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Abstract: Nowadays, to ensure sustainability of smart materials, it is imperative to eliminate or reduce
carbon footprint related to nano material production. The concept of design of experiment to provide
an optimal synthesis process, with a desired yield, is indispensable. It is the researcher’s goal to get
optimum value for experiments that requires multiple runs and multiple inputs. Herein, is a reliable
approach of utilizing design of experiment (DOE) for response surface methodology (RSM). Thus, to
optimize a facile and effective synthesis process for fluorescent carbon dots (CDs) derived from tapioca
that is in line with green chemistry principles for sustainable synthesis. The predictions for fluorescent
CDs synthesis from RSM were in excellent agreement with the artificial neural network (ANN) model
prediction by the Levenberg–Marquardt back propagation (LMBP) algorithm. Considering R2, root
mean square error (RMSE) and mean absolute error (MAE) have all revealed a positive hidden
layer size. The best hidden layer of neurons were discovered at point 4-8, to confirm the validity
of carbon dots, characterization of surface morphology and particles sizes of CDs were conducted
with favorable confirmations of the unique characteristics and attributes of synthesized CDs by
hydrothermal route.

Keywords: tapioca; response surface methodology; artificial neural network; carbon dots;
hydrothermal; photoluminescence; organic

1. Introduction

The process of optimizing synthesis parameters (factors) to provide high quality organic carbon
dots (CDs) represents a complex process. It is a similitude of a search in the dark. Several researchers
have reported a low value of photoluminescence, long hours synthesis, and high volume of resources
used in the process of CDs [1,2]. Attempting to synthesize CDs needs optimization by an appropriate
mathematical model, which is embedded with the task to optimize the synthesis process in terms of
quality criteria and prediction with less error. This is necessary due to the influence of factors that
may or may not affect the quality of yield. So far, the synthesis of sustainable organic CDs with high
performance yield is still being researched. In the past, synthesis processes that involved multiple
factors were conducted by varying a single factor while others were kept constant, known as one
variable at a time (OVAT), but this method is time consuming. It became imperative to formulate
multivariate statistics that substantially reduce the numbers of experiments [3].
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Nwobi-Okoye and Ochieze [4] made a study based on the comparison of Response Surface
Methodology (RSM) and Artificial Neural Network (ANN) data to validate the prediction of aluminum
alloy A356/cow horn particulate composites hardness. The study confirmed that ANN with R2 of
0.9921 exhibited better accuracy than the RSM with R2 of 0.9583 in predicting the hardness values of
the composites [4]. The ANN model is generally based upon artificial intelligence (machine learning),
under which a predefined set of data is being trained [5,6], validated, and tested for prediction purposes.
Due to this constraint, it is worthy to note that the values predicted by ANN will not often be the best
predicted values, but will be within the range of the experimental study [7,8].

RSM is a technique that has been widely applied for defining the interactions between various
process parameters and responses with the various desired criteria and taking note of the significance of
these process parameters on the desired responses [9]. However, RSM is reported not to be desirable to
optimize the non-linear system study that possesses minimal difference in parts, processing boundaries,
or investigated data sets because it affects the overall properties of material [9]. The prediction of RSM
is based on a first or second order polynomial equation, hence, it is inadequate enough to capture
non-linear behavior and can give a non-reliable estimation of photoluminescent quantum yield of
fluorescent carbon dots of organic origin. Consequently, the application of the artificial neural network
(ANN) can be employed to checkmate and surmount concerns of using a lone RSM in predicting the
non-linear system. The concept of ANN is an independent method that uses a model that effectively
handles nonlinearity in responses that concerns the synthesis and photoluminescent quantum yield of
carbon dots.

Formulating an ANN model which accepts a small data set of experimental runs while supplying
a useful output in the synthesis of an advanced nanoparticle (CDs) is studied here. From the studies
conducted, there are no results published by using the Levenberg–Marquardt back propagation (LMBP)
algorithm in the synthesis of fluorescent carbon dots from tapioca powder. With this in view, the
LMBP training algorithm was built and deployed in the current study to predict the photoluminescent
quantum yield of the synthesized carbon dots from tapioca powder.

In this report, sample data were acquired from design of experiment for response surface
methodology (RSM). The training and predictions by an artificial neural network (ANN) were carried
out by different multi inputs, and multi output ANN, developed using the Levenberg–Marquardt
back propagation (LMBP) algorithm to predict the fluorescent properties of carbon dots synthesized in
the study.

