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Abstract: Utilizing a deep eutectic solvent-like mixture such as choline chloride and lactic acid in
a 1:2 molar ratio, clove buds underwent extraction. Furthermore, the determination of the primary
components in the clove extracts, namely eugenol, eugenol acetate, and β-caryophyllene, was
conducted using the HPLC-DAD method. The total phenolic content (TPC) was also established.
Extraction conditions using choline chloride and lactic acid encompassed variables such as extraction
temperature (within the range of 40 to 80 ◦C), water addition (ranging from 5.6 to 40%), and extraction
time (ranging from 30 to 90 min). Optimal operational conditions for TPC were pinpointed at 77 ◦C,
30 min, and a water addition of 40%. The findings showed that clove extracts obtained at 60 ◦C,
22.8%, and 30 min had the highest amount of eugenol (307.26 ± 8.44 mg/g dry raw material).

Keywords: clove buds; choline chloride; lactic acid; extraction; design of experiment; eugenol

1. Introduction

Syzygium aromaticum, commonly referred to as clove, is an esteemed medicinal
plant currently undergoing investigation related to its antiviral and antioxidant properties.
This botanical specimen is a valuable source of terpenes, mainly bioactive substances
such as eugenol, eugenol acetate and β-caryophyllene [1]. Historically, clove has found
applications in traditional medicine for addressing respiratory issues, serving as a warming
and invigorating agent to alleviate digestion problems while enhancing circulation and
metabolism [2–6].

The essential oil content in clove buds ranges from 15 to 20% by weight, with eugenol
dominating (70–95%), accompanied by acetyleugenol (up to 20%) and β-caryophyllene
(12–17%) in smaller proportions [7]. As proven by science, cloves and their essential oil
are biologically beneficial for human health due to their exceptional qualities [4–6,8–13].
Previous research [13–18] has explored the potential of clove extractives in preventing
and treating SARS-CoV-2-associated ailments, emphasizing their antiviral, antioxidant,
antimicrobial, antifungal, antinociceptive, cytotoxic, anti-inflammatory, and antithrombotic
activities [19–28]. Computational studies [15,16] propose that phytocompounds extracted
from cloves, including kaempferol, target the main protease of SARS-CoV-2, which is
essential for viral replication, and as such they could be potent drugs against COVID-19 [14].
Clove phytochemicals were tested as possible antiviral agents against the SARS-CoV-2 main
protease in another study [26]. A vital technology is the extraction of substances from nature,
which can replace materials derived from petrochemicals. Conventional extraction methods
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possess drawbacks, including the use of toxic solvents, potential thermal degradation, and
hydrolysis of constituents. Modern, environmentally friendly extraction techniques provide
avenues for process development to enhance efficiency [29–31]. A crucial step in obtaining
desired product yields is identifying the suitable method and conditions for isolation, and
the representation of individual components varies in quantity and quality depending on
these conditions. The selection of extraction conditions of particular interest, focusing on
replacing organic solvents with green alternatives [32–34].

Green extraction techniques with non-toxic solvents have been used by several re-
searchers to study the chemical composition and biological activity of cloves. Supercritical
CO2 extraction of clove buds resulted in remarkable yields (13–23.9 wt%) and eugenol con-
tent (56.97–87.41%) in studies [35–42]. Eugenol yields (11.5–21.2 wt%) and concentrations
(50.3–87.26%) were lower when obtained via conventional extraction methods.

The conventional hydrodistillation method was used by Gonzales-Rivera et al. [43] to
analyze clove essential oil. They determined the levels of eugenol (66.9%), β-caryophyllene
(24.8%), α-humulene (3.1%), and acetyleugenol (2.7%) in the oil. Oliviera et al. [44] con-
ducted extraction with supercritical CO2 under the experimental temperatures of 40 ◦C
and 50 ◦C and extraction pressure of 10, 20, and 30 MPa. The results revealed the qual-
itative chemical composition of the oil, which consisted mainly of eugenol (62.88%), E-
caryophyllene (17.13%), eugenol acetate (21.20%), and alfa-humulene (2.62%), with eugenol
being the most abundant component in all the oil fractions examined. The results also
indicated that eugenol, the major constituent, had a significant role in enhancing phyto-
toxic activity.

