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Abstract: Physico-chemical modelling and predictive simulation are becoming key for modern
process engineering. Rigorous models rely on the separation of different effects (e.g., fluid dynamics,
kinetics, mass transfer) by distinct experimental parameter determination on lab-scale. The equations
allow the transfer of the lab-scale data to any desired scale, if characteristic numbers like e.g., Reynolds,
Péclet, Sherwood, Schmidt remain constant and fluid-dynamics of both scales are known and can be
described by the model. A useful model has to be accurate and therefore match the experimental data
at different scales and combinations of process and operating parameters. Besides accuracy as one
quality attribute for the modelling depth, model precision also has to be evaluated. Model precision
is considered as the combination of modelling depth and the influence of experimental errors in
model parameter determination on the simulation results. A model is considered appropriate if
the deviation of the simulation results is in the same order of magnitude as the reproducibility of
the experimental data to be substituted by the simulation. Especially in natural product extraction,
the accuracy of the modelling approach can be shown through various studies including different
feedstocks and scales, as well as process and operating parameters. Therefore, a statistics-based
quantitative method for the assessment of model precision is derived and discussed in detail in
this paper to complete the process engineering toolbox. Therefore a systematic workflow including
decision criteria is provided.

Keywords: process model validation; partial least square regression; phytochemicals; natural extracts

1. Introduction

Verification and validation present an issue for different kinds of predictive models applied e.g.,
in economics and banking [1], climate [2], traffic [3], and not least, of course, in process technology [4–7].

Sargent [5] defines model verification as “ensuring that the program of the model and its
implementation are correct” and model validation as “substantiation that a model within its domain
of applicability possesses a satisfactory range of accuracy consistent with the intended application
of the model” based on [4]. A general procedure, including statistical analysis and quantification of
whether a model is valid or not, is still missing in process design and development in chemical and
pharmaceutical industries. In most cases, the effort to ensure model validity is the major obstacle for
decision makers in industry to expand the use of physico chemical–based predictive process modelling
instead of or in addition to experimental data from mini- or pilot-plants. This is the main discussion
point regarding modelling in process engineering. This is often a point of dissent between academia
and industry in many working groups [8–12]. Academia favors rigorous process modelling as the
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only scientifically sound method for process understanding in combination with laboratory scale
experiments for model parameter determination. In contrast, industry avoids the early project efforts
in model development due to costs, efforts, and resources. Major obstacle is that no investment
decision would be made based on theoretic results without experimental proof. Therefore, any process
modelling activity has to prove—distinct and self-explanatory—the model validity a priori.

This study is an attempt to propose a general procedure to assess model validity, based on
quantitative decision criteria on the example of an industrial relevant complex component mixture
from plants with natural variable feedstock.

There is a need for detailed and precise rigorous process models in chemical engineering
because a significant amount of resources in early process development and optimization can
be saved. Moreover, predictive models allow evaluation of the process at critical points of
operation, e.g., start-up/shut-down, unstable operating points in terms of energy supply and removal
and feedstock variations. Especially, feedstock variations are a hot topic in the processing of
phyto-pharmaceuticals due to the natural content fluctuations of target molecules in the plants. Besides
engineering and economic considerations, especially in the pharmaceutical industry, a modern concept
of quality assurance through the whole lifecycle of the product, reaching from early stage of research
and development to production, called Quality-by-Design (QbD), gains more and more influence
and acceptance and is demanded by authorities [13–15]. The basis of QbD is the evaluation of a
so-called design space in which the process is kept while maintaining constant quality attributes
of the final product. The establishment of a design space demands multi-parameter optimizations,
requiring significant experimental effort. Rigorous process models can contribute significantly by
substituting a part of the experiments and therefore, lead from pure empirical process design to a model
and data driven process assessment. The process models utilized have to be rigorous (strictly derived
from physico-chemistry) in order to be predictive with regard to parameter range and scale. To define
a design space, critical quality attributes have to be determined and ranked, first. The principle of the
QbD approach is depicted in Figure 1 and discussed in detail in the cited literature [13].
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Figure 1. The Quality-by-Design (QbD)-approach to quality assurance [13], PAT process analytical
technology, DoE design of experiments.

If the variance of those critical product quality attributes is narrow, a broad and multi-parameter
design space is needed, in order to cope appropriately with natural feedstock variability, exemplified
by Figure 2.

In contrast, a narrow operation parameter space is sufficient to fulfil the quality requirements,
but may cause troubles in manufacturing, if approved in a too small range, due to equipment limitations
and breeding success toward high active component content of the used plants. If Quality-by-Design is
strictly applied, a reconsideration of the critical quality attributes, the risk assessment, and the derived
design space becomes necessary if there is a significant change in the boundary conditions of the
process or the production is out of specification for some time and the initial risk assessment did not
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address these issues in an adequate way. This is explicitly in conflict to a stringent approval procedure,
submitting of one single point of operation with narrow parameter ranges to the regulatory agencies,
as it is historically common practice in phytoextraction.
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Figure 2. Basic idea of design spaces in phytoextraction [13].

To ensure the proper definition of a design space with the aid of a physico-chemical process
model, the model has to fulfil the accuracy and precision criteria. Accuracy is the ability to predict the
experimental data correctly within a whole set of parameters. In case the model fails, the model depth
has to be increased to reflect the real behavior of the system in higher detail. Precision is the feedback
of the errors and uncertainties of the model parameter determination on the simulation results. If the
resulting deviation is below the reproducibility of the experimental data that is to be substituted by the
model, the model precision is sufficient. If the model fails, the underlying parameter determination
concept has to be improved. The difference between accuracy and prediction is depicted in Figure 3.
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Figure 3. Visualization of accuracy and precision.

