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Abstract: The return on investment within the pharmaceutical industry has exhibited an 

exponential decline over the last several decades. Contemporary analysis suggests that the 

rate-limiting step associated with the drug discovery and development process is our 

limited understanding of the disease pathophysiology in humans that is targeted by a drug. 

Similar to other industries, mechanistic modeling and simulation has been proposed as an 

enabling quantitative tool to help address this problem. Moreover, immunotherapies are 

transforming the clinical treatment of cure cancer and are becoming a major segment of  

the pharmaceutical research and development pipeline. As the clinical benefit of these 

immunotherapies seems to be limited to subset of the patient population, identifying the 

specific defect in the complex network of interactions associated with host immunity to a 

malignancy is a major challenge for expanding the clinical benefit. Understanding the 

interaction between malignant and immune cells is inherently a systems problem, where an 

engineering perspective may be helpful. The objective of this manuscript is to summarize 

this quantitative systems perspective, particularly with respect to developing immunotherapies 

for the treatment of cancer. 
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1. Introduction 

Motivated by a desire to improve human health, the pharmaceutical industry leverages biological 

discoveries to develop drugs that aim to restore health at significant financial investment. Overall the 

costs associated with pharmaceutical research and development, as represented by the US share of the 

market, has been increasing exponentially. The current estimate to bring a new medical entity to 

market requires upwards of approximately a $1–2.5 billion investment in research and development [1,2]. 

To recoup these financial investments, pharmaceutical companies are provided with protection from 

competition for a limited time by patenting their inventions. However, the estimated return on 

investment by the pharmaceutical industry has been experiencing an exponential decline in the last 

several decades. This trend, sometimes referred to as the innovation gap, presents a challenge for 

economic sustainability of the current model for innovation within the pharmaceutical industry. 

The cost of pharmaceutical development escalates as drugs progress further from bench to market. 

In particular, Phase II clinical trials have become a key pinch point in the research and development 

pipeline, as it combines both significant risk and cost. This phase is the first time the efficacy of the 

drug is tested in real patients within the target disease and therefore has the highest probability of 

failure. It is also one of the phases with the highest out-of-pocket cost for the developer and other 

stakeholders [3]. Clinical trials are predicated largely on positive pre-clinical studies using animal 

models of disease. Unfortunately, animal modeling, which presents lower financial and human health 

hazards, may not always recreate the specific molecular and cellular networks associated with the 

pathophysiology and adverse reactions in human subjects [4]. Therefore, to lessen the costs of 

development and risk to humans in clinical trials, it is important to use appropriate models of the 

disease to maximize efficacy, safety, and benefit to patients. 

In the last 50 years, computer-aided modeling and simulation has transformed a variety of industries, 

including financial portfolio management and the aerospace industry. Modeling and simulation in  

the financial sector has enabled real-time evaluation of economic performance measures using a 

mathematical model of the particular business sector to predict future performance and to optimize 

financial return [5]. In the aerospace industry, modeling and simulation is used to design new 

airframes, which eliminates the need for multiple physical prototypes constructed at intermediate 

points during design and reduces the time from concept to production [6]. In both cases, mathematical 

modeling and simulation provide a quantitative framework to capture our conceptual understanding of 

the modeled process and interpret heterogeneous data acquired from the process. These two examples 

also represent extremes of our conceptual understanding. Financial markets are complex systems that 

are influenced by a variety of observed and unobserved factors. Assuming that the underlying structure 

of the market is not changing, future behavior can be predicted using empirical mathematical models 

that are constructed using historical data. At the opposite end of the spectrum, computer-aided design 
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of airframes captures physical principles such as the conservation of mass, which implies two physical 

objects cannot occupy the same space, and the governing physics associated with the performance 

objectives of the airframe. Similar to these industries, mathematical modeling and simulation has been 

proposed as approach to improve our understanding of the biological mechanisms targeted by a 

particular therapy [7]. This could help predict the outcomes of human clinical trials and, thereby,  

help bridge the innovation gap between cell and animal models and human pathophysiology,  

while also providing a cost savings in development, as computationally “expensive” modeling is 

inherently more cost effective than additional physical and biological models of disease [8]. In a 2011 

National Institutes of Health White Paper, recommendations for quantitative systems pharmacology 

using quantitative experimental studies and model-based computational analyses that also incorporate 

clinical “omics data” were given in hopes of addressing clinical Phase II study failures in drug 

development and physiological, chemical, and biological disconnects in preclinical research [9].  

Given the oncology slice of pharmaceutical research and development and the recent shift towards 

immunotherapies for cancer, the objective of this review is to summarize how modeling and simulation 

has aided in the understanding of biological changes associated with oncogenesis as it relates to 

immunity. In subsequent paragraphs, we provide a brief overview of the cancer and immune systems, 

tumor somatic and clonal evolution properties, and how cancer cell heterogeneity complicates 

therapeutic aims. We will also discuss recent immunotherapeutic advancements and the computational 

models used to describe the interactions between cancer and the immune system.  

2. Emerging View of Cancer as a System 

Oncogenesis is attributed to the accumulation of genetic mutations that lead to uncontrolled cell 

growth and proliferation. These mutations alter function of the modified gene through overexpression 

of the corresponding protein or rearrangement of a gene to create an entirely new protein that has 

dysregulated activity [10]. Mutations in specific genes that can, in isolation, transform a normal cell 

into a malignant cell are called oncogenes. Cancer drug development over the past several decades has 

been focused on targeting these oncogene mutations by inhibiting the function of corresponding 

proteins using small molecule drugs [11]. Researchers have scrutinized the altered signaling pathways 

in malignant cells in hopes of finding the key protein conserved in oncogenesis and metastasis but that 

plays minimal role in normal cells [12]. However, these drugs are rarely as efficacious in the clinic, 

where de novo and emergent drug resistance is common [13]. 