Deep eutectic solvents (DES) encompass a variety of categories based on the nature
of the complexing agents involved. Type I comprises quaternary ammonium salts and
metal halides, although their use in lignocellulosic biomass processing is limited due to
the high melting temperatures of nonhydrated metal halides. Type II includes quaternary
ammonium salts and hydrated metal halides, offering better viability for industrial pro-
cesses. Type III involves a mixture of quaternary ammonium salts and various hydrogen
bond donors (HBDs); this type is commonly utilized in biomass processing due to its
cost-effectiveness and ease of preparation. Type IV consists of inorganic transition metals
and HBDs, although the metal salt typically does not ionize in nonaqueous environments.
A relatively novel class, Type V, exclusively comprises non-ionic molecular substances
and exhibits hydrophobic characteristics under normal conditions [45–49]. Terminological
inconsistencies within the field have led to the adoption of the term “DES-like mixtures”
for systems lacking a proven eutectic point, with the aim of maintaining clarity amidst
evolving terminology.

Various studies have delved into the structural changes, interactions, and hydro-
gen bonding within systems involving choline chloride and lactic acid [50–54]. Fourier-
transform infrared analysis has confirmed hydrogen bond formation within these sys-
tems [50,52,53]. Research by Alcade et al. [51] explored the impact of water on hydrogen
bonding and observed minimal disruption within the studied range. 1H NMR analy-
sis has revealed interactions between the OH groups of lactic acid and choline chloride,
leading to chemical shifts and the formation of new signals indicative of intermolecular
interactions [52–54]. Alcalde et al. [51] identified intermolecular interactions facilitated by
hydrogen bonding between the chloride ion from choline chloride and lactic acid, with the
chloride ion acting as a bridge between choline chloride and multiple lactic acid molecules
at a molar ratio greater than 1. In the last 20 years, green solvents have been intensively
utilized for the extraction of value-added compounds. Among these, a group of solvents
known as deep eutectic solvents (DES), including natural deep eutectic solvents, has gained
prominence. Numerous original papers, patents, and conference contributions focus on var-
ious aspects of extracting valuable compounds from natural sources each year. Researchers
also strive to consolidate these findings in books and review papers [55–57].

Deep eutectic solvent-like mixtures (DES-like mixtures) have gained prominence as
promising sustainable solvents [58]. These mixtures, derived from natural components,
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offer unique physicochemical properties aligned with ecological requirements, making
them appealing for green extraction processes. Another crucial step in extraction is the
setting of extraction conditions. Many factors affect how well the extraction process
works, such as the type and quantity of solvents used, the temperature of the solution, the
concentration of ions, the extraction time, the properties of the analyte, and the agitation
of the mixture. These conditions and their interactions have a significant impact on the
quantity and quality of the output of individual compounds [59–62].

One key component used to prepare these solvents is quaternary ammonium salt
(such as choline chloride), which acts as the hydrogen bond acceptor (HBA). Additionally,
hydrogen bond donors play a crucial role, and substances like urea, imidazole derivatives,
amides, alcohols, and organic carboxylic acids are commonly employed. These solvents
achieve promising results in the extraction of various classes of active substances, especially
phenols [63–68].

In recent years, several articles were published in which these solvents were used for
the extraction of these substances, while the combination of choline chloride and lactic acid
was also often investigated.

In the work of Soukina et al. [63], the combination of choline chloride and lactic acid
achieved the highest yield of polyphenols compared to the other six types of solvents used
to extract polyphenols from Mentha pulegium.

However, based on our knowledge, only a few works have been published that used
the extraction of DESs and cloves. In the work of Chen et al. [69], DESs were used as
pretreatment solvents; they were combined with microwave-assisted hydrodistillation
for the extraction of essential oils from the clove buds. They used five DES systems
(Choline chloride Fructose 1:2; Choline chloride Lactic acid 1:2; Choline chloride Glucose
1:2; Choline chloride Phenol 1:2; Choline chloride Ethylene glycol 1:2) and the most suitable
was evaluated system chloride and lactic acid (1:2). The extraction efficiency of 10 DESs
mainly composed of tetrabutylammonium bromide and long-chain alcohols, including
choline chloride and lactic acid (2:3), was evaluated for the extraction of terpenes from six
spices (cinnamon, cumin, fennel, clove, thyme, and nutmeg); DESs were used as extraction
agents for headspace single-drop microextraction [70].