Validated and predictive process models for solid-liquid extractions exist for more than
two decades. Kassing et al. [16,17] give an overview of different process modelling approaches.
These studies, based on pepper and vanilla, predict influences of different particle diameters,
solid/liquid ratios, and residence times. Both et al. [18–21] extended the validation on sugar and tea
for different process concepts like maceration and percolation, recycling-mode percolation, as well as
different residence times and solid/liquid ratios. They even showed the scale independent validity
of the model by means of a scale up industrial level study for the extraction of sugar beet [18].
Further-on, salvia, fennel and yew [22,23] were added. Recently, Sixt et al. [24] added annual mugwort,
assessing the influence of pressure, temperature, and solvent ratios on the extraction and enhanced
the research on yew [25]. As a consequence, various studies exist, which prove that those models are
valid to predict experimental data at various scales and different points of operation and feedstocks,
thus they are accurate and therefore the model depth is sufficient.
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A detailed discussion and quantification of model precision has not yet been provided.
Model precision rates the impacts of the errors of experimental model parameter determination
on the simulation results. As a consequence, a model is precise, if the feedback of the experimental
errors on the simulation is smaller compared to the data gained through field experiments. In that case,
the proven accurate model has a sufficient precision to substitute experiments for process optimization,
design and control. Kassing et al. [17] did extensive research on the equilibrium determination and the
error propagation but did not show the feedback of the parameter determination on the simulation
results. To close this gap, a generalized statistics-based comparison of the simulation error and the
experimental error is shown to complete the engineering toolbox.

2. Modelling of Solid-Liquid Extraction

Data-driven process design is the key to efficient chemical engineering. Especially for important
unit operations like continuous distillation, liquid-liquid extraction, and adsorption, graphical methods
for process design as well as detailed models are available. Both models (stage construction for
binary mixtures after McCabe-Thiele and ternary mixtures in Gibbs diagrams (mostly liquid-liquid
extraction) [26]) are sketched in Figure 4. They rely on equilibrium stages that are reached in the
system due to thermodynamics. The real behavior is then taken into account by the stage efficiency.
There is an approach to adapt these methods to phytoextraction processes, but a comparable accuracy
and wide spread use was not achieved [27]. This is mainly due to botanical and equipment constraints.
On the botanical side, the plant tissue is highly compartmented and therefore different mass transport
phenomena and limitations have to be taken into account. Moreover, there are target molecules that
are not entirely adsorbed to the plant matrix, e.g., essential oils, that are often located in oil seams or
trachoma cells in liquid state. Therefore, they can easily be washed out of the plant matrix, which is
why an equilibrium stage model fails because no explicit phase equilibrium occurs. A look at the
equipment side reveals a variety of different apparatus for phytoextraction [28]. Besides the often
used batch equipment, like maceration and hydro-distillation, a number of continuously operated
equipment is commercially available with their individual fluid dynamics that have to be taken into
account for proper process design. Moreover, the fluid dynamic behavior of these devices is not steady
but is subject to cyclic switch times like in carousel extractors.
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The model description of solid-liquid extraction has been researched for some time. The equation
system can usually be divided into an apparatus-specific part, for example mass balances for flow
tubes or stirred vessels, and a matrix-specific part which images the mass transport of individual
components of the plant into the solvent. The goals of the modelling are either a reduction of attempts
for process optimization or the deepening of the basic understanding. In addition to purely empirical
models, which usually can only interpolate measured values, a number of predictive models for the
matrix effects have been established [28].

• Shrinking Core: In the Shrinking Core model, a solvent front passes through a spherical particle.
At the boundary layer between solvent and solid, the mass transfer of the target components take
place. The model is based on gas-solid reactions in porous pellets [29].

• Broken and Intact Cells: The Broken and Intact Cells model is based on the idea that the target
components are found both inside the plant particles, as well as in broken vacuoles or oil channels.
This assumption is based on real extraction experiments in which extraction is carried out
very rapidly at the beginning (near-surface components or broken vacuoles and oil channels).
Subsequently, the extraction rate is greatly retarded (intact cells and oil channels). In the first case,
there is no diffusion limitation, but in the second case there is a strong diffusion limitation of the
extraction [30,31].

• Pore Diffusion model: The Pore Diffusion model originates from chromatography. The solvent
diffuses into the porous particle and desorbs the components. Subsequently, the back diffusion
and the subsequent removal take place in the core flow. Again, the basic idea of the Broken
and Intact Cell model can be implemented by means of radial pore size and active substance
distribution [17].

Table 1 gives an overview of various modelling approaches, material systems, solvents
and apparatuses.

The extraction can be carried out as a leaching process (percolation) or as an equilibrium process
(maceration). In the following, the percolation model is described in more detail.

The percolation process is represented by several sub-models. On the one hand, the
distributed-plug-flow model (DPF) is used to represent the macroscopic mass transport within the
percolation column, and on the other hand, the diffusion in the porous particle is modeled using
a transport equation. In order to map the relationship between the residual load of the respective
component in the particle and in the solvent, various equilibrium relationships are used.

The Shrinking Core and the Broken and Intact Cells model are not implemented because a
pore diffusion approach gives the highest degree of detail compared to the other two theories.
Also, the model is already established and widely used in chromatography.

All sub models are explained in more detail below.



Processes 2018, 6, 66 6 of 27

Table 1. Overview of modelling approaches, plug flow (PF), stirred tank reactor (STR), distributed plug flow (DPF), pulsed electrical field (PEF).