2. Mathematical Models and Analytical Methods

2.1. Response Surface Method and Mathematical Model

The design software utilized was Design-Expert Version 11.0.5. Central composite design (CCD)
was adopted for the analysis of effects. These consist of four (4) independent variables: Temperature
(X1), Dosage (X2), Time (X3), and W/Ace/NaOH ratio (X4), as shown in Table 1 below. A total sum of
30 experimental runs were carried out, photoluminescent quantum yield (PLQY) was the response
considered and expressed as the dependent variable shown in Table 2. The inputs variables were
expressed individually as a function of independent variables. A second-order polynomial equation
was used to express PLQY (Y1) as an independent variable. Given in the equation below:

Y = β0 +
4∑

i=1

βiXi +
4∑

i=1

βiiX2
i +

4∑
i< j

βi jXiX j (1)

where, Y represents the response variable, β0 is a constant, βi, βii, and βi j are the linear, quadratic, and
cross-product coefficients, respectively. Xi and Xj are the respective levels of the independent variables.
Three dimensional (3D) surface response plots were generated by varying two variables at a time
within the experimental range and holding the other two constant at the central point. Furthermore,
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a test of statistical significance was based on the total error criteria with a confidence level of 95.0%.
Below is the response surface methodology (RSM) design summary.

Table 1. Independent variables used in the Response Surface Methodology (RSM) design.

Factor Name Units Low Actual High Actual Low Coded High Coded Mean Std. Dev.

A (X1) Temp ◦C 75.00 175.00 −1.000 1.000 125.0 40.825
B (X2) Dosage g 0.100 0.50 −1.000 1.000 0.30 0.163
C (X3) Time min 45.00 105.00 −1.000 1.000 75.00 24.495
D (X4) W/Ace/NaOH mL 8.00 40.00 −1.000 1.000 24.00 13.064

Table 2. Design of experiment for response surface methodology report.

Std
Order

Factor-A
Temperature

(◦C)

Factor-B
Dossage
(gram)

Factor-C
Time
(min)

Factor-D Solvent (mL)
(H2O/C3H6O/NaOH)

Exp. Actual
Value

(PLQY)

Pred.
Value

Res.
Value

1 75 0.10 45 8.00 14.67 14.41 0.26
2 175 0.10 45 8.00 21.05 20.89 0.15
3 75 0.50 45 8.00 22.80 22.35 0.45
4 175 0.50 45 8.00 19.96 19.13 0.83
5 75 0.10 105 8.00 14.00 13.01 0.99
6 175 0.10 105 8.00 25.27 26.13 −0.86
7 75 0.50 105 8.00 20.15 21.52 −1.36
8 175 0.50 105 8.00 24.87 24.94 −0.06
9 75 0.10 45 40.00 24.82 24.39 0.42

10 175 0.10 45 40.00 20.99 19.88 1.11
11 170 0.1 100 12.00 27.75 27.38 0.37
12 175 0.50 45 40.00 12.53 13.16 −0.63
13 75 0.10 105 40.00 17.90 18.99 −1.09
14 175 0.10 105 40.00 21.04 21.13 −0.09
15 75 0.50 105 40.00 22.75 22.55 0.21
16 175 0.50 105 40.00 14.46 14.98 −0.51
17 54 0.30 75 24.00 24.28 24.57 −0.30
18 195 0.30 75 24.00 23.89 23.80 0.08
19 125 0.02 75 24.00 24.49 25.08 −0.59
20 125 0.58 75 24.00 26.73 26.35 0.38
21 125 0.30 32 24.00 18.53 20.74 −2.22
22 125 0.30 117 24.00 23.04 21.03 2.01
23 125 0.30 75 1.37 16.74 16.98 −0.24
24 125 0.30 75 46.63 17.02 16.99 0.03
25 125 0.30 75 24.00 23.53 23.58 −0.05
26 125 0.30 75 24.00 24.53 23.58 0.94
27 125 0.30 75 24.00 22.89 23.58 −0.69
28 125 0.30 75 24.00 22.53 23.58 −1.06
29 125 0.30 75 24.00 23.93 23.58 0.34
30 125 0.30 75 24.00 24.53 23.58 0.94

Predicted Value = Pred. value, Res. Value = Residual value. Study Type: Response Surface, Runs: 30, Initial Design:
Central Composite, Design Model: Quadratic.

2.2. Artificial Neural Network Mathematical Model and Method

Response surface methodology data along with the experimental data was collected from sample
formulation, totaling 30 samples. These sample data were used in the training of overall data. Note;
the regular data collected where normalized to a range between 0 and 1 using Equation (2) below.