The small molecule inhibitor segment of the pharmaceutical industry is also associated with a view 

of cancer as a disease driven by malignant alterations that are intrinsic to or driven by the cancer  

cell [14,15]. This view can be represented by the six hallmarks of cancer discussed by Hanahan and 

Weinberg 2000 [16]. The six hallmarks summarize how genetic alterations change how a malignant 

cell senses and responds to extracellular signals in ways detrimental to the host. Assuming cancer is 

driven by the autonomous actions of malignant cells, the in vitro study of a cell line can be an 

appropriate model for identifying new therapeutic leads. This idea underpins using a collection of cell 

lines as a way to screen drugs that inhibit cell proliferation of exhibit cytotoxic activity in a  

high-throughput manner, such as the NCI-60 [17–20].  
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Previously to recent breakthroughs in immunotherapy, small molecule inhibitors were standard of 

care for many non-resectable metastatic diseases. B-Raf, a Raf kinase member of the MAP 

Kinase/ERK signaling pathway and involved in cell growth and proliferation, is a commonly mutated 

gene in many human cancers, such as metastatic melanoma. Vemurafenib and Dabrafenib are two 

FDA-approved B-Raf inhibitors used in the clinic that targets cancer with the B-RAF V600E (valine at 

amino acid position 600 to glutamic acid) mutation. However, cancer cells without the V600E B-Raf 

mutation may proliferate more in response to the vemurafenib drug [21]. Additionally, most metastatic 

melanoma patients become chemoresistant to both of these B-Raf inhibitors within 6 to 7 months of 

treatment. Therefore, combination therapies, such as vemurafenib with MEK-inhibitors like FDA-approved 

trametinib, are preferred to overcome the resistance mechanism in advanced melanoma, and may 

extend progression-free survival in patients by an average of about 3 months [22]. However, resistance 

will eventually reoccur and the patient will fatally relapse. 

More recently, cancer research has expanded to include factors external to the malignant cell that 

contribute to oncogenesis. In 2011, Hanahan and Weinberg updated the hallmarks to include four new 

“emerging hallmarks and enabling characteristics”, which focus on changes associated with the 

malignancy that alter interactions among cells of the host [23]. The immune system was identified as 

having an influential role on tumor progression, and changes in metabolism and inflammation in the 

tumor microenvironment and throughout the body are known to have an effect on clinical outcomes,  

as well. This shift in perspective represents a malignancy as part of an integrated but dysfunctional 

system, rather than as an isolated mass of malignant clones. By incorporating the emerging hallmarks 

into the collective understanding of carcinogenesis, the ability of a malignant cell to manipulate its 

local environment and the immune system that it interacts with are being recognized as integral to 

tumor development and support the description of cancer as an evolutionary process (Figure 1).  

The ability of a malignant cell to maintain the tumor microenvironment hinges on dysfunctional 

intercellular communication [24,25]. 

A tumor is comprised of a variety of cell types, including a heterogeneous collection of malignant 

clones, various stromal cells that provide nutrients and facilitate remodeling of the extracellular matrix, 

and immune cells. Heterogeneity among malignant clones can exist within various morphologies or 

cellular phenotypes, producing cells originating from a similar origin, but may yet exhibit various 

structural, gene expression, signaling network, proliferative, metabolic, and metastatic differences 

(Figure 1). The existence of heterogeneity is a key element of evolutionary process. Somatic evolution 

is thought to change the dynamics of tissues [26,27], while evolutionary processes also maintains their 

own dynamics [28], both of which can influence development of heterogeneity within a particular 

cellular population. Resolving the issues surrounding multiple dynamics of biological systems and the 

influence of the immune and other cellular systems on tumors is technically difficult to replicate, 

particularly in in vitro models of cancer. The dynamics of cell communication can also influence the 

hallmarks of cancer of a potential malignancy and emerging hallmarks can alter the fitness, adaptive, 

or phenotypic landscapes [29–31]. Timing of response to signaling, especially that of the immune 

system, can mean the difference between malignancy proliferation and tumor eradication [32]. 

As part of the evolutionary process, recognizing the heterogeneity of the environment is crucial to 

understanding how alterations in cell signaling and immune response may promote tumors. Cancer cell 

heterogeneity within some tumors is linked to epigenetic differences in tumor cell genomes, perhaps 
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from variances in cancer stem cells, while other examples of divergence from a single phenotype  

can be accounted for through clonal evolution, or even a combination of the two models of  

tumor propagation [33,34]. Therefore, we see that clonal evolution and heterogeneity are directly 

proportional to one another and will determine impact of immunological eradication or pharmaceutical 

treatment of the tumor. The remainder of this section will discuss models of somatic and clonal 

evolution and influence of heterogeneity of the tumor microenvironment on metastatic progression 

from a systemic perspective of cancer.  

 

Figure 1. An illustration of the conceptual progression of the tumor microenvironment 

from a reductionist view to cancer as a dynamic system. (A) A highly reductionist view. 