Author and Year Ref. Fluid Plant Material Target Component Equilibrium Particle/Shape/Model Flux

Akgün 2000 [32] scCO2 Lavender flower Essential oil Constant Porous particle, Shrinking Core PF

Al-Jabari 2003 [33] scCO2 - - Langmuir - STR

Bulley 1984 [34] scCO2 Rape Fatty oil - - PF

Cacace 2003 [35] Ethanol, SO2 in Water Berries Phenols,
Anthocyanins Linear - STR

Carrin 2008 [36] Hexane Sunflower Fatty Oil Linear Porous particle DPF, cross-current

Catchpole 1996 [37] Liquid CO2
Salvia, celery and

coriander seed Essential and fatty oil Linear Sphere, Cylinder, parabolic
concentration profile PF

Chalermachat 2003 [38] Water Beetroot Pigments - Porous cylinder STR, PEF

Chia 2015 [39] scCO2 (Soxhlet) Rice bran oil Tocopherol - Logistic, Simple Single
Plate, Diffusion -

Cocero and Garcia 2001 [40] scCO2 Sunflower Fatty oil Linear No internal diffusion DPF

De Franca 2000 [41] SCF Palm oil Fatty oil, Carotenoids Constant - PF

Del Valle 2000 [42] scCO2 Rape oil, basil Essential and fatty oil Linear Sphere PF

Del Valle 2003 [43] scCO2 Chili Essential oil Linear Sphere PF

Del Valle 2005 [44] scCO2
Different Latin

American plants Essential and fatty oil Linear Shrinking core DPF

Del Valle 2006 [45] scCO2 Oilseed Fatty oil Linear Shrinking core DPF

Diankov 2008 [46] Water Tabaco - - Plates, Shrinking core STR

Egorov 2015 [47] scCO2 Pumpkinseed - - Shrinking core,
particle size distribution DPF

Espinoza-Perez 2007 [48] Water Coffee beans Caffeine Linear Sphere PF

Esquivel 1999 [49] scCO2 Olives bowl Fatty oil Linear Porous particle PF

Ferreira 2002 [50] scCO2 Black pepper Essential oil - Broken and intact cells PF

Fiori 2007 [51] scCO2 Vegetable seed Fatty oil Linear Broken and intact cells DPF

Fiori 2008 [52] scCO2 Grape kernels Fatty oil Linear Broken and intact cells DPF

Fiori 2009 [53] scCO2 Oilseed Fatty oil - Broken and intact cells und shrinking
core, particle size distribution DPF
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Table 1. Cont.

Author and Year Ref. Fluid Plant Material Target Component Equilibrium Particle/Shape/Model Flux

Goodarznia and Eikani 1998 [54] scCO2
Rosemary, basil,

caraway, marjoram Essential oil Linear Sphere DPF

Goto 1990 [55] scCO2 Wood Lignin Linear Porous particle,
parabolic concentration profile PF

Goto 1993 [56] scCO2 Peppermint Essential oil Linear Porous particle PF

Goto 1996 [57] scCO2 Rape oil Fatty oil Constant Shrinking core DPF

Guerrero 2008 [58] Ethanol/Water Grape pomace Polyphenols - Sphere PF

Ji 2006 [59] Water Gardenia fruit Geniposide Langmuir Shrinking core STR, ultrasound

Jokic 2015 [60] scCO2 Soy Fatty oil - Logistic -

Kim and Hong 2001 [61] scCO2 Spearmint Essential oil Constant - PF

Kim and Hong 2002 [62] scCO2 Spearmint Essential oil Constant Shrinking core PF

Lee 1986 [63] scCO2 Rape oil Fatty oil Constant No internal diffusion PF

Lópex-Padilla 2017 [64] scCO2 Marigold Fatty oil BIC-type Broken and intact cells PF

Lucas 2007 [65] scCO2 Wheat sprouts Fatty oil Linear - PF

Machmudah 2006 [66] scCO2 Nutmeg Fatty oil BIC-type Broken and intact cells Shrinking core PF

Macias-Sanchez 2009 [67] scCO2 + 5% Ethanol Micro algae Carotenoids Linear Sphere PF

Madras 1994 [68] scCO2 Soil Organic pollutants Freundlich Shrinking core DPF

Mantell 2002 [69] Methanol Grape pomace Anthocyanins Linear Sphere PF

Marrone 1998 [70] scCO2 Almond oil Fatty oil BIC-type Broken and intact cells PF

Martinez 2003 [71] scCO2 Ginger Oleoresin - Logistic PF

Nagy 2008 [72] scCO2 Chili Essential oil - Particle size distribution PF

Özkal 2005 [73] scCO2 Apricot kernels Apricot kernel oil BIC-type Broken and intact cells PF

Peker 1992 [74] scCO2 Coffee beans Caffeine Linear Sphere PF

Perrut 1997 [75] scCO2 Sunflower seed Fatty oil BIC-type Porous particle PF

Pinelo 2006 [76] Ethanol Grape by-products Antioxidants - Sphere STR

Poletto and Reverchon 1996 [77] scCO2 Vegetable Essential and fatty oil Linear - PF

Reis-Vasco 2000 [78] scCO2 Pennyroyal Essential oil Linear Broken and intact cells DPF

Reverchon 1996 [79] scCO2 Salvia oil Essential oil Linear Sphere, cylinder, rod PF

Reverchon and Marrone 1997 [80] scCO2 Cloves Essential oil Linear No internal diffusion DPF

Reverchon 1999 [81] scCO2 Fennel Essential and fatty oil BIC-type Broken and intact cells PF
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Table 1. Cont.

Author and Year Ref. Fluid Plant Material Target Component Equilibrium Particle/Shape/Model Flux

Reverchon 2000 [82] scCO2 Rosehip oil Fatty oil BIC-type Broken and intact cells PF

Reverchon and Marrone 2001 [83] scCO2 Vegetable oil Fatty oil BIC-type Broken and intact cells PF

Rosa 2016 [84] scCO2 Green coffee beans Cafestole, Kahweole Linear No internal diffusion DPF

Roy 1996 [85] scCO2 Ginger oil Essential oil Constant Shrinking core DPF

Salamatin 2017 [86] scCO2 Pumpkin seed - - Shrinking core und Broken
and intact cells -

Seikova 2003 [87] Water Belladonna Alkaloids - Sphere, cylinder, rod STR

Seikova 2004 [88] Water pH 9 (NaOH) Tomato seed Proteins - Sphere, cylinder, rod STR

Simeonov 1999 [89] Water Tabaco leaves, oak bark - Linear Sphere, cylinder, rod STR

