 of 20 

 

  
Figure 7. Experimental device. 

4.2. Decomposition of the Cylinder Vibration Signal 

First, we present the typical working conditions corresponding to the three load conditions 
considered in this analysis: working condition 1 (a fill rate of 10%, a powder-to-ball ratio of 0.4, and a 
grinding concentration of 0.5), working condition 2 (a fill rate of 30%, a powder-to-ball ratio of 0.6, 
and a grinding concentration of 0.5), and working condition 3 (a fill rate of 50%, a powder-to-ball 
ratio of 0.8, and a grinding concentration of 0.5). The waveforms of the cylinder vibration signals 
recorded under these three working conditions are shown in Figure 8. 

 

(a) 
 

(b) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

 
(c) 

Figure 8. Waveforms of the original cylinder vibration signals: (a) working condition 1; (b) working 
condition 2; (c) working condition 3. 

As Figure 8 shows, there is a large amount of noise in the vibration signal from the mill cylinder 
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the characteristics of the vibration signal of the cylinder, the original signal must be preprocessed. 
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4.2. Decomposition of the Cylinder Vibration Signal

First, we present the typical working conditions corresponding to the three load conditions
considered in this analysis: working condition 1 (a fill rate of 10%, a powder-to-ball ratio of 0.4, and a
grinding concentration of 0.5), working condition 2 (a fill rate of 30%, a powder-to-ball ratio of 0.6, and
a grinding concentration of 0.5), and working condition 3 (a fill rate of 50%, a powder-to-ball ratio of
0.8, and a grinding concentration of 0.5). The waveforms of the cylinder vibration signals recorded
under these three working conditions are shown in Figure 8.
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Figure 8. Waveforms of the original cylinder vibration signals: (a) working condition 1; (b) working
condition 2; (c) working condition 3.

As Figure 8 shows, there is a large amount of noise in the vibration signal from the mill cylinder
in all three load states, which makes it difficult to effectively extract feature information. To extract the
characteristics of the vibration signal of the cylinder, the original signal must be preprocessed. The
preprocessing steps are as follows.
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1. The improved EWT algorithm was used to adaptively decompose the original signals under three
typical working conditions. Then, 10 AM-FM components were obtained.

2. The correlation coefficients between the AM-FM components and the original cylinder vibration
signal were calculated using Equation (29), and the threshold values were then calculated in
accordance with Equation (30), yielding the following results: 0.21437 for working condition 1,
0.23872 for working condition 2, and 0.19905 for working condition 3. The correlation coefficient
values and the threshold values of the vibration signals from the cylinder body under the three
working conditions are shown in Figure 9.
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Figure 9. Relationship between the correlation coefficient and the sequence number of the amplitude
modulation–frequency modulation (AM-FM) component.

As shown in Figure 9, the correlation coefficients between the AM-FM1, AM-FM2, and AM-FM5
components and the original signal for working condition 1 were greater than the threshold value of
0.21437. Thus, these components were identified as sensitive AM-FM components that characterize
the vibration signal of the cylinder. For working condition 2, the AM-FM2, AM-FM4, and AM-FM6
components, with correlation coefficients greater than the threshold value of 0.23872, were selected
as the sensitive mode components. For working condition 3, the AM-FM1, AM-FM3, and AM-FM4
components, with correlation coefficients greater than the threshold value of 0.23872, were selected as
the sensitive mode components. All AM-FM components with correlation coefficients smaller than the
corresponding threshold were removed.

3. The selected sensitive modal components are reconstructed, and the results are shown in Figure 10.
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Figure 10. Waveforms of the reconstructed cylinder vibration signals: (a) working condition 1; (b)
working condition 2; (c) working condition 3.

Based on a comparison of Figures 8 and 10, the trend of the reconstructed signal waveform
is basically the same as that of the original signal. Compared with the original signal, the impact
profile of the reconstructed signal curve is obviously distinct, but it preserves the characteristic
information of the original signal while effectively denoising the signal. To further quantitatively
highlight the preprocessing effect in this paper, the EMD algorithm, EWT algorithm, and improved
EWT algorithm are used to decompose the original signals of the three working conditions, and the
sensitive components are reconstructed by the correlation coefficient method. Additionally, the SNR
is introduced into the comparative analysis before and after processing to qualitatively analyze the
comparison results, and the results are shown in Table 1.