Tumors viewed as a homogenous population malignant clones; (B) Cancer cells integrated 

into the circulatory system, as represented by including blood vessels and fibroblasts, as 

seen in Hanahan and Weinberg 2000; (C) The tumor microenvironment becomes more 

complex. In addition to blood vessels and fibroblasts, immune cell types of various kinds 

are introduced into the system, as seen in Hanahan and Weinberg 2011; (D) The emerging 

view of a malignancy as a heterogeneous and dynamic system. Not only are blood vessels, 

fibroblasts, and immune cells in the tumor microenvironment, but there are distinct clonal 

populations of cancer cells intermingled with a variety of different immune cells and other 

cell types.  

2.1. Somatic Evolution 

Somatic evolution, as distinct from classical Darwinian evolution, is a driving force for 

carcinogenesis [35]. The majority of somatic mutations within the genome are neutral, but accumulations 
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of even non-deleterious mutations can alter the fitness landscape of an organism via genetic  

drift [36,37]. Changes in the fitness landscape include alterations in cellular communication [38], such as 

upregulation or downregulation of receptors, intermediate players, or downstream products, alterations 

in pathway activity, or mutations in pathway protein partners. This can promote selection of 

advantageous clones [39]. More importantly, these malignant clones can change the fitness landscape 

in such a way that the local microenvironments become a favorable niche for malignant cells.  

A particular case of somatic evolution is clonal evolution, which considers how the environment 

influences the selection of pre-existing clones within a heterogeneous population and neglects the 

influence of mutagens to further diversify the clonal population. Somatic and clonal evolution may 

provide many benefits to a cell. Changes in the environment of the cell may force it down a particular 

path, providing a fitness advantage for growth and proliferation. While most of these particular 

mutations may provide benefit for survival of the host, these alterations can promote further genomic 

instability, leading to tumorigenesis.  

Reductionist theories and experimentation usually examines one input and one output of a particular 

system, and therefore may be inadequate in describing cell processes with appropriate models, 

especially in relation to somatic and clonal evolution within a population. A cell is ever-sensing of its 

microenvironment, ready to respond to relevant extracellular signals present in its vicinity, whether the 

cues are coming from other cell types, other tissues, or from itself. These cues can also have a 

profound impact on the evolution of a cellular population, depending on duration, strength, and ability 

of the cell machinery to respond to the signal. This communication may come in the form of a soluble 

ligand or direct cell contact and provide positive or negative feedback to the cell. 

As a heterogeneous environment, a variety of signals are occurring and being processed by the 

target cell at any time and are difficult to observe with traditional models. Various factors, driven by 

cellular communication, can affect the fitness of a particular population of tumor cells, such as 

availability of nutritional or metabolic resources, presence and strength of immune system influences, 

and ability of the cell to interact with the extracellular matrix. To combat this hurdle, development of a 

hybrid-discrete continuum (HDC) model to examine tumor morphology and metastatic potential was 

developed by Anderson et al. [40], which leverages the impact of multiple factors of the tumor 

microenvironment on somatic or clonal evolution. This mathematical model allows for “random” 

influence of particular set of variables, while retaining deterministic properties of known inputs with 

known outputs.  

Related to factors surrounding use of the HDC computational model is the “clonal dominance theory” 

developed by Kerbel and colleagues. While clonal dominance was easily observed in vivo in mammary 

tumors, replication under ideal growth conditions was difficult. The group examined the growth of  

two subpopulations, non-metastatic SP1 and metastatic variant C1, of cells under both ideal and  

non-optimal growth conditions. Under optimal conditions, both subpopulations of cells grew at the 

same rate, while under the “stressed” conditions, emergence of the “dominant” metastatic 

subpopulation C1 became evident. In addition, transforming growth factor-beta (TGFβ) and 

extracellular matrix-driven cell-to-cell communication between the two subpopulations was indicated 

as being required for assistance of the dominant metastatic subpopulation to maximum capacity [41]. 

This study highlighted the importance of culture conditions and physiological dimensions, such as 

serum concentration and spheroid growth, for in vitro work to best replicate in vivo tumors, given the 
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importance of cell-to-cell communication in tumor development and maintenance. However, 

researchers often overlook the effect of these conditions on clonal evolution, and therefore, how these 

conditions may affect whether a certain model is appropriate for judging efficacy of a treatment in  

in vitro or in vivo experiments. 

Other features that impact clonal dominance in the evolution of cancer include consideration of 

compartment size. All tissues can be viewed as “compartments”. Clonal expansion readily occurs 

within these compartments and can be restricted by neighboring clones [42]. As shown by Michor  

et al. in a mathematical modeling study, clonal expansion within a small compartment is driven by 

genetic drift and is quickly dominated by a certain genetically unstable subpopulation. However, the 

expansion is readily limited by boundaries of the compartment and is therefore likely to be contained. 

Conversely, large compartments will contain a variety of subpopulations, some tumorigenic; however, 

the effect of clonal expansion is diluted unless both alleles of a particular gene are affected,  

or selective advantage favors the tumorigenic subpopulation [43]. Once a tumorigenic subpopulation 

has taken over the compartment, success of the neoplasm and resulting metastasis is a more probable 

scenario. This highlights the importance of cell-communication through cell-to-cell contact and local 

regulation of homeostasis in limiting genomic instability. Experimental cell models may reflect these 

effects, and therefore cellular confluency in vitro, or tumor transplant location in vivo may affect 

treatment outcomes.  