Simeonov 2003 [90] Methanol, Petrol ether Indigo, coriander Essential oil, Fatty oil,
Isoflavonoids - Sphere, cylinder, rod STR

Simeonov 2008 [91] 70/30 v/v Ethanol/Water Root of bloody geranium - - Sphere, cylinder, rod STR

Skerget 2001 [92] scCO2
Milk thistle, pepper,

chili, cacao - Linear Porous particle,
parabolic concentration profile STR

Sovova 1994 [30] scCO2 Vegetable Fatty oil Constant Broken and intact cells PF

Sovova 1994 [93] scCO2 Caraway Essential oil Linear Broken and intact cells PF

Sovova 2005 [31] scCO2 - - BIC-type Broken and intact cells PF

Stamenic 2008 [94] scCO2
Thyme, celery,
valerian root Essential oil - Broken and intact cells,

trichoma cells DPF

Stastova 1996 [95] scCO2 Sea buckthorn Fatty oil Constant Broken and intact cells PF

Strube 2008 [96] 20% (w/w) Water/Ethanol Brazilian amargo Terpenoids Langmuir Porous particle,
parabolic concentration profile DPF

Strube 2012 [17] Ethanol, Ethyl acetate Pepper, vanilla Piperine, Vanillin Langmuir Porous particle DPF

Strube 2017 [25] Water (PHWE) Yew 10-deacetylbaccatin III Constant Porous particle DPF with
degradation kinetics

Teixera de Souza 2008 [97] scCO2 Candeia tree Essential oil - - PF

Veloso 2008 [98] Hexane, Water, Alcohols Oil seed Fatty oil Linear Porous particle,
no internal diffusion DPF, cross-current

Winitsorn 2008 [99] Ethanol Tamarind, green tea - - Porous particle STR

Wu and Hou 2001 [100] scCO2 Egg yolk Fatty oil BIC-type No internal diffusion PF

Zizovic 2005 [101] scCO2
Basil, rosemary,

marjoram, pennyroyal Essential oil - Trichoma cells DPF

Zizovic 2007 [102] scCO2 Marigold, chamomile Essential oil - Sphere with channels,
no internal diffusion DPF
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2.1. Distributed-Plug-Flow (DPF) Model

The DPF model describes macroscopic mass transport in the liquid phase for each component
and is given in Equation (1).

∂cL(z, t)
∂t

= Dax · ∂2cL(z, t)
∂z2 − uz

ε
· ∂cL(z, t)

∂z
− 1 − ε

ε
· kf · aP · [cL(z, t) − cP(r = R, z, t)] (1)

The model equation consists of several terms. The first term describes the accumulation,
i.e., the time-related enrichment of the target and minor components in the solvent. The second
term represents the so-called axial dispersion. Dax is the axial dispersion coefficient that has to be
adapted to the real flow conditions. If this term is neglected, only the flow profile of the ideal flow tube
(PFR) is displayed. However, if Dax is greater than zero, an expansion of the residence time distribution
up to the behavior of the ideal stirred tank can be modeled. In the present case, the axial dispersion is
determined by a correlation over the Reynolds and Péclet numbers [17]. First, the Reynolds number
Re must be calculated. This sets the inertial forces in relation to the viscous forces in fluids. Here, uz is
the empty tube velocity of the fluid, dP,mean is the mean particle diameter, ρL is the density of the fluid,
η is the dynamic viscosity of the fluid and ε is the void fraction of the medium through which it flows.

Re =
uz · dP,mean · ρL

η · ε (2)

Based on the Reynolds number, the Péclet number can be determined. It forms the relationship
between convective and dispersive mass transfer. The correlation proposed by Chung applies only to
Reynolds numbers between 10−3 and 103 [103].

Pe =
0.2
ε

+
0.011
ε

(ε · Re)0.48 10−3 < Re < 103 (3)

From the Péclet number in turn follows the axial dispersion coefficient Dax according to the
Equation (4). In addition, the value of Dax can be determined by tracer experiments, which are
common practice in chromatography [104–106].

Dax =
dP,mean · uz

ε · Pe
(4)

The third term in Equation (1) describes the convection that results from the pumping of the
solvent. The empty tube velocity is represented by uz and the void level of the fixed bed by ε.
The differential ∂cL(z, t)/∂z is the local concentration profile of the respective component in the
axial direction.

The last term describes the mass transfer from the particle into the fluid of each component.
The mass transfer coefficient kf and the specific surface area of the particles aP represent the model
parameters. If spherical particles are assumed, the following relationship arises between the specific
surface area and the particle radius:

aP =
6

dP,mean
(5)

The mass transport coefficient kf is also determined by a correlation of the Schmidt (6),
the Sherwood (7), and the Reynolds number (2) for the particles [16].

Sc =
η

ρL · D12
(6)

Sh =
kf · dP,mean

D12
(7)
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D12 is the binary diffusion coefficient between the respective component and the solvent.
This model parameter must be determined from an actual extraction. By means of the correlation
below, the mass transfer coefficient kf is then calculated [16].

Sh = 2 + 1.1 · Sc0.33 · Re0.6 (8)

The DPF model is a partial differential equation of the second order. The solution therefore
requires two boundary conditions and an initial condition. At the beginning of the process, the solvent
is unloaded, so the concentration of extracted components is zero.

cL(z, t) = 0
t = 0
0 ≤ z ≤ L

(9)

The boundary condition for the axial dispersion represents a material balance around the inlet
zone of the flow tube [107]. The fluid is first conveyed by convection to percolation. If the fluid enters,
it is transported away inside the tube by convection and diffusion, which is represented by Equation (10).

uz · cL(z, t) = Dax · ∂cL(z, t)
∂z

∣∣∣∣
z=0

t > 0
z = 0

(10)

At the outlet of the flow tube, the axial concentration change is negligible. The derivative of the
concentration in axial direction is therefore zero.