Table 1. Signal-to-noise ratio (SNR) before and after signal processing.

Working
Conditions

The Original Signal
(SNR/db)

Reconstructed Signals of Three Algorithms
(SNR/db)

EMD EWT Improved EWT

1 7.91 13.97 17.22 21.23
2 9.58 15.35 18.94 22.36
3 7.02 14.61 19.07 24.54

As Table 1 shows, compared with the original signal, the SNR of the reconstructed signal processed
by the improved EWT algorithm increases by 13.32 dB, 12.78 dB, and 17.52 dB under three typical
working conditions, which indicates that the noise is considerably reduced after applying the improved
EWT algorithm. Compared with those of the EMD algorithm and the EWT algorithm, the SNR of the
reconstructed signal processed by the improved EWT algorithm increases the most. Therefore, the
preprocessing effect of the improved EWT algorithm is best.
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4.3. Decomposition of the Cylinder Vibration Signal

The FE of the reconstructed signal is calculated, and five groups of samples are assessed for each
type of ball mill load state. The average value of the FE of the three-state data is calculated, as shown
in Table 2.

Table 2. Fuzzy entropy values of three types of load state vibration signals.

Sample Underloaded Normal Load Overloaded

1 1.19 1.01 0.45
2 1.31 0.88 0.59
3 1.03 0.92 0.45
4 1.42 0.73 0.38
5 1.30 1.11 0.57

Mean 1.25 0.93 0.48

Table 2 shows that the FE value of the vibration signal varies by load state and that the FE value
of the vibration signal under the same load state fluctuates back and forth near the average value. By
comparing the FE values of three different load vibration signals, the FE values of the underloaded
state are found to be relatively large, which is due to the relatively small amount of steel ball and
mineral material in the cylinder under this condition. Additionally, the collision frequency between
the mineral material and the steel ball in grinding production increases with the movement of the
cylinder body to a certain height under the action of friction, and the collision frequency with other
steel balls, minerals, and the cylinder walls is high in the process of falling. Energy is mainly consumed
in the collisions between the steel ball and the tube wall and between the steel ball and other steel
balls; thus, the vibration signal is complex, and the signal is highly random. However, the FE value
under overloaded conditions is relatively small because there are more steel balls and minerals in
the cylinder under these conditions, causing the steel ball and minerals to undergo peristalsis in the
grinding process. In this case, the randomness of the signal is small. Under a normal load, energy
is mainly used for grinding the quantity of minerals, and so the complexity of generating a signal is
relatively moderate. For underloaded conditions and a normal load state, the sample entropy values
are similar, and individual overlap occurs, which results in a discriminating effect. Therefore, MSE is
introduced into the analysis of the mill vibration signal. The MFE of the reconstructed signal that can
characterize the characteristic information of the vibration signal under three different load conditions
is calculated. To highlight the superiority of the feature extraction method used in this paper, four
combination methods (EWT-MSE, EWT-MFE, improved EWT-MSE, and improved EWT-MFE) are
used to analyze the vibration signals of the cylinder of the ball mill under three load conditions. The
mean value and standard deviation curve of the three states (20 samples per group) are shown in
Figure 11. The parameter selection process of the algorithm is as described above.
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Figure 11. Reconstructed signal waveform under three working conditions: (a) EWT-MSE, (b) improved
EWT-MSE, (c) EWT-MFE, and (d) improved EWT-MFE.

In Figure 11, it is evident that the order of the mean value of FE of the vibration signal of the ball
mill cylinder under three working conditions displays the following order: underloaded > normal
load > overloaded. Specifically, as the ball mill load increases, the amplitude of each component of the
vibration signal in the spectrum obviously increases, which leads to a decrease in entropy. Although
the variation trend of the FE of the cylinder vibration signal with the scale factor is the same in different
load states, the fluctuation range of the entropy value varies, which indicates that FE can be effectively
used to identify the load state. By comparing the four graphs, we see that there are obvious fluctuations
and interval intersections between the EWT-MSE method and the EWT-MFE method. Although the
entropy curve of the improved EWT-MSE method is smooth and the three states are distinguished to a
certain extent, there are still overlap and intersection issues at small scales, which may lead to judgment
errors. However, the MSE curves of the three load states obtained with the improved EWT-MFE
method are smooth, and the fluctuation intervals have obvious limits. This finding indicates that the
improved EWT-MFE method can effectively distinguish among the three load states of the ball mill.