Xnorm =
X −Xmin.

Xmax−Xmin

(2)
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The Xnorm is the normalized value, X is the variable, Xmin and Xmax are the minimum and maximum
values among the data set.

The normalization is necessary to execute the sigmoid transfer function effectively. The network
model was programmed by codes of multilayer perceptron (MLP) along with the training algorithm
of back propagation (BP), which consists of an input layer (the input variables of temperature, time,
dosage, and solvent ratio), a hidden layer and an output layer (photoluminescent quantum yield)
which was the response generated from the experimental values. These three node layers are neurons
that utilizes non-linear activation function as given in Figure 1 below.
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Figure 1. Architecture of multilayer perceptron neural network.

Data tests have shown that a pair of hidden layer resulted in a high performance value. Thus,
after multiple iterations for the best data set performance, artificial neural network topologies were
selected based on the log-sigmoid transfer function (Equation (3)), linear transfer function in the output
layer (Equation (4)), and best performance criteria of coefficient of determination (R2) at Equation (5),
mean absolute error (MAE) at Equation (6), and root mean square error (RMSE) at Equation (7).

Logsig (n) =
1

1 + exp(−n)
(3)

Pureline (n) = n (4)

R2 = 1−
n∑

i=1

 (yi
pred − yi

targ)
2

(yavg,targ − yi
targ)

2

 (5)

MAE =
1
N

N∑
i=1

|yi
pred − yi

targ| (6)

RMSE =

√√√√ N∑
i=1

(yi
Pred − yi

targ)
2

N
(7)
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where, n is the number of experimental data, yi
Pred is the predicted value and yi

targ is real value obtained

from experimental data, yavg,targ is the average experimental value. However, the value of R2 is the
amount of reduction in the variability of the response by using a repressor variable in the model. R2 close
to 1 is desirable and the root mean square error (RMSE) is required to be negligibly infinitesimal [10].

The process of developing an artificial intelligence model for the prediction and optimization of
fluorescent carbon dots followed the flow chart in Figure 2. The chart demonstrates the procedural
flow involved in the formulation of the artificial neural network for photoluminescent quantum yield
prediction and optimization for the synthesized fluorescent carbon dots (see Section 2.3 for synthesis
approach).
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A multi input and a single output artificial neural network model was developed by utilizing the
Levenberg–Marquardt back propagation (LMBP) algorithm to effectively predict the photoluminescent
quantum yield of synthesized fluorescent carbon dots [11,12].

2.3. Synthesis of Carbon Dots (CDs)

An environmental suitable technique for producing carbon dots, (hydrothermal synthesis process),
were adopted from the response surface methodology analysis. The best photoluminescent quantum
yield data were used here for the report of the response. A small quantity, (0.1 g), of tapioca flour was
mixed in 12 mL prepared solvent ratio (deionized water + sodium hydroxide + acetone), see Figure 3
for mechanism flow. This mixture was placed in a stainless steel hydrothermal reactor in a convection
oven at a temperature of 170 ◦C for a period of 1 h 40 min. This study has successfully reduced the
needed temperature and time needed for synthesizing CDs [13–15].Processes 2019, 7, 704 6 of 21 
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The mixture was centrifuged for 20 min at 3000 rpm. For clarity (no substantial suspended solids
detected). The photoluminescent quantum yield was thus calculated by;

Q = QR(
GRAD

GRADR
)(

e2

e2
R

) (8)

3. Result and Discussion

3.1. Response Surface Methodology

The design of experiment data (ref: Table 1) was used as independent variables inputs. The best
outputs of photoluminescent quantum yield (PLQY) of carbon dots, the predicted and actual
experimental values of photoluminescent quantum yield, is reported in Table 2 below.

It shows a positive model with an R2 value of 0.956 as revealed on the fits statistics (Table 6), a
high experimental value of PLQY of 27.75%, and a predicted value of 27.38% with a residual value of
0.37%. The experimental data was then used to calculate the coefficient of polynomial equation for
the response yield with the inputs data of temperature, time, dosage, and solvent ratio; by adopting
Equation (1).

The results of design of experiment was computed by central composite design (CCD) as stated
earlier. Photoluminescent quantum yield of the predicted and experimental yield was given by a
model equation as in Equation (1) and represented by the expression below.