∂cL(z, t)
∂z

∣∣∣∣
z=L

= 0
t > 0
z = L

(11)

2.2. Pore Diffusion (PD) Model

The mass transport of the components from the pores of the plant material into the fluid is
represented by a pore diffusion model. The model assumes that the solvent enters the particle by
diffusion, where it dissolves the respective component and diffuses back into the liquid core, as shown
in Figure 5.
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In the case of spherical particles, Equation (12) results for the pore diffusion model from Fick’s
second law.

∂q(z, r, t)
∂t

= Deff(r) ·
(

∂2cP(z, r)
∂r2 +

2
r
· ∂cP(z, r)

∂r

)
+

∂Deff(r)
∂r

· ∂cP(z, r)
∂r

(12)
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In the equation, ∂q(z, r, t)/∂t represents the time-dependent loading of the solid with the respective
component. These will be discussed in more detail in the following chapter. The concentration of the
target component is expressed by cP, which is radially resolved. Deff represents the effective diffusion
coefficient, which is calculated starting from the binary diffusion coefficient D12, by means of the
porosity of the plant material εP, the tortuosity τ and the constrictivity factor δ [17].

Deff =
D12 · εP · δ

τ
(13)

For the parameters εP, τ, and δ, corresponding correlations exist [17]. In addition, they can be
determined by suitable methods, such as the mercury penetration method. In this work, they are
summarized to a sum parameter and determined by an extraction experiment.

Since the pore diffusion model is also a partial differential equation of the second order,
two boundary conditions and an initial condition are needed. At the beginning of the extraction,
the extraction material is maximally loaded at each location in the axial and in the radial direction,
which is taken into account by Equation (14).

q(z, r, t) = qm(r)
t = 0
0 < z ≤ L
0 < r ≤ R

(14)

During the extraction, a concentration profile is formed in the particle. Based on the assumption
that the solvent penetrates evenly into the spherical particle from all sides and does not diffuse beyond
the center of the particle, the local derivative of the radial concentration profile must be zero in the
particle center.

∂cP(z, r, t)
∂r

= 0
t > 0
0 < z ≤ L
r = 0

(15)

At the outer particle edge, a mass balance serves as a boundary condition. The extracted
component first passes by diffusion to the particle edge and from there into the fluid. The mass
transfer coefficient kf links the pore diffusion model with the DPF model.

Deff(r) ·
∂cP(z, r, t)

∂r
= kf · [cL(z, t) − cP(r, z, t)] r = R (16)

2.3. Equilibrium

For the design and modelling of phytoextraction, the plant particles are considered to be porous
spheres in which the components are adsorbed. The solvent must diffuse into the pores, there dissolve
the components and move back into the core of the fluid. Within the pores is an adsorption/desorption
equilibrium that can be described by equilibrium lines. The approaches available in the literature are
described in more detail below [28,108]. The loading q represents the linking of the equilibrium lines
to the pore diffusion model.

2.3.1. Henry

The simplest form of equilibrium is Henry’s linear approach. KH is the Henry coefficient, which is
accessible experimentally and represents the proportionality factor between the concentration c and
the loading q.

q = KH · c (17)
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2.3.2. Freundlich

The equilibrium relationship according to Freundlich represents an exponential approach.
The Henry’s approach is extended by the exponent n, which can also be determined experimentally.

q = KF · cn (18)

2.3.3. Langmuir

The Langmuir equilibrium relationship results from first order adsorption and desorption kinetics.
The coefficient KL is the quotient of the rate constants of adsorption and desorption. It is also
determinable by equilibrium experiments. In contrast to the two above-mentioned equilibrium
approaches, the Langmuir shape converges to a limit value, i.e., to a maximum loading of the solid qmax.

q = qmax ·
KL · c

1 + KL · c
(19)

2.3.4. Modified-Langmuir

Especially in phytoextraction, there are no pure adsorption or desorption equilibria. A high
proportion of the valuable substance in dissolved e.g., in the vacuole or in cell spaces. This corresponds
to the model concept “Broken and Intact Cells” by Sovová [30]. Kassing et al. [16,17] have adopted this
concept in the pore diffusion model and implemented it using a radial target component distribution.
If the target component distribution measurable by methods such as Raman mapping [109], this can
be implemented. If no corresponding data is available, the introduction of the capacity factor a as a
macroscopic parameter reflects the basic idea of the Broken and Intact Cells model, which is based on
non-steady-differentiable equilibrium lines [31,75]. If the solvent is able to dissolve and transport away
a large amount of the target substances, or if it is accessible, only a small fraction, which is actually
adsorbed in the cell or between the cells, remains. The capacity factor a leads then to a modified
version of the Langmuir equilibrium.

q = qmax · a · KL · c
1 + KL · c

(20)

3. Model Parameter Determination

Figure 6 explains the procedure of stepwise determination of model parameters with separated
independent effects. Altenhöner [104] proposed this procedure of equation assembly at first for
chromatography process modelling, which was transferred successfully to solid liquid extractions [17].

At first, the laboratory scale equipment is characterized once by tracer experiments, allowing a
direct transfer to other scales, if their fluid dynamics is characterized as well [18]. This fills the first
boxed term of the DPF-model equation; all other terms are not needed and neglected. Therefore,
no interference of model parameter occurs, and the effects and their characteristic parameters are
discriminated distinctively. Afterward, thermodynamic equilibrium phase behavior is implemented
by i.e., a Langmuir-type equation, where K is representative for the slope of the equilibrium curve at
infinite dilution and qmax is the overall amount of the regarded component within the plant material
by nature. Finally, the mass transfer coefficients are determined for the DPF model by i.e., correlations,
using the Péclet and Reynolds number, as shown before. The effective diffusion coefficient needed
for the pore diffusion model is measured by means of an extraction experiment. Therefore, such an
equation setup is assembled stepwise. As the index i in Figure 6 indicates, this procedure is only
limited by the number of distinguishable und quantifiable components. In most cases, the parameter
determination is carried out in a standardized apparatus [16,17] consuming about 150 g of plant
material and a few liters of solvent.
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3.1. Overall Amount

The overall amount of each considered component is determined by means of an exhaustive
percolation and Equation (21). Where qmax is the loading of the plant material with the respective
component, cComp the concentration in the extract, VExtract the extract volume and mPlant the amount of
plant material used. RM is the residual moisture of the plant material and ρExtract the extract’s density.

qmax =
cComp · mExtract

mPlant · (1 − RM) · ρExtract
(21)

The extraction yield is referred to the overall amount. The error propagation is given in Equation (22).