This is an original work because the extraction of selected active substances and
the determination of optimal conditions using the DES (deep eutectic solvent) for clove
extraction have not yet been explored in published works. Our primary goal was to use
choline DES-like mixtures, that is, a selected system of choline chloride and lactic acid for
the extraction of substances with antiviral, antioxidant and anti-COVID properties. And it
mainly concerns the monitored substances that we analyzed. In this study, we did not deal
with the purification of phenolic substances, considering that these extracts can be used
as nutritional supplements without subsequent purification, which should have positive
effects in the field of prevention in the fight against COVID-19. The study examined the
effects of changing the extraction parameters (temperature, water addition, extraction time)
on the TPC and identified the major constituents of clove bud extracts, namely eugenol,
eugenol acetate, and β-caryophyllene, by applying the HPLC-DAD method.

2. Materials and Methods
2.1. Chemicals

All chemicals, solvents, and reagents utilized in this research were of analytical grade.
Choline chloride (ChCl) (≥98.0%), Folin–Ciocalteu reagent, 2,2-diphenyl-1-picrylhydrazyl
radical, gallic acid, anhydrous sodium carbonate (Na2CO3), and analytical standards,
including eugenol (≥98.0%), eugenol acetate (≥98.0%), and β-caryophyllene (≥80.0%),
were procured from Sigma-Aldrich (Bratislava, Slovakia). Lactic acid (LacA) (90.0%)
solution was obtained from VWR International (Bratislava, Slovakia). Choline chloride was
dried in a vacuum oven prior to use to eliminate moisture contamination.



Processes 2024, 12, 653 4 of 16

2.2. Plant Materials

Clove buds were acquired from the store Svet plodu (Czech Republic) [71]. These
organic cloves originated from Molucca (Indonesia), where they were grown and dried.
Before each experimental assay, the raw material underwent grinding in a knife mill and
separation through sieves into 0.02–0.04 mesh.

2.3. Preparation of Deep Eutectic Solvents-like Mixtures

The solvent consisted of ChCl and lactic acid in a molar ratio of 1:2. The preparation
of the solvent was carried out with constant stirring in a water bath (60 ◦C; 30 min) and a
homogeneous liquid formed as a result [72].

2.4. Design of Experiment

A comprehensive description of the influence of the studied physical parameters
on total phenolic content utilized the planned experiment method. A full 23 factorial
design was employed, encompassing temperature, water addition, and extraction time
as selected physical parameters. After five repetitions of the center point and twenty
combinations to measure the standard deviation from the overall mean, the experimental
design was complete. The design of the experiment method (DOE) was utilized to represent
the mathematical-statistical data of complex formation. The factors that had statistical
significance were assessed by analysis of variance (ANOVA). The acquired measurements
for each parameter underwent processing based on the principles of experimental design
theory using the computer program STATIS, developed by Alexy et al. [73] within MS Excel
Visual Basic. The STATIS program output complete regression and statistical analyses,
with ANOVA being the employed statistical test, conducted at a 95% probability level.
All statistical tests were carried out at a probability level of 95%. For each parameter, the
following type of regression Equation (1) was obtained:

y = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b11x2
1 + b22x2

2 + b33 x2
3 (1)

where y is an output parameter, x1, x2, and x3 are levels of factors in coded coordinates,
b0–b33 are regression coefficients, b0 is a constant, b1, b2 and b3 are the linear coefficients,
b12, b13, and b23 are the interaction or crossed coefficients, and b11, b22, and b33 are the
quadratic coefficients.

2.5. Extraction Using Deep Eutectic Solvents-like Mixtures

In the work of Chen et al. [70], different DES pretreatments were applied. Choline
chloride and lactic acid (1:2) combined with microwave-assisted hydrodistillation for the
extraction of essential oils from the clove buds proved to be the most suitable pretreatment.
In our research, therefore, the extraction system used choline chloride and lactic acid in
a molar ratio of 1:2. The extraction conditions were chosen in a sufficiently wide range
and corresponded to the conditions of other works, in which researchers investigated the
extraction of polyphenols from other plant sources [73,74].