A = temperature, B = dosages, C = time, D = solvent (H2O/C3H6O/NaOH)
Now, let;
A = X1, B = X2, C = X3, D = X4 (refer to RSM Table 2)

i Final equation in terms of coded (predicted) factors (full model): Also see Table 3 below for R2

values and lack of fit for the polynomial regression equation.

Photoluminescent quantum yield (Response) = 23.63 − 0.1732 X1 + 0.03498 X2 +

0.1905 X3 − 0.0802 X4 − 2.38 X1 X2 + 1.61 X1 X3 − 2.68 X1 X4 + 0.1894 X2 X3 − 1.30 X2 X4 −

0.9353 X3 X4 + 0.2905 X2
1 + 1.07 X2

2 − 1.38 X2
3 − 3.36 X2

4.

ii Final equation in terms of actual factors (full model): Also see Table 4 below for R2 values and
lack of fit for the polynomial regression equation.

Photoluminescent quantum yield (Response) = −3.3822 + 0.03866 X1 + 22.7576 X2 +

0.1385 X3 + 1.3133 X4 − 0.2379 X1 X2 + 0.0010 X1 X3 − 0.0033 X1 X4 + 0.0315 X2 X3 −

0.4069 X2 X4 − 0.0019 X3 X4 + 0.0001 X2
1 + 26.8733 X2

2 − 0.0015 X2
3 − 0.0131 X2

4.

Table 3. The fitted quadratic model in terms of coded variables.

Response 2nd Order Polynomial Equation Regression
(p-Value) R2 R2

(Adjusted)
Lack
of Fit

PLQY

23.63 − 0.1732 X1 + 0.03498 X2 + 0.1905 X3
−0.0802 X4 − 2.38 X1 X2 + 1.61 X1 X3 − 2.68
X1 X4
+ 0.1894 X2 X3 − 1.30 X2 X4 – 0.9353 X3 X4
+ 0.2905 X2

1 + 1.07 X2
2 − 1.38 X2

3 − 3.36 X2
4.

0.0001 0.9563 0.9155 0.1685
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Table 4. The fitted quadratic model in terms of actual variables.

Response 2nd Order Polynomial Equation Regression
(p-Value) R2 R2

(Adjusted)
Lack
of Fit

PLQY

−3.3822 + 0.03866 X1 + 22.7576 X2 +
0.1385 X3 + 1.3133 X4 − 0.2379 X1 X2 +
0.0010 X1 X3 − 0.0033 X1 X4 + 0.0315 X2 X3
− 0.4069 X2 X4 − 0.0019 X3 X4 + 0.0001 X2

1
+ 26.8733 X2

2 − 0.0015 X2
3 − 0.0131 X2

4.

0.0001 0.9563 0.9155 0.1685

Analysis of Variance and Model Statistical Report

The data set for the response surface methodology as generated by the software made the model
to fit in to quadratic significance, and the analysis of variance (ANOVA) for statistical significance of
the quadratic model is computed on Table 5 below;

Table 5. ANOVA for quadratic model.

Source Sum of Squares df Mean Square F-Value p-Value

Model 446.88 14 31.92 23.45 <0.0001 significant
A-Temperature 0.5324 1 0.5324 0.3912 0.5411

B-Dosage 2.14 1 2.14 1.57 0.2289
C-Time 0.6458 1 0.6458 0.4745 0.5014

D-W/Ace/NaOH 0.1132 1 0.1132 0.0832 0.7770
AB 83.27 1 83.27 61.18 <0.0001
AC 38.33 1 38.33 28.16 <0.0001
AD 101.98 1 101.98 74.93 <0.0001
BC 0.5274 1 0.5274 0.3875 0.5430
BD 24.01 1 24.01 17.64 0.0008
CD 12.38 1 12.38 9.10 0.0087
A2 0.7806 1 0.7806 0.5735 0.4606
B2 10.48 1 10.48 7.70 0.0142
C2 17.76 1 17.76 13.05 0.0026
D2 106.01 1 106.01 77.89 <0.0001

Residual 20.42 15 1.36
Lack of Fit 16.94 10 1.69 2.44 0.1685 Not significant
Pure Error 3.47 5 0.6947
Cor Total 467.30 29

F-value of 23.45 implies the model is significant and the subsequent values for the parameters
show their degree of effects on the response of photoluminescent quantum yield for fluorescent carbon
dots. Herewith, in Table 5, the most effective single–multiple parameter is the solvent ratio (D2) with
an F-value of 77.89. While, interactive most effective parameters are temperature and solvent ratio
(AD) with F-value 74.93. The least effective single parameter is temperature (A2) with an F-value
of 0.5735 and the least effective interactive parameters are dosage and time (BC) with an F-value of
0.3875 [16,17].