∆qmax =
∣∣∣ mExtract

mPlant·(1−RM)·ρExtract

∣∣∣ · ∆cComp +
∣∣∣ cComp

mPlant·(1−RM)·ρExtract

∣∣∣
·∆mExtract +

∣∣∣∣ cComp·mExtract

(mPlant·(1−RM)·ρExtract)
2

∣∣∣∣ · (mPlant · (1 − RM))

·∆ρExtract +

∣∣∣∣ cComp·mExtract

(mPlant·(1−RM)·ρExtract)
2

∣∣∣∣ · (ρExtract · (1 − RM))

·∆mPlant +

∣∣∣∣ cComp·mExtract

(mPlant·(1−RM)·ρExtract)
2

∣∣∣∣ · mPlant · ρExtract · ∆RM

(22)

The error calculation for a representative example is depicted below. The data is:

• mass of plant material 20 g;
• mass of solvent 5000 g;
• density of solvent 791 g/L;
• concentration 0.03 g/L;
• and the residual moisture is 8%.

The resulting overall amount is 1.03% ± 0.0257% referred to dry mass. The relative deviation
therefore is ±2.57%. The resulting individual errors in each step are given in Table 2.
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Table 2. Error propagation for the overall amount measurement.

Parameter Deviation Origin Error

∆cComp ±2% = ±0.0006 g/L@0.03 g/L HPLC-analytics ±0.0206%
∆mPlant ±0.01 g = ±0.05%@20 g Last digit of balance ±0.0005%

∆mExtract ±0.01 g = ±0.0002%@5000 g Last digit of balance ±0.000002%
∆ρExtract ±0.1 g/L = 0.012%@791 g/L Last digit of digital density meter ±0.00013%

∆RM ±0.5% Reproducibility ±0.0045%

Overall ±0.0257%

3.2. Equilibrium

The equilibrium between the respectively considered component in the solvent and in the solid is
determined by means of multi-stage maceration. For this purpose, a defined amount of plant material
and solvent is extracted for 24 h in a maceration vessel. This is followed by the removal of a sample
before additional solvent is added and then a new equilibrium point is established. This process can
be repeated as often and with any ratio of plant to solvent, as long as the mixture is still stirrable.
The residual charge results per step as the ratio of the respective component in the extract to the total
amount in the plant by means of Equation (23).

qComp =
cComp · mExtract

qmax · mPlant · (1 − RM) · ρExtract
(23)

The error propagation is given in Equation (24).

∆qComp =
∣∣∣ mExtract

qmax·mPlant·(1−RM)·ρExtract

∣∣∣ · ∆cComp

+
∣∣∣ cComp.

qmax·mPlant·(1−RM)·ρExtract

∣∣∣ · ∆mExtract

+

∣∣∣∣ cComp.·mExtract

(qmax·mPlant·(1−RM)·ρExtract)
2

∣∣∣∣ · (qmax · mPlant · (1 − RM))

·∆ρExtract +

∣∣∣∣ cComp·mExtract

(qmax·mPlant·(1−RM)·ρExtract)
2

∣∣∣∣
·(qmax · (1 − RM) · ρExtract) · ∆mPlant

+

∣∣∣∣ cComp·mExtract

(qmax·mPlant·(1−RM)·ρExtract)
2

∣∣∣∣ · qmax · mPlant · ρExtract

·∆RM +

∣∣∣∣ cComp·mExtract

(qmax·mPlant·(1−RM)·ρExtract)
2

∣∣∣∣ · mPlant · (1 − RM)

·ρExtract · ∆qmax

(24)

The error calculation for a representative example is depicted below. The data is

• mass of plant material 20 g;
• mass of solvent 300 g;
• density of solvent 791 g/L;
• overall amount 1%;
• concentration 0.3 g/L;
• and the residual moisture is 8%.

The residual load is 0.618% ± 0.0314%. The relative deviation therefore is ±5.08%. The details
can be seen in Table 3.
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Table 3. Error propagation for the equilibrium measurement.

Parameter Deviation Origin Error

∆cComp. ±2% = ±0.006 g/L@0.3 g/L HPLC-analytics ±0.0124%
∆mPlant ±0.01 g = ±0.05%@20 g Last digit of balance ±0.0003%

∆mExtract ±0.01 g = ±0.0002%@300 g Last digit of balance ±0.00002%
∆ρExtract ±0.1 g/L = 0.012%@791 g/L Last digit of digital density meter ±0.00008%

∆RM ±0.5% Reproducibility ±0.0027%
∆qmax ±2.5% Error Propagation ±0.0159%

Overall 0.618% ± 0.0314%

4. Model Validation

The aim of this study is to provide a method for the analysis of the model precision in order to
complete the toolbox towards proved model validation. Accuracy was shown through numerous
successful applications of the model with different feedstocks and scales as listed above.

4.1. Sensitivity Analysis

The depicted experimental errors in the model parameter determination doubtlessly have a
feedback on the simulation results and therefore on the model precision. The scattering of the
simulation results due to minimum and maximum values of the model parameters for a representative
extraction experiment are assessed in the following. The mean value as well as the minimum and the
maximum of the individual parameter are listed in Table 4.

Table 4. Parameters for the sensitivity analysis.