Driver mutations and passenger mutations are another area of investigation in regards to 

computational models of the evolution of cancer. Driver mutations result in functional or 

morphological differences of cells, while passenger mutations are a neutral consequence of the 

evolutionary process [44]. In a meta-analysis study of lung and ovarian cancer, Youn and Simon found 

that metastasis as a result of cancer evolution was related to the age of the tumor and number of cell 

generations. The difference in metastatic potential as a function of generation or age of the tumor was 

related to the ability of the parental lineage to self-renew. For example, more generations were 

required for ovarian cancer to metastasize versus the lung cancer cell, which self-renews more 

gradually. The study was conducted by using passenger mutations, which do not confer a selective 

growth advantage in clonal expansion of the tumor, to estimate when the driver mutation, developed in 

the early stages of tumorigenesis and linked to causation of the tumor, had occurred and therefore,  

the approximate generational age of the tumor [45]. This study highlights the tumor progression 

differences in cell line or cancer types are largely attributed to clonal differences and how this may 

have an effect on treatment outcomes, not only in cell and animal model experiments, but also in the clinic. 

2.2. Heterogeneity of the Tumor Microenvironment 

We have examined the effects of clonal expansion in tumorigenesis and how compartment size and 

tissue dynamics may affect this process. Clonal expansion implies a somewhat homogenous 

subpopulation of cells dominates a certain microenvironment, compartment, or tissue. However, the 

heterogeneity of tumor microenvironments and tissues is well described [46]. Not only does the tumor 

stroma contain different cell types, such as immune cells, and structural support cells, but tumor cells 

themselves are part of a heterogeneous population. Different subpopulations of various clones exist,  
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each expressing a variety of biomarkers and each clone with their own signaling dynamics, within the 

total tumor cell population.  

Analysis of National Cancer Institute (NCI) and National Human Genome Research Institute 

(NHGRI) TCGA (the Cancer Genome Atlas) Project has revealed that sequencing of human tumors 

has provided a wealth of genomic information. The goal of this project was to determine common 

genetic alterations in various cancer types and subtypes, and use this information to improve clinical 

outcomes and tailor therapies to individuals. However, the impact of this data on improving clinical 

outcomes or identifying successful drug targets within corresponding patient groups remains limited. 

While the TCGA project was conceptually born out of the oncogene perspective, recognizing that 

tumors contain a variety of heterogeneous tumor clonal populations and prevalence within these clonal 

subsets of varying abundance could have a profound impact on the information gathered and possibly 

skew data interpretation [12]. Molecular-targeted therapies focusing on one set of genetic alterations 

would have little effect on a subpopulation expressing an entirely different set of alterations, as seen 

within the heterogeneous tumor. This may be one reason combination therapies have been so effective 

in treating certain types of cancer, as seen with the synergistic effect of p53 vaccines and 

chemotherapy in an evolutionary double bind study conducted by Anderson and colleagues [47].  

As discussed previously, clonal evolution plays a critical role in the development of a tumor, but 

tumor heterogeneity may be a critical aspect for tumor persistence. Different tumor clonal populations 

may allow for evasion of the immune system. If tumor antigens produced vary from cell to cell within 

the tumor, a targeted immune system response will become diluted, allowing immunoescape of the 

tumor. This type of clonal selection provides for a phenomenon described as immunoselective 

pressure. By allowing for targeted killing of a specific tumor cell population expressing a given 

antigen, other tumor cell populations may be able to fill the tumor niche, especially cell populations 

that do not express an immunogenic antigen. Tumor cells sensitive to the inflammatory response, 

generalized apoptosis signals, or other factors in the microenvironment, may also be eliminated, while 

more resistant cells are allowed to proliferate. Additionally, cytokines may provide selective pressure 

to develop mutations that result in clones that are able to overcome these immune signals targeting the 

cells for destruction [48]. This phenomenon is called immunoediting. A deadly combination of 

elimination of immune-sensitive tumor cells, equilibrium of tumor cells that have survived elimination, 

and escape of resistant clones limits tumor eradication by the immune system [49]. 

Clonal heterogeneity can also provide survival advantages depending on the location of the clonal 

subset within the tumor microenvironment. Mutations that promote angiogenesis, for example, would 

provide a survival advantage in a tumor region not within immediate contact of the vasculature and 

perfusion of blood and nutrient resources. Alternatively, mutations that upregulate multidrug resistance 

transporters would provide a survival advantage in areas of the tumor that is most susceptible to 

contact with chemotherapeutic agents, such as in the periphery of the tumor that is most accessible to 

drug delivery. To explore this relationship between tumor heterogeneity and persistence,  

a computational study by Michor and colleagues examined the effect of immune system response  

and chemotherapeutic interventions in tumor escape [50]. They developed a mathematical model to 

describe original tumor cell and variant tumor cell fitness and number, mutation rate of the cancer 

cells, competition between variants, tumor cell elimination rate, interactions between tumor cells and 

cytotoxic T lymphocytes (CTLs), and the proliferation and decay of CTLs. They found that the more 
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variants that exist within a tumor, the more likely the tumor will catastrophically or partially escape 

from immune system or chemotherapy attack. However, a certain level of homeostasis in variation 

must be maintained to support a functional genome for survival of the tumor.  

In summary, a tumor is not only heterogeneous in its various clonal populations and expression of 

various tumor antigens, but is also heterogeneous in terms of weaknesses. By directing therapy at 

several weaknesses at once, instead of one at a time, or by targeting the interplay between tumor and 

other systems it interacts with, this lessens the probability of a certain clonal population gaining 

proliferative momentum in the tumor niche. Tumor heterogeneity is extremely important for the 

success of a tumor cell in the microenvironment and relies on the dynamics between the immune system, 

rates of genetic alterations, and sensitivity of variants to chemotherapeutic or immune system attack.  

3. The Re-Emergence of Cancer Immunotherapy 

The immune system has long been suspected as influential on cancer development. In the early 

1890s, Dr. William Coley noticed a reduction in tumor size of patients with bacterial infections.  