4.4. Training and Testing

To verify the effectiveness of the proposed load identification model for a ball mill, 3 × 100 samples
were randomly selected from each of the three classes of vibration signals, including 150 as training
samples and 150 as test samples. The selected samples were first decomposed via the improved
EWT method. The sensitive mode component signal with load state information was screened by
the correlation coefficient method and reconstructed. Then, the MFE of the reconstructed signal was
normalized as the input of the load state identification model of the ball mill based on AEPSO_PNN,
and the load state of the ball mill was output. To highlight the superiority of AEPSO_PNN classification
and identification, three clustering methods, namely, PNN classification, back propagation (BP) neural
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network, and Bayes identification methods, were trained and tested with the abovementioned samples.
Then, the identification results were compared with the AEPSO_PNN identification results. For
simplicity of description, the underloaded, normal load, and overloaded conditions are indicated by
working condition numbers 1, 2 and 3, respectively. The identification effects of various classification
methods are shown in Figure 12 and Table 3.Processes 2019, 7, 725 17 of 20 
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Figure 12. Recognition results of test samples for each classifier. (a) BP neural network; (b) Bayes 
identification method; (c) PNN; (d) AEPSO_PNN. 
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identification method; (c) PNN; (d) AEPSO_PNN.

Table 3. Singular value entropy results for the three working conditions. BP: back propagation.
probabilistic neural network (PNN): probabilistic neural network.

Classification Method Correct Identifications Load Recognition Accuracy

BP neural network 134 89.3%
Bayes identification method 138 92.0%

P
NN classification 141 94.0%

AEPSO_PNN classification 146 97.3%

Figure 12 and Table 3 show that the predicted load state of the AEPSO_PNN model of ball mill
load state recognition is largely consistent with the real state. Only four samples are misdiagnosed,
and the overall recognition accuracy is 97.3%. Specifically, the recognition accuracy of AEPSO_PNN
classification for three different load states is 96%, 98%, and 98%, all of which are high recognition
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levels. The BP neural network, Bayes discriminant method, and PNN classification can also achieve
effective load identification. The highest accuracies of these methods are 89.3%, 92.0%, and 94.0%.
Compared with the back propagation (BP) neural network, Bayes discriminant method, and PNN
classification, AEPSO_PNN classification increases the overall recognition rate by 8%, 5.3%, and 3.3%.
The results show that the mill load identification method based on the improved EWT-MFE method
and AEPSO_PNN classification is effective, and the identification effect is excellent. Thus, this method
provides a new approach for ball mill load identification.

5. Conclusions

By combining the improved EWT algorithm, MFE feature extraction, and AEPSO_PNN clustering,
a load identification model of a ball mill is constructed. The main contributions to this work are
as follows:

(1) The strong background noise, nonlinearity, and nonstationarity of the vibration signal of a ball
mill cylinder hinder the recognition accuracy. The improved EWT algorithm proposed in this
paper can effectively denoise the original signal and retain the feature information.

(2) The MFE algorithm has obvious advantages in terms of feature extraction. Notably, the MFE
difference between underloaded, normal load, and overloaded conditions is large, and the
proposed method can distinguish among the load states of the mill.

(3) The AEPSO_PNN classifier is introduced into the load recognition model of the ball mill to
improve the recognition effect. Compared with the BP neural network, the Bayes discriminant
method, and PNN classification, AEPSO_PNN classification provides a better recognition effect
and the highest load recognition accuracy.

(4) The effectiveness of the method is verified based on a grinding experiment performed with a
Bond work index ball mill in the laboratory.

In future research, the algorithm, structure, and parameter setting process of the proposed model
will be optimized and improved to enhance the ability of the model to identify the ball mill load state.
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