Parameter Min. Mean Max. Deviation Origin

q 0.0010237 0.00105 0.001076 ±2.5% Error propagation
a 0.117 0.13 0.143 ±10% Error propagation and reproducibility
V 0.98 mL/min 1 mL/min 1.02 mL/min ±2% Data sheet
m 18.26 g 18.35 g 18.44 g ±0.5% Error propagation
KL 67.5 75 82.5 ±10% Error propagation and reproducibility
d 800 µm 900 µm 1000 µm ±100 µm Mesh space of sieves

The simulation results as well as experimental values are given in Figure 7A. For each
simulation, only one parameter has been changed, the remaining parameters remain at their mean
value. The experimentally determined extracted mass has a relative deviation of ±4.26% including
reproducibility and error propagation (Figure 7B). The greatest influences on the extracted mass have
the initial overall amount and the mean particle diameter. The first parameter leads to a higher or
respectively lower loading of the plant material. The particle diameter leads to a faster or respectively
slower extraction due to the changing accessibility of the target component. An intermediate effect
has the capacity factor and the initial plant mass. Hardly any deviation in the simulation results is
referred to the Langmuir-coefficient and the volume flow. None of these parameter intervals leads to a
deviation that is more than the experimental error, thus the experimental parameter determination is
precise enough in that case and therefore the model is adequate.
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4.2. Statistical Evaluation

The previous one-parameter-at-a-time study showed that the simulation results vary below the
experimental error. To evaluate the resulting precision of the simulation results, due to random
parameter combinations, the parameters were mixed by the rules of DoE, resulting in 64 individual
simulation runs around one point of operation. The results are given in Figure 8.
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Figure 8. Sensitivity analysis, DoE.
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Figure 9. Monte Carlo–based sensitivity analysis; extremes drawn in black from DoE (Figure 8).
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Figure 10. PLS correlations loadings plot.

Result: The deviation is ±4.5% and therefore only about 5% above the experimental error. The error
of the modelling and simulation is definitely in the same order of magnitude as the experimental
extraction data. This shows that the concept of physico-chemical modelling and experimental model
parameter determination is valid and precise enough for the prediction of experimental extraction
curves. The DoE plan consists of the mean value and the individual minima and maxima of the
respective parameter. Highly non-linear influences are therefore not observed. To fill this gap, either a
statistical plan including more factor levels or a Monte Carlo simulation with a random distribution of
the investigated parameters serves for closing this gap. Both are equally applicable. In that specific
case, the effects of the parameters on the simulation results is linear and an additional Monte Carlo
simulation does not result in higher or lower envelopes as the initial DoE-plan did, as shown in
Figure 9. The application of Monte Carlo simulations has already been shown in [110].

For further statistical analysis, a PLS regression was calculated. The correlation loadings plot
is shown in Figure 10. Only one PLS factor is capable of describing 99% of the data set taken from
the DoE plan. The mean particle diameter d and the loading q behave reciprocal. Both, a small
mean particle diameter and a high loading lead to a high mass of extracted component at a fixed
time. These two parameters contribute significantly to the first principal component of the PLS model.
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The two equilibrium parameters K and a lead to a high mass of extracted components if they have
their smallest values, hence the equilibrium limitation in the system is small.

The plant mass m is positively correlated to the loading q. Consequently, a high mass leads to a
high amount of extracted components. The flux V has nearly no influence on the first PLS factor and
can be regarded as not significant. Result: The correlations loadings plot shows that the implemented
equations, i.e., the modelling depth of a verified model, behave in a physically consistent way. It also
indicates that the measurement precisions of the overall amount and the mean particle diameter have
the largest impacts on the simulation results. That supports the results shown in Figure 7.

The same result is obtained by the evaluation of the statistical plan. The resulting main effects are
shown in Figure 11. The statistical evaluation shows the same results as the PLS model. The loading q
and the mass m are positively correlated to the extracted mass. The equilibrium parameters a and K
are negatively correlated to the mass, as well as the mean particle diameter d. The flux V has nearly no
influence on the extraction, in that case.
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Figure 11. PLS correlations loadings plot.

5. Conclusions and Discussion

In order to evaluate the proposed approach as a consistent method with clear quantitative decision
criteria based on distinctly defined work plan steps, efforts and benefits have to be discussed.

5.1. Effort Analysis

Figure 12 shows a schedule for a complete parameter determination, which is to be handled
by one single person with the appropriate equipment. The actual working time is colored in black,
the times during which the experiment does not need to be supervised are dark gray, while light gray
is the time in which the analysis takes place.
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• A complete parameter determination with each experiment being run three times, takes about
eight working days;

• To determine all parameters, only about 150 g of plant material and about 8 L of solvent
are consumed.

If a statistical test plan is used instead of model parameter determination and simulation,
one percolation can be carried out daily with the same equipment. Even with only three parameters
and one center point as a triplicate, a full-factorial experimental design results in 11 experiments,
which together have a much lower information density than the shown path of model parameter
determination and proven accurate and precise modelling. The model-based approach is therefore to
be preferred in any case especially since with increasing experience the results can be very quickly
checked for plausibility or can be transferred to other material systems.

5.2. Modelling in Modern Process Engineering

The modern approach for process development and quality assessment Quality-by-Design (QbD)
is increasingly widespread, as demanded by regulatory authorities [15]. The idea is to define a design
space of operating parameters in which the product always fulfils given quality attributes. This leads
to multi-parameter optimizations and a significant experimental effort. Small-scale models or rather
physico chemical–process models are capable of filling this gap in terms of model-assisted process
design [13], as indicated in Figure 13.Processes 2018, 6, x FOR PEER REVIEW   19 of 26 

 

 

Figure 13. Missing link in process development [13]. 

5.3. Workflow 

In order to become a routine method even in small and medium companies, a clear and general 

workflow of model setup, implementation, verification, and validation with regard to accuracy, e.g., 

modelling depth and precision, is needed. Such a workflow is proposed as a final conclusion in Figure 

14, including relevant tools and decision criteria for every task and evaluation to be performed. 