He began injecting live bacteria into the tumors, and later developed a safer concoction, termed 

“Coley’s toxins”, with mixed results [51]. Over time, the field shifted away from cancer immunology 

research, as cytokines and immune cell types became well defined, yet cancer treatment with interleukins 

and other cytokines yielded variable results. Interleukin-2 showed efficacy in treating metastatic 

melanoma. However, its adverse side effects, inefficacy in large tumors, and high rates of toxicity  

such as allergic reactions and seizures discouraged widespread use in patients [52–55]. Interleukin-12 

was also investigated as a cancer drug for its robust anti-angiogenic and immune cell-promoting 

activity. Although it had shown promise in preclinical trials, a patient death in a study designed to test 

safety diminished enthusiasm to pursue systemic delivery of IL-12 as a potential therapeutic [56,57]. 

Most of the failures of immune cell-promoting cytokines to eradicate tumors in patients could be 

attributed to inappropriate animal models and the lack of target specificity of these immunotherapeutic 

agents, as seen with the inability of cytokines to possess the sensitivity and specificity to function as 

appropriate biomarkers [58]. In an effort to gain specificity, antibodies, such as Rituximab, were 

developed and approved for the treatment of cancer [59]. This development of antibodies to target 

cancer has continued to this day, with the break-through of ipilimumab in metastatic melanoma [60]. 

Through this process of repeated success and failures, the view of cancer immunology has changed, 

and once considered a flame extinguished, has reignited from the embers. 

3.1. The Cancer Immunology System and Systems Therapeutics 

The view of cancer and the immune system as an integrated system is an important perspective to 

develop additional targets for cancer immunotherapy. Being cognizant of the interplay of systems is 

the first step to developing an appropriate model to test hypotheses. As described by Chen and 

colleagues, the “cancer-immunity cycle” involves an intricate process of cancer cell antigen 

recognition by the immune system, immune cell trafficking and tumor infiltration, and a localized 

immune response to eradicate the tumor [61]. At each step of the process, a variety of cytokines may 

be expressed to promote or inhibit the immune response. Checkpoints in this process exist to support a 

balance of effective activity to maintain tissue homeostasis and discourage fluctuations that could lead to 
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the extremes of immunosenescence or autoimmunity. The following paragraphs, we will discuss 

oncolytic viruses, adoptive cell transfer, chimeric antigen receptors, and immune checkpoint modulators, 

in context of their role in the cancer-immunity cycle. Each is able to alter feedback mechanisms to 

promote the cancer-immunity cycle via various methods. The advantages and disadvantages of each of 

these therapies will also be discussed. 

3.1.1. Oncolytic Viruses 

Oncolytic viruses are used to target and kill cancer cells. There are two methods used to target the 

oncolytic viruses to kill only cancer cells, and they can be used in combination to promote efficacy of 

tumor-targeted killing. Transductional targeting of oncolytic viruses entails modifying the viral coat 

proteins of the virus to target malignant cells preferentially by inhibiting the entry of the virus into 

non-cancerous cells. Non-transductional targeting genetically alters the virus so that it may only 

replicate in the targeted cancer cell, whereby tumor-specific transcriptional promoters are used [62]. 

However, the host immune response to oncolytic viruses may vary between individuals, and 

mechanisms of resistance to and effective delivery of oncolytic viruses are poorly understood [63]. The 

variation among patients in immune response to oncolytic viruses provides a significant clinical barrier 

to their use and efficacy. However, oncolytic viruses may be used as an experimental tool to provide 

insight to mechanisms of cancer evolution and immune system response in virally-mediated cancers. 

3.1.2. Adoptive Cell Transfer and Chimeric Antigen Receptors 

A number of approaches have been proposed to jumpstart the cancer-immunity cycle and maintain 

its efficacy. Adoptive Cell Transfer (ACT) expands T cell immunity to a particular cancer antigen in 

the patient through isolation of T lymphocytes, population expansion, and reinfusion. Cells can be 

genetically modified to recognize certain antigens, to infiltrate tumors more readily, or to respond 

more robustly to cytokine cues [64]. One example of genetic modifications that can be integrated into 

T lymphocytes in ACT involves chimeric antigen receptors (CARs). These receptors are engineered to 

recognize a specific antigen, which allows this treatment method to become tailored to an individual 

type of cancer and the antigens it expresses [65]. Use of CARs in conjunction with ACT also 

overcomes a potential barrier with ACT and other immune modulation therapies, which assumes that a 

patient’s T lymphocytes or that of a donor will recognize the patient’s cancer cells and target them for 

killing. As shown by Chacon et al. [64], using tumor-infiltrating CD8+ lymphocytes in ACT can also 

have an impact on the rest of the tumor microenvironment, expanding a dynamically regulated and 

more competent T cell population for killing of the tumor.  

ACT and CARs can be modeled mathematically in two ways: (1) through mathematical modeling 

of the system effects and response of directed ACT and CAR activity; and (2) by modeling molecular 

level CAR interactions. When designing CARs, it is important to remember the effect of this type of 

therapy on the host’s system. The plasmids used to express classical CARs use a signaling fragment, 

an extracellular spacer, a co-stimulating domain, and an antibody to direct a specific response against 

the tumor. However, using single-chain fragment variable (scFv) antibodies can cause activation of the 

immune system in an undesirable manner. Single variable heavy chain domains (VHH) have been 

shown to avoid immunogenicity. However, changing any component of the CAR can lead to poor 
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interaction of the receptor with its target. To improve CAR targeting, molecular modeling can be used 

to predict interactions between targets and the CAR with various components, such as a VHH directed 

against a particular target [66]. At the system level, a recent study by James and colleagues modeled 

the target lysis achieved by alterations in chimeric T cell receptor (cTCR) expression density, target 

antigen density, and activation of the cTCR. They found that approximately 20,000 cTCRs per cell 

was an ideal density of expression of the surface of the T cell. Anything above this did not increase 

target lysis or increase sensitivity to the target antigen, and anything below this expression impaired 

target lysis activity, perhaps by causing antigen-induced T cell death [67].  