Under the conditions of the experimental design, the extraction was performed
with constant stirring (blender speed 12; Tube Revolver Rotator Thermo Fisher Scientific
(Bratislava, Slovakia)) in a closed flask. DOE was used to examine the effect of extraction
temperature (t = 40–80 ◦C), water addition (above 5.6 up to 40%), and extraction time
(30–90 min) on total phenolic content. The choline chloride: lactic acid (1:2) mixture had
a water content of 5.6%. The water content in the DES-like mixtures was determined by
coulometric Karl Fischer titration. The ratio of clove buds to extraction solvent was kept at
1:10 (w/v) throughout the experiments.

2.6. Determination of Total Phenolic Content

The content of total phenolic compounds was determined by the Folin–Ciocalteu (FC)
method as described in the study of Jablonský et al. [75].
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2.7. HPLC Determination of Eugenol, Eugenol Acetate, β-Caryophyllene

Eugenol, eugenol acetate, and β-caryophyllene were determined by the modified
HPLC-DAD method. The analysis was performed using Agilent Technologies HPLC system
(series 1100) consisting of a degasser, a binary solvent delivery pump, an autosampler, a
column thermostat, and a diode array detector (DAD). Separation of analytes was carried
out in reverse-phase mode using a Nucleodur 100-5 C18ec (250 × 4.6 mm i.d., 5 µm
particles) column (Macherey-Nagel, Düren, Germany). The mobile phase consisted of
acetonitrile (A) and water (B). The gradient program was a 0–10 min linear gradient for (A)
component from 40 to 80% then to 100% of (A) over 0.5 min and maintained at 100% of (A)
for 10 min. This was followed by a reverse gradient over 0.5 min and maintained at 40/60
(A)/(B) for 4 min. The flow rate was 1.0 mL/min, the injection volume was 20 µL, and the
column temperature was maintained at 25 ◦C. DAD was operated in the wavelength range
of 190–400 nm, and the detection wavelengths were set at 210 nm for β-caryophyllene.
Eugenol and eugenol acetate were detected at 280 nm. The cloves extracts were diluted
1:10 (v/v) with water before being injected into the HPLC.

Quantification of target analytes was performed using the calibration curve method.
The calibration curve was constructed as the dependence of average peak areas of analyte
versus concentration of analyte in standard solution. Mixed-analytes calibration solutions
at six concentration levels ranging from 100 to 1000 µg/mL for eugenol and eugenol
acetate, or from 15.5 to 100 µg/mL for β-caryophyllene, were analyzed in triplicate for the
construction of the calibration curve. In Table 1, the values of the retention time, resolution,
peak symmetry factor, high equivalence of the theoretical plate, linearity, limit of detection,
and limit of quantification are summarized.

Table 1. Determination of eugenol, eugenol acetate, and β-caryophyllene by HPLC-DAD method:
system suitability and validation parameters.

Eugenol Eugenol Acetate β-Caryophyllene

HPLC system suitability parameters a

Retention time (tR, min) 7.36 9.09 17.54
Repeatability RSD (%) tR 0.21 0.25 0.22
Repeatability RSD (%) A 1.65 1.05 1.59

Peak symmetry 1.16 1.14 1.15
HEPT (µm) 17.27 9.33 2.26

RS 7.53 39.12
Validation parameters

Calibration curve A = 145.32 + 18,809.18 × c A = 101.13 + 10,523.43 × c A = 23.55 + 46,563.62 × c
R2 0.9998 0.9989 0.9990

Linear range (µg/mL) b 100–1000 100–1000 15.5–100
LOD (µg/mL) c 7.7 16.6 5.1
LOQ (µg/mL) c 23.2 50.3 15.5

a the concentrations of eugenol, eugenol acetate, and beta-caryophyllene in standard solution were 0.1 mg/mL, b

expressed as the concentration of the analyte in the reference solution, c the values of (LOD) limit of detection,
and (LOQ) limit of quantification were calculated according to Equations (1) and (2), tR—retention time, A—peak
area, HEPT—height equivalent of a theoretical plate, c—con-centration of analyte (in mg/mL), RSD—relative
standard deviation, (n = 6).

Equations (2) and (3), respectively, were followed to calculate the LODs and LOQs
using the standard deviation of the response (Sy) and the slope (S) of the calibration curve
at levels around the LOD and LOQ.