Model p-values less than 0.0500 indicate the model terms are significant [18]. In this case AB,
AC, AD, BD, CD, B2, C2, D2 are significant model terms. Values greater than 0.1000 indicate the
model terms are not significant, hence, individual lone factors are independent and are non-effective.
Favorable interactive effects were observed between temperature and dosage (AB), temperature and
time (AC), temperature and solvent (AD), dosage and solvent ratio (BD), and time and solvent ratio
(CD), while the individual factor effects were observed with dosage (D2), time (C2), and solvent ratio
(D2). Non favorable interactive effects were observed with dosage and time (BC), and the multiple
factor of non-effect is temperature (A2). If there are many insignificant model terms (not counting those
required to support hierarchy), model reduction may be considered to improve the model, however, in
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this study the non-effects are few and infinitesimal. The lack of fit F-value of 2.44 implies the lack of fit
is not significant relative to the pure error. Non-significant lack of fit is an excellent requirement, since
it is needed for the model to fit [19].

The experimental R2 of 0.9563 in Table 6, shows a significant response [20]. The predicted R2 of
0.7689 is in reasonable agreement with the adjusted R2 of 0.9155; i.e., the difference is less than 0.2 [21].
Adequate precision, measures the signal to noise ratio, thus, ratio greater than 4 is desirable. Ratio of
17.519 indicates an adequate signal.

Table 6. Fit statistics summary.

Std. Dev. 1.17 R2 0.9563

Mean 21.40 Adjusted R2 0.9155
C.V. % 5.45 Predicted R2 0.7689

Adequate Precision 17.5186

This model is significant to navigate the design space. It is necessary for a model to comply with
the following;

i A significant model: Large F-value with p < 0.05.
ii Insignificant lack-of-fit: F-value with p > 0.10.
iii Adequate precision >4 [18–20].

Furthermore, from Figure 4 below, the three dimensional (3D) plots have shown interactive
responses to the favorable yield of photoluminescent quantum yield at 27.75% and the intercept value
of 23.63 on the 2nd order polynomial equation of actual values is suitable.

In Figure 4A the interactive behavior of temperature (A) at 170 ◦C and dosage (B) at 0.1 g has an
effective interaction with an F-value of 61.18 and a p-value less than 0.0001 with a value of −0.2379 in
the 2nd order polynomial equation of actual factors. Figure 4B is an interactive effect of temperature
(A) and time (C) at 1 h 40 min. It records a linear effect on the response value of photoluminescent
quantum yield with a favorable p-value that is less than 0.001 and a coefficient value of 1.6143 on the
polynomial equation. The interactive effect of temperature (A) and solvent ratio W/Ace/NaOH (D) at
12 mL have the best effect on the response yield of photoluminescent quantum yield with an f -value of
74.93 and a p-value less than 0.0001, coefficient of −2.68 as seen in the 2nd order polynomial equation
with a linear response as shown in Figure 4C.

Figure 4D shows a non-effective interaction between dosage (B) and time (C) on the response
of photoluminescent quantum yield. p-value at 0.5430 and f -value of 0.3875 all fall short of the
requirement of a p-value <0.100 and an f -value that is extremely low. The interactive effect of dosage
(B) and solvent ratio W/Ace/NaOH (D) at p-value 0.0008 as shown in the 3D plot on Figure 4A,C,E,F is
the most important factor in the sustainability of environmental resources. Environmental resources
management is an essential factor to be considered in the synthesis of products, with high emphasis on
minimal resource requirement [18].

3.2. Photoluminescent Quantum Yield

The photoluminescent quantum yield (PLQY) of the CDs was ascertained by Equation (8) as in
Section 2.3. Using quinine sulfate added to H2SO4 to form 0.1 M solution, optical density of 0.00, 0.02,
0.04, 0.06, 0.08, 0.1 were obtained; at absorption wavelength of 340 nm and dilution was made from the
synthesized carbon dots solution. The procedure, is an established process of calculating quantum
yields of photoluminescent substances. Quinine sulphate as reference quantum yield was held at
54.6 [22–26].
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3.3. Evaluation Performance between Artificial Neural Network (ANN) and Response Surface Methodology
(RSM) on the Yield of Photoluminescent Quantum Yield

Artificial neural Network (ANN) is a system that mimics the naturally inspired computational
model. Thus, it emulates the workings of the human brain to take in certain connections among
information inputs and yield outputs through trained data [27–30].