3.1.3. Immune Checkpoint Modulators 

Based on remarkable clinical success, the current immunotherapies that hold the most promise are 

immune checkpoint modulators. Immune checkpoints are considered natural negative feedback 

mechanisms that limit an adaptive immune response to minimize the risk of autoimmunity. 

Investigation of immune checkpoint modulators has been on the rise in academia, biotechnology 

group, and pharmaceutical company research [68]. It is also known that in late stage cancers, the 

immune system appears to be turned “off”. Part of this “immune switching” phenomenon can be 

credited to the tumor actively evading the immune response through its clonal evolution of certain 

cellular subpopulations [69]. As an example, metastatic melanoma is arguably one of the hardest 

cancers to treat and has very few treatment options in the clinic. As an immunogenic cancer, it is 

known the immune system plays a role in progression of the disease [70]. Therefore, the immune 

system was targeted as a potential solution to molecular inhibitor resistance in metastatic melanoma 

and other cancers. The particular proteins currently being examined for targeting include CTLA-4, 

cytotoxic T-lymphocyte antigen-4, and PD-1, programed death receptor-1, two regulatory molecules 

on the surface of T cells [71].  

A neutralizing antibody against CTLA-4, called ipilimumab, improved overall and progression-free 

survival in metastatic melanoma [72] and was the first FDA-approved therapy to target cancer through 

an immune checkpoint blockade. While clinical benefit was observed in only a subset of patients, 

ipilimumab demonstrates an important proof-of-principle especially in metastatic melanoma.  

Anti-CTLA4 immunotherapy, such as found with ipilimumab, is able to target senescence of CD8+ 

cytotoxic and CD4+ T cell populations. It does this by blocking the effect of CTLA4, a T cell 

inhibitory molecule similar in function to costimulatory protein CD28, on the surface of the T 

lymphocyte that limits clonal expansion [73]. As this therapy globally increases T cell numbers, 

serious adverse side effects, such as autoimmunity, are directly linked to this function, by causing 

over-activation of the immune system. Ipilimumab is currently being investigated for potential 

treatment of other cancer types, while other immunotherapies targeting T cell response are also being 

tested for efficacy against melanoma and other cancer types to improve efficacy and safety [68].  

Similar to the actions of CTLA-4, PD-1 is also an inhibitory protein expressed on the surface of 

chronically activated T cells, which show decreased TCR-mediated proliferative and cytokine-releasing 

ability. Its expression is increased, compared to peripheral blood cells, on tumor-infiltrating  

T-lymphocytes [74,75]. PD-1, along with its ligand that is also upregulated in the tumor microenvironment, 

PD-L1, is currently being investigated as a potential immunotherapy target in clinical trials.  
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An anti-PD-L1 antibody was administered to patients with melanoma, colorectal, renal-cell, ovarian, 

pancreatic, gastric, breast, or non-small-cell lung cancers. Patients were treated for an average of  

12 weeks and evaluated. A durable tumor regression response was recorded at 6%–17%, while  

12%–41% of patients experienced prolonged disease stabilization over a period of 24 weeks [76]. 

Drugs targeting PD-1 or PD-L1 seem to have a slightly better safety profile compared with anti-CTLA4 

and may prove to be more effective as combination therapies [32,77].  

3.1.4. Summarizing the Rise of Immunotherapies 

Overall, immune system modulators, ACT therapies, and oncolytic viruses all show promise 

clinically, but their considerable development and clinical costs, safety profiles, and limited efficacy in 

certain patient populations are a substantial obstacle to a broad clinical impact on patient response and 

management. However, these technologies and molecular targets may not only be useful as 

therapeutics to treat patients in the clinic, but can be used as preclinical tools to investigate and better 

define the interplay between cancer and immunology systems for further pharmaceutical development. 

To ensure these tools are used in a way that minimizes financial and patient risk in pharmaceutical 

development, it is necessary to use these tools in appropriate preclinical models for investigation  

and success of future cancer immunotherapies. In the next section, the use of appropriate system 

models that should be used with these potential preclinical and clinical tools for cancer treatment  

will be discussed. 

3.2. Modeling the System for Pharmaceutical Aims 

Knowing the particular causal suppression mechanisms at work in a cancer from observations of 

biological state is one of the most pervasive problems in the analysis of physiological systems.  

In engineering, this problem is called an identification problem, where causal relationships between 

system elements are inferred from a set of input cues and output responses [78]. In context of cancer, 

an input cue may be antibodies against tumor-specific epitopes and an output response may be tumor 

regression. Many approaches exist for the identification of simple-input-simple-output (SISO) 

systems―where a change in input causes a unique change in output.  