At first, a model task has to be defined. Afterwards, a conceptual model is derived and 

implemented. The first decision criterion serves for model verification. Here, magnitude of 

characteristic numbers Reynold, Péclet, Sherwood, Schmidt, have to be in the same magnitude as 

literature data. The simulation of simplified case studies with known data and outcome serves for 

further verification. The second decision criterion proves accuracy, whether identical effects are 

similar significant or not between simulation and reality. 

Afterwards, the third decision criterion for model precision is approved, whether the 

magnitudes of the error bars of modelling errors are smaller than the experimental ones. A DoE-

based approach is used here to ensure the maximum degree of information whilst maintaining low 

efforts and time. To take into account highly non-linear behavior of different parameters, additional 

Monte Carlo simulations with equally distributed parameters can be done. Twenty to thirty 

simulations serve to ensure about 95% probability and 200–300 simulations for 99% probability [111]. 

The DoE-based approach gains identical results at fewer efforts, utilizing only the upper and lower 

limit of the parameter range. Nevertheless, Monte-Carlo simulations taking into account a distinct 

parameter distribution, do deliver an additional probability distribution of the results. This is 

especially useful to rate the chance for outliers and failures during operation. Therefore, the advice 

generated is to apply DoE at first with only extreme values, than rise the factor level and finally 

enlarge the simulation runs if needed to Monte-Carlo studies. 

The final decision criteria is based on the comparison of field experiments, that are independent 

and not any part of the experimental model parameter determination setup, which needs at first to 

be proven to consistency by data reconciliation methods. Such consistent data sets are analyzed due 

to targets values (yield, purity etc.), parameter range and their sensitivity with regards to analogues 

simulation data setups. If yield, purity, space-time-yield, specific auxiliary/energy amount, and the 

slope of parameter interactions on them as well as identical quadrant position of parameter at 

identical magnitude of correlation coefficients in the PLS regression are coincident, then the model is 

distinctly quantitative proven to be valid for its at first defined task and application. 

Figure 13. Missing link in process development [13].



Processes 2018, 6, 66 20 of 27

As explained before, process models are more efficient than experimental scale-down models,
but they are only of any use if they are quantitatively distinctly proven to be valid, accurate, and precise,
as proposed before, to base any relevant approval or investment decisions on.

For small- and medium-sized enterprises (SMEs) or start-up companies that have never operated
on a pilot or manufacturing scale, it is impossible to establish valid experimental scale-down models
due to the lack of knowledge, data, and experience how they should correctly scale down in their
laboratory. This would partly be overcome by the process modelling approach and enable the activities
of such innovative companies towards regulatory approval and fully integrated manufacturing.

5.3. Workflow

In order to become a routine method even in small and medium companies, a clear and general
workflow of model setup, implementation, verification, and validation with regard to accuracy,
e.g., modelling depth and precision, is needed. Such a workflow is proposed as a final conclusion in
Figure 14, including relevant tools and decision criteria for every task and evaluation to be performed.

At first, a model task has to be defined. Afterwards, a conceptual model is derived and
implemented. The first decision criterion serves for model verification. Here, magnitude of
characteristic numbers Reynold, Péclet, Sherwood, Schmidt, have to be in the same magnitude as
literature data. The simulation of simplified case studies with known data and outcome serves for
further verification. The second decision criterion proves accuracy, whether identical effects are similar
significant or not between simulation and reality.

Afterwards, the third decision criterion for model precision is approved, whether the magnitudes
of the error bars of modelling errors are smaller than the experimental ones. A DoE-based approach
is used here to ensure the maximum degree of information whilst maintaining low efforts and time.
To take into account highly non-linear behavior of different parameters, additional Monte Carlo
simulations with equally distributed parameters can be done. Twenty to thirty simulations serve
to ensure about 95% probability and 200–300 simulations for 99% probability [111]. The DoE-based
approach gains identical results at fewer efforts, utilizing only the upper and lower limit of the
parameter range. Nevertheless, Monte-Carlo simulations taking into account a distinct parameter
distribution, do deliver an additional probability distribution of the results. This is especially useful to
rate the chance for outliers and failures during operation. Therefore, the advice generated is to apply
DoE at first with only extreme values, than rise the factor level and finally enlarge the simulation runs
if needed to Monte-Carlo studies.

The final decision criteria is based on the comparison of field experiments, that are independent
and not any part of the experimental model parameter determination setup, which needs at first to
be proven to consistency by data reconciliation methods. Such consistent data sets are analyzed due
to targets values (yield, purity etc.), parameter range and their sensitivity with regards to analogues
simulation data setups. If yield, purity, space-time-yield, specific auxiliary/energy amount, and the
slope of parameter interactions on them as well as identical quadrant position of parameter at identical
magnitude of correlation coefficients in the PLS regression are coincident, then the model is distinctly
quantitative proven to be valid for its at first defined task and application.

It is shown that a model-based process design can be successfully implemented. A corresponding
workflow has been designed for the case of liquid-solid extraction. Opportunity is available for
expansion to other unit operations and combinations thereof.
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Symbols and Abbreviations

aP Specific surface area, 1/m
cL Concentration in the liquid phase, kg/m3

cP Concentration in the porous particle, kg/m3

Dax Axial dispersion coefficient, m/s2

Deff Effective diffusion coefficient, m2/s
DPF Distributed plug flow
KL Equilibrium constant, m3/kg
kf Mass transport coefficient, m/s
Pe Péclet number
PEF Pulsed electrical field
PF Plug flow
PLS Partial Least Square Regression
q Loading, kg/m3

qmax Maximum Loading, kg/m3

Re Reynolds number
r Radius, m
Sc Schmidt number
Sh Sherwood number
SME Small and medium-sized enterprise
STR Stirred tank reactor
t Time, s
uz Superficial velocity, m/s
V Volume flow, m3/s
z Coordinate in axial direction, m
ε Voids fraction, -
ρ Density, kg/m3
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