From Table 7 below, it shows the relationship between the response surface methodology and
the artificial neural network performance of the trained data (see Figure 5). The best output for
photoluminescent quantum yield was obtained at No. 11 at actual experimental value of 27.75%,
RSM predicted value of 27.38%, and ANN predicted value of 26.25%. The training of the data set
was conducted by Matlab R2015a (8.5.0.197613), utilizing Lavenberg–Marquardt algorithm (LMA).
The LMA is based on the training neural network through iteration and reiteration of data set weight
and bias values as shown on Table 8 [31–33].

Table 7. Response surface methodology and artificial neural network.

Std
Order

Factor-A
Temperature

(◦C)

Factor-B
Dossage
(gram)

Factor-C
Time
(min)

Factor-D Solvent
(mL)

(H2O/C3H6O/NaOH)

Exp. Actual
Value

(PLQY%)

RSM
Pred.
Value

ANN.
Pred.
Value

1 75 0.10 45 8.00 14.67 14.41 12.46
2 175 0.10 45 8.00 21.05 20.89 21.31
3 75 0.50 45 8.00 22.80 22.35 22.74
4 175 0.50 45 8.00 19.96 19.13 19.93
5 75 0.10 105 8.00 14.00 13.01 14.76
6 175 0.10 105 8.00 25.27 26.13 24.84
7 75 0.50 105 8.00 20.15 21.52 19.99
8 175 0.50 105 8.00 24.87 24.94 24.96
9 75 0.10 45 40.00 24.82 24.39 24.51
10 175 0.10 45 40.00 20.99 19.88 21.10
11 170 0.1 100 12.00 27.75 27.38 26.25
12 175 0.50 45 40.00 12.53 13.16 15.80
13 75 0.10 105 40.00 17.90 18.99 17.56
14 175 0.10 105 40.00 21.04 21.13 21.07
15 75 0.50 105 40.00 22.75 22.55 23.82
16 175 0.50 105 40.00 14.46 14.98 18.69
17 54 0.30 75 24.00 24.28 24.57 23.45
18 195 0.30 75 24.00 23.89 23.80 24.89
19 125 0.02 75 24.00 24.49 25.08 24.09
20 125 0.58 75 24.00 26.73 26.35 25.17
21 125 0.30 32 24.00 18.53 20.74 16.69
22 125 0.30 117 24.00 23.04 21.03 23.65
23 125 0.30 75 1.37 16.74 16.98 15.06
24 125 0.30 75 46.63 17.02 16.99 17.38
25 125 0.30 75 24.00 23.53 23.58 23.72
26 125 0.30 75 24.00 24.53 23.58 23.72
27 125 0.30 75 24.00 22.89 23.58 23.72
28 125 0.30 75 24.00 22.53 23.58 23.72
29 125 0.30 75 24.00 23.93 23.58 23.72
30 125 0.30 75 24.00 24.53 23.58 23.72

Predicted Value = Pred. value, Study Type: Response Surface, Runs: 30, Initial Design: Central Composite, Design
Model: Quadratic.
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Table 8. Artificial neural network (ANN) optimum values for hidden layer sizes and corresponding
transfer functions (‘tansig’ and ‘logsig’) for minimum error fittings for train, validation, and test of
optimized RSM data.

Hidden Neurons
Train Validation Test All

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

4-8 * 0.99 0.09 0.06 0.99 0.07 0.04 0.99 0.08 0.06 0.99
8-4 0.99 0.03 0.01 0.95 0.10 0.09 0.95 0.11 0.09 0.94

8-16 0.99 0.04 0.03 0.78 0.17 0.13 0.96 0.12 0.09 0.93
9-19 0.99 0.02 0.01 0.93 0.13 0.08 0.99 0.11 0.09 0.96
11-4 0.99 0.04 0.03 0.85 0.11 0.09 0.95 0.14 0.11 0.96
11-7 0.99 0.02 0.01 0.97 0.07 0.06 0.82 0.12 0.09 0.97
11-9 0.99 0.02 0.01 0.99 0.11 0.09 0.83 0.15 0.12 0.96
13-9 0.95 0.07 0.05 0.92 0.14 0.13 0.94 0.12 0.09 0.93
13-13 0.99 0.03 0.02 0.76 0.11 0.09 0.93 0.16 0.13 0.95
17-10 0.99 0.02 0.01 0.90 0.12 0.13 0.99 0.06 0.05 0.96
17-18 0.99 0.02 0.01 0.91 0.11 0.08 0.94 0.12 0.09 0.97
19-4 0.99 0.03 0.02 0.52 0.12 0.09 0.97 0.12 0.09 0.96
19-6 0.98 0.07 0.05 0.83 0.12 0.11 0.99 0.02 0.02 0.96

* 4-8 is the chosen model based on its comparative high R2 value.