LOD =
3.3 × Sy

S
(2)

LOQ =
10 × Sy

S
(3)
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3. Results and Discussion

Various factors can exert independent or combined influences on extraction efficiency.
Altering extraction parameters can impact the transport and solubilization of biological
macromolecules, influence the extraction kinetics, and modify the physicochemical prop-
erties of DES-like mixtures [76,77]. This study delved into the individual and combined
effects of extraction temperature, water addition, and extraction time on the overall yield
of phenolic compounds obtained through the extraction process utilizing ChCl:LacA (1:2).
Adjustments to water addition were made to enhance the diffusion of polyphenols. The
chosen ranges for these factors were based on existing scientific knowledge derived from
a literature search [78]. The experimental design conditions, detailed in Table 2, aimed to
comprehensively elucidate the impact of selected physical parameters on the extraction
process. A complete 23 factorial design of experiments was implemented, encompassing
twenty individual experiments. The measured values of the TPCs are outlined in Table 3.

Table 2. Conditions of experimental design.

Factor −1.682 −1 0 1 1.682

x1 40 48.11 60 71.89 80

x2 5.63 12.6 22.8 33.0 40

x3 30 42 60 77 90

Table 3. Measured parameter TPC; (mg GAE/g dry raw material) and extraction factors—temperature
(factor x1; ◦C), water addition (factor x2; %), time of extraction (factor x3; min.).

Trial
No.

Sample
No.

Factor
x1

Factor
x2

Factor
x3

TPC
(mg GAE/g Dry Raw Material)

1 Clove_1 48.11 12.6 42 48.8

2 Clove_2 71.89 12.6 42 33.4

3 Clove_3 48.11 33.0 42 89.1

4 Clove_4 71.89 33.0 42 80.5

5 Clove_5 48.11 12.6 78 40.7

6 Clove_6 71.89 12.6 78 34.6

7 Clove_7 48.11 33.0 78 70.3

8 Clove_8 71.89 33.0 78 75.9

9 Clove_9 40.00 22.8 60 43.4

10 Clove_10 80.00 22.8 60 31.6

11 Clove_11 60.00 5.63 60 39.5

12 Clove_12 60.00 40.0 60 111.9

13 Clove_13 60.00 22.8 30 55.8

14 Clove_14 60.00 22.8 90 56.8

15 Clove_15 60.00 22.8 60 59.8

16 Clove_16 60.00 22.8 60 55.9

17 Clove_17 60.00 22.8 60 59.4

18 Clove_18 60.00 22.8 60 74.3

19 Clove_19 60.00 22.8 60 67.4

20 Clove_20 60.00 22.8 60 76.2
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The outcomes revealed a significant impact of adding water when utilizing ChCl:LacA
(1:2) on the total amount of extracted phenolic compounds from clove buds, as indicated
by the regression coefficient b2 (Table 4). The solubility of compounds correlates with
the polarity of DES-like mixtures and can be further enhanced by the addition of water.
As shown in Figure 1, TPC exhibits variability based on water addition, ranging from
approximately 36 mg GAE/g dry raw material to around 112 mg GAE/g dry raw material.
As pointed out by several papers [61,62,79–82], water addition affects the physicochemical
properties of solvents and how they interact with biological structures. The presence of
a highly polar solvent like water could potentially impact extraction capabilities, such as
viscosity. High viscosity is a hindrance for the analytical use of deep eutectic solvents-like
mixtures, as it reduces the mass transfer between the sample and the extraction phase.
The viscosity of the reaction medium can be lowered by the addition of water, which
leads to a better mass transfer, higher extraction efficiency, and enhanced polyphenol
diffusion [62,83].

Table 4. Results of ANOVA.