As a consequence of reductionist methods, there is a wealth of experimental data that characterize 

how isolated elements of physiological systems respond to inputs. However, approaches for 

identifying causal relationships among elements of more complex integrated closed-loop systems, like 

the immune system, are less well developed. Typically, a closed-loop system is defined as a  

multi-element system where the output (i.e., response) of one element provides the input (i.e., 

biochemical cue) to another element. A schematic diagram of a closed-loop system comprised of two 

cell types is shown in Figure 2. Closed-loop systems are particularly challenging as it is impossible to 

identify the relationships among cells of a system based upon overall input (e.g., tumor vaccines) and 

output (e.g., tumor regression) measurements. One of the reasons for this is that changes in the internal 

state of the system may alter the response of the system to a defined input, such that there is not a 

direct causal relationship between overall system input and output.  
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Figure 2. Studying open-loop cellular systems, as indicated by the red open-dash box, 

involves directly examining at a target cell or a cell population, without regard to the other 

cells, inputs, or outputs that may be affecting the behavior of that particular cell.  

Closed-loop systems examine multiple components of the overall system, including cues 

going into the system, interactions within the cellular environment, and outputs resulting 

from the multiple dynamics of cellular signaling and communication. 

Historically, the causal mechanisms underlying the behavior of closed-loop systems in physiology 

have been identified via ingenious methods for isolating elements within the integrated system (i.e., 

“opening the loop”). A classic example of this is the discovery of insulin and its role in connecting 

food intake to substrate metabolism. As insulin is only produced by the endocrine pancreas, measuring 

plasma insulin provides a direct measure of the organ-level communication between food intake and 

substrate metabolism in the peripheral tissues. The pancreas can then be approximated as a SISO 

system where the glucose concentration in the portal vein is the input and insulin release into the 

plasma is the output, as depicted in the Minimal Model for the regulation of blood glucose [79]. 

Measuring changes in insulin in the blood in response to changes in plasma glucose provide the basis 

for partitioning alterations in system response (e.g., diabetes) into deficiencies in insulin production 

(i.e., type 1 diabetes) and insulin action (i.e., type 2 diabetes). Treatment for diabetes is tailored to the 

deficiency in component function that exists in the patient. In diabetes, “opening the loop” means 

identifying organ-level cross-talk using blood measurements. In contrast, the cell-level cross-talk 

between tumor and immune cells occurs locally within the tumor microenvironment and may not reach 

a titer sufficient enough to detect using blood measurements. 

3.2.1. Methods to Quantify and Characterize Cross-Talk: Developing Appropriate Models 

Because biological systems are dynamic and require inputs from a variety of sources to maintain 

homeostasis, pathway cross-talk is essential for regulation of equilibrium. Biologists have often 

depended on methods to quantify this cross-talk that introduce scientific bias. Immunohistology,  

for example, requires the researcher to know what they are probing for. The same concern exists in 
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Western blotting, classical reverse transcriptase-polymerase chain reaction (RT-PCR), ELISAs, and 

flow cytometry, which require labeling or probing for a specific molecular component. Because levels 

of gene expression and proteins are dynamic in that they change with respect to both time and response 

to a stimulus, it is difficult to say with certainty that a particular stimulus is direct cause of protein 

expression or whether cross-talk between molecular pathways is involved and causing an upregulation 

or downregulation of a particular gene and its translation into protein gene product. This requires the 

researcher to have extensive knowledge of “known” pathways and relies on previous data to support 

the hypothesis and conclusions.  

Discovery-based research, using high-throughput methods to monitor expression level changes in  

a wide variety of targets, was one way to combat this “known pathway” requirement in cancer 

biomarker research. Discovery-based research, because it looks at a variety of targets, which may or 

may not be known to have pathway association, may be thought of as a way to combat methodological 

bias. However, in his Nature opinion paper regarding biomarker research, Ransohoff argued  

target-driven discovery-based research methods still portray a bias component, as “cancer group” 

samples may be handled in a particular way or undergo particular procedures during collection and 

storage, whereas “normal tissue” would not. In sensitive assays, which themselves may have these 

molecular pathway biases, this can make data interpretation, statistical analyses, and conclusions 

difficult and a technical bias may be inadvertently contributed to the protocol. Ransohoff also 

discusses “fitting” of the model during biomarker research and how this can become a bias in data analysis 

and conclusions [80]. We expect certain associations of molecules or patterns in signaling, and the 

researcher then tries to fit these patterns to a certain disease. However, as protein and mRNA 

expression levels are highly variable and individual samples or subjects can have divergent baselines, 

fitting the data to a certain model of gene or protein expression may not be a dependable method of 

determining disease status conclusions.  

One of the great challenges of biochemical research is that the biological activity of many gene 

products are unknown, and therefore, it is unclear as to how they may influence cellular response 

mechanisms. Proteomics workflow methods may remove some of the bias of probing for known 

protein products. Studies conducted by our laboratory on the secretomes of a “normal” breast epithelial 

line compared to the breast cancer lines BT474 and SKBR3 provided a wealth of information on 

protein products that may be selectively secreted by breast cancers. We performed this workflow by 

isolating and enriching the secretomes from the cell lines, running the samples on a 2DE-gel and using 

MALDI-TOF analysis to identify proteins secreted [81]. To gain insight into common mechanisms for 

altering local intercellular communication in breast cancer, we used computational tools to identify 

common pathway alterations an as a way to counter uncertainty due to the inherent variability among 

samples and limits to sensitivity of this experimental approach.  