As shown in Figure 5 below, the R2 value is a good revelation of the compatibility of each data set
to each other.

The RSM values shows a high R2 value of 0.9563 than the ANN R2 of 0.944 with a negligible
residual value of 0.0123 between the RSM and ANN. Hence, the ANN is a very good method of
validating RSM data set [21]. The process of validating the Levenberg–Marquardt back propagation
model for the response yield of photoluminescent quantum yield adopted in this study were done
by deploying different adjustable topologies (see Table 8) in training of the network performance.
From the 13 topologies deployed hidden layers between 4 and 20; the best hidden layer configuration
with high coefficient of determination and low training error was gained at 4–8, as evident in Figure 6.
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Figure 6. Artificial neural network model coefficient of determination and error relationship of data set
of fluorescent carbon dots. (a) Trained R2 output, (b) Validated R2 output, (c) Test R2 output, and (d)
Overall R2 output of data set.

Figure 6 below shows a high value of R2
≥ 95 for the output parameter of photoluminescent

quantum yield which complies with the expected results from training of data set by the
Levenberg–Marquardt algorithm [17,29].

3.4. Characterization and Properties of Carbon Dots

The need to analyze carbon dots for their characteristic attributes is very essential. These can be
done by determining the particle sizes and morphological patterns using high resolution devices [34].
The atomic force microscopy (AFM), high resolution transmission electron microscopy (HrTEM), and
field emission scanning emission microscopic (FESEM) techniques have been utilized for this purposes.

3.4.1. Atomic Force Microscopy (AFM) and High Resolution Transmission Electron Microscopy
(HrTEM) of Carbon Dots (CDs)

CDs particle size distribution and morphology have been investigated (Figure 7). Figure 7a shows
the three dimensional (3D) plot of the morphological pattern of carbon dots while Figure 7b depicts 62
counts of CDs with a mean height and diameter of 4.054 nm and 44.032 nm, respectively, which is a
confirmation of the nano-dimension of CDs. Figure 7c represents the histogram of the 62 carbon dots
count and Figure 7d is the HrTEM of carbon dots at less than 10 nm and a lattice spacing at 0.24 nm.
HrTEM analysis for the carbon dots were investigated to determine the actual size and shape of the
carbon dots. The image clearly depicts the synthesized CDs as well dispersed in water with a spherical
petal shape and fine size distribution of about 3.0–5.0 nm in diameter shown in Figure 7.
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Figure 7. Atomic force microscopy (AFM) and high resolution transmission electron microscopy
(HrTEM) of carbon dots (CDs). (a) 3D CDs particles, (b) 2D CDs particles, (c) CDs particle distribution,
and (d) CDs particle sizes and lattice space.

The HrTEM provides a validation of the nano dimensions present in the synthesized CDs via
hydrothermal route which is in agreement with semiconductors synthesized at the nano scale [35,36].

The CDs lattice spacing of 0.24 nm renders it suitable in membrane filtration application. More
so, the sizes of CDs are below 5 nm, which means there are numerous surface sites for adsorption
application purposes in wastewater treatment.

In addition, Table 9 shows a detailed presentation of the size distribution of CDs obtained
by measuring the heights, areas, and diameters of 62-single carbon dots observed under atomic
force microscopy.

Table 9. Analysis of the atomic force microscopy of CDs.

Parameter Mean Minimum Maximum

Total Count 62 62 62
Height 4.054 (nm) 2.174 (nm) 8.486 (nm)
Area 2086.516 (nm2) 381.470 (nm2) 18,005.371 (nm2)

Diameter 44.032 (nm) 22.039 (nm) 151.411 (nm)
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As presented on Table 9. The CDs mean diameter of 44.034 nm and mean area of 2086.516 nm2

possess the attributes of a suitable adsorbent for adsorbing environmental pollutants [13].