Coefficient TPC

* b0 65.164

b1 0.869

* b2 24.646

* b3 −6.214

* b11 −7.745

* b12 9.337

b13 −4.086

* b22 5.780

* b23 −9.064

b33 −1.080
* statistically significant coefficients.
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The outcomes presented in Table 4 indicate that, within the specified range of values,
temperature did not significantly impact the yield of phenolics. Both an elevation in
extraction temperature and addition of water led to an increase in TPC, as illustrated by the
response surface in Figure 1. The x-axis (extraction temperature) demonstrates a peak in
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total phenolic content, supported by the negative value of coefficient b11 (refer to Table 4).
This mutual interaction between water addition and temperature is further affirmed by
the significant interaction coefficient b12 (Table 4). Higher temperatures are known to
soften plant tissues, facilitating the extraction of phenolic compounds into the solvent [84].
Additionally, there is a confirmed mutual interaction between water addition and extraction
time, as indicated by the interaction coefficient b23 (Table 4). In the realm of deep eutectic
solvents (DES), water holds substantial significance [85]. As shown in Figure 2, the viscosity
of DES-like mixture decreases when water is added [86,87], improving the mass transfer
and extraction efficiency and facilitating polyphenol diffusion [62,83]. The polarity of DESs
is also influenced by water content, as observed by Craveiro et al. [76], who found that an
increase in water quantity heightened solvent polarity. Besides the viscosity, the density of
DESs was also affected by water, as reported by Francisco et al. [87]. They discovered that
the density of the DESs they investigated declined with the increase in water content, but
this effect was minor.
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The response surface of phenols was influenced by extraction time in the range of
30–90 min, as shown in Figure 3. The maximum value of the response surface was observed
at 30 min, demonstrating the significance of extraction time, which was also verified by
our regression analysis results (Table 4). The extraction time had a negative correlation
with the phenolics yield, which decreased from 30 to 90 min. Phenolic oxidation can occur
at longer extraction times unless the solvent system contains reducing agents that can
partially prevent these reactions [88].
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The SOLVER subprogram from Microsoft Excel was used to optimize the computations
and achieve the highest phenolic content. The optimal conditions for maximum phenolic
content were an extraction temperature of 77 ◦C, time of 30 min, and water addition of 40%.
The work also determined the phytogenic bioactive components in the clove extract, which
is a mixture of various substances. The main compounds are eugenol, eugenol acetate, and
β-caryophyllene. Eugenol and eugenol acetate have excellent antimicrobial activity against
fungi and various Gram-negative and Gram-positive bacteria [89,90]. Eugenol has multiple
benefits against many life-threatening diseases such as inflammation, oxidative stress,
hyperglycemia, nerve disorders, elevated cholesterol, and cancer [71–93]. Eugenol has
several benefits against various life-threatening diseases such as inflammation, oxidative
stress, hyperglycemia, nerve disorders, elevated cholesterol, and cancer [91–93]. Eugenol
also has antiviral activity against the influenza A virus, as demonstrated by Dai et al. [94].
Eugenol can limit viral infection and replication specifically against herpes simplex viruses,
with IC50 values between 16.2 mg/mL and 25.6 mg/mL, as evaluated by the plaque
reduction assay. Eugenol has been confirmed to be effective against clinical isolates of
herpes simplex virus-1 [95,96]. Musthafa et al. [97] examined eugenol acetate for its antiviral
potential against both Gram-negative and Gram-positive pathogens. The results of their
work show the potential of eugenol acetate as an alternative candidate to control the
pathogenicity of both Gram-negative and Gram-positive organisms. Eugenyl acetate at
a concentration of 150 µg/mL significantly inhibited the production of virulence factors,
such as pyocyanin and pyoverdin, by Pseudomonas aeruginosa. As shown by several studies,
β-caryophyllene, a natural sesquiterpene, affects various organs, such as the liver [98],
kidney [99] and brain, in a pharmacological way. β-caryophyllene has different therapeutic
benefits, such as functioning as an antioxidant, decreasing inflammation [100], and fighting
cancer [101,102]. The HPLC-DAD method was applied to measure eugenol, eugenol acetate,
and β-caryophyllene in 20 samples that were extracted using DES-like mixtures. The results
of the determination of target analytes by HPLC-DAD method are summarized in Table 5.
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Table 5. HPLC determination of eugenol, eugenol acetate, and β-caryophyllene.

No.
Eugenol Eugenol Acetate β-Caryophyllene

(mg/g) *

1 168.61 11.63 0.87

2 200.70 18.93 0.89

3 216.14 15.23 0.96

4 218.51 13.96 0.46

5 196.01 19.64 1.05

6 205.67 18.08 0.64

7 222.11 14.22 0.76

8 217.64 13.08 0.22

9 222.99 20.45 0.46

10 211.89 18.51 0.37

11 188.14 19.63 1.09

12 218.41 32.70 0.57

13 307.26 28.64 0.56

14 221.18 18.53 0.27

15 211.18 17.87 0.51

16 215.14 18.23 0.37

17 210.66 17.60 0.45

18 218.22 19.29 0.31

19 209.85 17.55 0.22

20 208.67 17.37 0.39

* Expressed for dried sample.