An alternative approach to identify alterations in intracellular communication is to develop 

phenotypic screening assays. While the contemporary focus has largely been on target-based drug 

discovery, phenotypic screening produced greater than 60% of first-in-class small molecule drugs 

approved by the FDA between 1999 and 2008 [82]. Phenotypic screening assays are one method of 

discover-based research that does not rely on target-based screening, as do many discovery-based 

research methods, and is making a return to the field of pharmaceutical research [83]. Phenotypic 

screening assays rely on observing the effects of a particular stimulus on a given outcome, rather than 
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the players that may cause that outcome. It allows for some uncertainty on what particular pathways 

are involved to effect disease status and can give insight to unknown molecular interactions and 

molecules acting via previously undiscovered mechanisms. To illustrate the approach, we developed a 

phenotypic screening assay to identify biochemical cues responsible for local immunosuppression  

in vitro, validated these mechanisms in human tumor biopsy specimens, and correlated these putative 

immunosuppressive mechanisms with clinical outcomes [84,85]. The phenotypic screening assay also 

incorporated a mathematical model that provides a quantitative prediction of a T cell response to 

Interleukin-12 in terms of cytokine production and cell fate. As multiple factors were observed in the 

phenotypic screening assay, the mathematical model provided a quantitative context to determine 

whether the observed factors were sufficient to explain the observed changes in T cell response or 

whether there were additional behaviors that were unexplained. 

3.2.2. Computer Simulation Provides a Translational Bridge Across Model Systems 

Even after defining signaling pathway components, it is still difficult for scientists to predict the 

overall behavior of the system. Animal models are most commonly used to predict the human response 

to a particular therapy and to replicate human systems. However, success of therapeutic interventions 

seems to be more easily attained in animals and brings to question the translational viability of animal 

models of disease [86]. As discussed previously, methodological bias may play a role in these 

discrepancies. Moreover, humans are known to have fundamental differences in biology, regardless of 

whether molecular components are conserved, and animal models are usually made of clones of a 

particular population. Therefore, this does not account for the heterogeneity of the human population, 

which will attribute different clinical responses. Additionally, it is unclear how conserved cellular 

signaling networks across different model systems. The heterogeneity of tumor cell populations and 

individual metabolic and disease state differences may further cloud this issue, even when “normal” 

human cellular networks are well-defined. 

Novel drug targets are often difficult to predict, due to the interplay of multiple genes and systems 

and the differences between human and animal models. To overcome these barriers to disease 

modeling, computer simulation using previous molecular interaction and human clinical data may be 

able to elucidate these signaling network differences [9,87]. Quantitative systems pharmacology is 

now being used to analyze drug interactions and provide insight to adverse effects, and has been 

suggested as a method of selecting better drug candidates for development [9]. Two recent studies 

highlight the different functions computer modeling may perform in aiding in drug development.  

In a study examining prostate cancer malignancies, human and mouse model data was analyzed to 

determine master regulators of prostate cancer using the Algorithm for the Reconstruction of  

Accurate Cellular Networks (ARACNe), which uses microarray data to predict direct molecular 

interactions [88,89]. A Master Regulator Inference algorithm (MARINa) was then used to determine 

gene regulators of prostate cancer. Co-expression of FOXM1 and CENPF was determined to promote 

prostate cancer malignancy by synergistically acting via the PI3K and MAPK pathways. This suggests 

a complicated feedback system that may be therapeutically difficult to target with current treatments [88]. 

Using this analysis could serve as a way to determine gene interactions in tumor development and to 

help to better classify tumors based on their phenotypes and genotypes.  



Processes 2015, 3 250 

 

 

Knowing gene regulators of malignancy could also be helpful in finding new targets for therapy and 

determining adverse effects before they are observed in the clinic. In a study regarding drug-induced 

peripheral neuropathy, data from DrugBank and Therapeutic Target Database was used to create 

pharmacological networks of peripheral neuropathy-inducing drugs, their known targets, and the 

diseases for which they are used to treat. The Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) was then used to identify connections between drug targets and cellular pathways. 

Regulation of two genes, MYC and PAF15, were found to be correlated with a higher incidence of 

drug-induced peripheral neuropathy and suggested drugs that may produce this adverse effect, as well as 

targets for future studies to alleviate neuropathy symptoms in the clinic [90].  

4. Conclusions 

One of the most costly decisions a pharmaceutical company can make in regards to a cancer 

immunotherapy is selecting the patient population to conduct the clinical trial. Success of the drug is 

often determined by which patient populations the study is conducted in. If an inappropriate cancer 

phenotype is selected for the study, adverse events or inefficacy can stop the study and discourage the 

drug from continuing in the development pipeline. Troubleshooting and optimizing the drug could 

prove more costly than developing an entirely different drug. Most cell lines do not contain 

heterogeneous populations of cancer cells, let alone T cells and other stromal cells, which can lead to 

misleading results in preclinical trials for determining optimal cancer phenotypes.  

Given validation of these computational methods, and by combining methods to investigate both 

drug response and molecular signaling, we can begin to properly examine cellular networks to infer on 

whether our biological experimental methods correctly forecast patient outcomes and portray an 

accurate representation of biological activity of a certain therapy or whether that therapy is appropriate 

for use in a certain patient population. Using computational tools to model relevant signaling networks 

and cancer immunity may also remove some of the bias associated with sample processing and 

inappropriate biological method selection. To improve the translational value of these approaches, they 

should account for clonal evolution and heterogeneity of the system. Combining system-targeting 

drugs with system modeling and phenotypic assays is in line with NIH recommendations for more 

quantitative and systems pharmacology research, and could prove to be our best resource in engaging 

host immunity in the fight against cancer. Given our currently known limitations and the recent 

developments in cancer immunotherapy research, the pharmaceutical industry can reinvigorate their 

model for innovation with the help of quantitative and systems pharmacology techniques and focusing 

on a systems perspective with respect to cancer. 
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