3.4.2. Field Emission Scanning Electron Microscopy (FESEM) and EDx of Tapioca-Derived
Carbon Dots

From the conducted FESEM analysis, it is found that the actual shape of the CDs is in the form of
a flower shaped petals, spherical in nature, as can be seen in Figure 8a,b. The EDX study determined
the elemental compositions of carbon dots, and the results shows presence of C (31.64%), 0 (55.84%),
Na (10.99%), Si (1.45%), and K (0.079%) as in Figure 8c. The Na signal in EDX spectrum is due to the
sodium hydroxide constituent of carbon dots synthesis and silicon is as result of glass substrate for
drying carbon dots during the sample preparation for FESEM.Processes 2019, 7, 704 16 of 21 
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Figure 8. FESEM at (a) 40 µm (b) 10 µm and (c) EDx of tapioca-derived carbon dots.

3.4.3. Properties of Carbon Dots (CDs)

The use of UV lamp to assess the quality of fluorescent carbon dots have been applied as a
source to obtain a blue/green color in the near visible region of color band group. The UV irradiations
absorbed by the carbon dots and excited through absorbing the energy leading to an electron excited
state. The molecules of carbon dots with extended Pi-electron provides the basics for the fluorescence
emission of carbon dots. The tapioca-derived carbon dot is a wavelength dependent photoluminescent
ionic solution in the visible range with a surface abundant with hydroxyl and carboxylic/carboxyl
moieties [13].

CDs indicated a strong optical absorption in the UV region (230–340 nm) with a tail extending to
the visible range as presented in Figure 9.
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Figure 9. Optical properties of CDs. (a) UV-visible absorption and emission spectra of as prepared CDs
dispersed in water. (b) Fluorescence emission spectra of carbon dots and reference material (Tapioca).

Absorption shoulders in the spectrum may be due to the π-π* (pi to pi star transition) of C=C
bonds or n-π* (n to pi star transition) of C=O [37]. The uniqueness of CDs is the photoluminescence
emitted by it. Based on past study, it shows the dependency of intensity and wavelength emission
towards excitation wavelength [38]. This is due to the different size of particles and surface chemistry
and different emissive traps on CDs surface that can be related by the synthesis method.

The wavelength dependence behavior makes CDs possible to be applied in multi-color imaging
applications. It has been suggested that there are separate emissions by CDs core and surface states
whereby size, surface, and defects are responsible for the emission properties [13]. The color of CDs
most of the time is related to the surface groups which compares to particles size and normally CDs
show strong photoluminescence from blue to green wavelength. In terms of chemical properties,
different synthesis methods of CDs lead to different chemical structure, such as polymer chains, oxygen
based and amino-based groups [39].

The main challenge with carbon dots is the agglomeration of the particles due to strong particle
interactions. It can be postulated that the agglomeration of particles over time is the very reason that
these CDs emit green fluorescence since it had been left for 3 months. The resultant change in colour
due to agglomeration of carbon dot particle can be observed in Figure 10 (A and B) [40].
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It is well-known that there is a relationship between emission wavelength of quantum dots
and particle size, i.e., the smaller the particle size is, the shorter the emission wavelength [41]. It is
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reasonable to speculate that this law is also applicable to carbon dots. Strong green photoluminescence
offers unique superiority, because most of the current carbon dots emit blue fluorescence under UV
irradiation. This kind of carbon dots had been synthesized [42].

4. Conclusions

The concept of synthesizing CDs (at zero dimension) on an industrial scale requires automation
by first being able to predict the possible outcomes based upon the intended experimental factors.
Thus, this study has applied tapioca as the material for optimization to achieve the set objective of large
scale synthesis by means of prediction through a reliable approach of utilizing design of experiment
(DoE) for a response surface methodology (RSM), to optimize a facile and effective synthesis process of
fluorescent carbon dots from tapioca powder (starch) via hydrothermal synthesis route. The prediction
for optimized fluorescent carbon dots synthesis from RSM is in excellent agreement with artificial
neural network prediction by the Levenberg–Marquardt back propagation (LMBP) algorithm in terms
of R2, root mean square error and mean absolute error. Positive hidden layer sizes have resulted in the
ANN prediction of PLQY of fluorescent carbon dots at 26.25% and RSM predicted value of 27.38% at
R2 values of 0.94 and 0.95, respectively. The best parameters values for the synthesis of carbon dots
were at 170 ◦C for 1 h 40 min with solvent ratio of 12 mL and dosage 0.1 g. These optimization and
prediction process have produced sustainable, efficient, and reliable fluorescent carbon dots, which is
energy saving in a manageable time, along with a decreased dosage with optimum quality output.

Moreso, to confirm the validity of carbon dots, characterization of surface morphology and
particles size carbon dots were conducted with favorable confirmations of the unique characteristics
and attributes of synthesized carbon dots by hydrothermal route.
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