Eugenol was present in the extracts in the highest concentration among the target
analytes, according to the HPLC results obtained. The major component of clove extract,
eugenol, increased from 168.61 mg/g dry raw material to 307.26 mg/g dry raw material,
which is several times lower compared to that of eugenol acetate (11.63–32.70 mg/g dry
raw material) and β-caryophyllene (0.57–0.87 mg/g dry raw material). Eugenol was more
abundant in the extract obtained at higher temperatures (70 ◦C) and with less added
water (15%).

The chemical composition and content of clove essential oils vary widely according
to different studies. One study by Alma et al. [103] analyzed the clove bud essential oil
obtained via steam distillation and identified 18 components, with eugenol being the
predominant one (87%), followed by eugenol acetate (8.01%) and β-caryophyllene (3.56%).
Another study by Razafimamonjison et al. [104] compared the clove bud essential oil from
Indonesia, Madagascar, and Zanzibar, which was also extracted via steam distillation for
12 h. They found that eugenol was a major component in all samples, with its content
ranging from 77.50% to 79.87%, and β-caryophyllene was the second most abundant,
ranging from 4.06% to 6.91%. Chatterjee et al. [105] used a different extraction method,
supercritical carbon dioxide extraction, to isolate eugenol from dried clove buds. They
optimized the extraction conditions to achieve the highest yield of eugenol (129.86 mg/g
dry clove buds), which were 60 ◦C, 25 MPa, 90 min, and 2 L/min of the CO2 flow rate.
Yazdani et al. [38] also used supercritical carbon dioxide extraction and obtained a similar
yield of eugenol (86.7%) at 80 ◦C and 19 MPa. They also compared the eugenol yields from
other extraction methods, such as hydrodistillation and microwave-assisted extraction, and
found that supercritical extraction resulted in the highest percentage of eugenol (86.70%)
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compared to hydrodistillation (81.47%) and microwave-assisted extraction (79.08%). The
variation in the components and composition of clove essential oils can be attributed to
several factors, such as the type and origin of the clove, the environmental conditions, the
pretreatment of the plant material, the extraction method, and the extraction parameters.

This study applied the AGREE [106] (analytical environmental performance metric
for sample preparation) to assess the environmental performance of the extraction method
based on the principles of green chemistry, which aims to reduce the use of hazardous
chemicals and energy to improve sustainability and lower the environmental impacts
of processes, including extraction methods [107]. The AGREE metric considers several
factors that affect the environmental impact of the procedure, such as the sample size,
the type of reagents and instruments, the health and safety risks of any reagent, and
the waste generation, among others. Figure 4 shows the results for a specific sample
type and extraction procedure performed in optimal conditions. The AGREE pictogram
shows a mostly yellow-green color rating of the individual aspects. The overall score was
0.63, which indicates a high level of environmental compatibility and low impacts of the
proposed extraction procedure. The extraction technique does not use any organic solvents,
only DES. The main source of environmental impact is the HPLC method used to analyze
the extracts. Reducing the amount of sample used could improve the greenness evaluation
of the sample processing.
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4. Conclusions

Upon analyzing the trial, our observations infer that extraction conditions significantly
influence the total phenolic content, with particular emphasis on water addition and
extraction time. Notably, water addition emerged as the most influential factor affecting the
total phenolic content, closely followed by the extraction time. The interplay of extraction
temperature with the addition of water further underscored the significance of temperature
as a contributing factor to total phenolic content (TPC). The culmination of these factors
pointed towards an optimal extraction scenario, where the highest TPC was achieved at an
extraction temperature of 77 ◦C, extraction time of 30 min, and a water addition of 40%. The
HPLC analysis further confirmed a notable abundance of eugenol in the extracts. Eugenol
content exhibited a substantial increase from 168.61 mg/g dry raw material to 307.26 mg/g
dry raw material. However, it is noteworthy that this concentration is significantly lower
compared to that of eugenol acetate (ranging from 11.63 to 32.70 mg/g dry raw material)
and β-caryophyllene (ranging from 0.57 to 0.87 mg/g dry raw material). In summation, this
study demonstrates that choline chloride–lactic acid (molar ratio 1:2) is an effective solvent
for extracting compounds from clove buds. This research provides useful information
for improving the extraction parameters to increase the total phenolic content and the
concentrations of specific substances in clove extracts.
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