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Abstract: The interdependence of various energy forms and flexible cooperative operation between
different units in an integrated energy system (IES) are essential for carbon emission reduction. To
address the planning problem of an electric–thermal integrated energy system under low-carbon
conditions and to fully consider the low carbon and construction sequence of the integrated en-
ergy system, a low-carbon-oriented capacity optimization method for the electric–thermal inte-
grated energy system that considers construction time sequence (CTS) and uncertainty is proposed.
A calculation model for the carbon transaction cost under the ladder carbon trading mechanism
was constructed, and a multi-stage planning model of the integrated energy system was established
with the minimum life cycle cost, considering carbon transaction cost as the objective function, to
make the optimal decision on equipment configuration in each planning stage. Finally, a case study
was considered to verify the advantages of the proposed capacity optimization method in terms of
economy and environmental friendliness through a comparative analysis of different planning cases.
Simulation results show that, compared with the scenario of completing planning at the beginning
of the life cycle at one time, the proposed low-carbon-oriented capacity optimization method that
considers construction time sequence and uncertainty can not only reduce the cost of the integrated
energy system, but also help to enhance renewable energy utilization and reduce the system’s carbon
emissions; the total cost of phased planning is reduced by 11.91% compared to the total cost of
one-time planning at the beginning of the year.

Keywords: multi-stage planning; economic optimization; carbon emissions; renewable energy
utilization; ladder carbon trading

1. Introduction

Under the background of increasingly severe global environmental problems, carbon
emission reduction has become a priority of all countries. At the 75th United Nations
General Assembly, China announced that it will increase its nationally determined carbon
contributions, reach peak carbon emissions by 2030, and strive to achieve carbon neutrality
by 2060 [1]. New rules on carbon emissions pose more stringent requirements for the
future development of energy systems in China. With the increasing energy demand and
environmental pressure, the integrated energy system (IES) is an essential technology
required to improve energy efficiency and reduce carbon emissions [2]. However, the
energy types and energy conversion equipment in the IES are diverse and complex. To
fully realize a capacity for carbon emission reduction, carbon emission factors should be
considered in the planning stage of IESs.

Under the current development status of carbon emission reduction technology, car-
bon capture and conversion technology and renewable energy power generation are the
principal means for an IES to reduce carbon emissions. At present, the power-to-gas (P2G)
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technology and carbon capture technology have been widely used in IESs. A P2G system
can absorb carbon dioxide to synthesize methane and convert electricity into gas, which is
of great significance in promoting the low-carbon development of IESs [3]. Zhang et al. [4]
proposed an optimized design method for a residential IES employing the P2G technology
with multi-functional characteristics. Li et al. [5] studied multi-objective optimization and
agent-based modeling for a 100% renewable island IES considering P2G technology and
extreme weather conditions. Liu et al. [6] studied the planning method of an integrated en-
ergy system based on two-stage robust optimization and the non-cooperative game method.
Zhang et al. [7] established a day-ahead optimal dispatching method that employs P2G
units and dynamic pipeline networks. Cui et al. [8] developed a low-carbon and economic
scheduling framework that integrates the operation of carbon capture power plants, P2G
units, and the price-based demand response. The power-to-hydrogen model and seasonal
hydrogen storage model were proposed in [9] to deal with the optimal planning of an
IES. Guo et al. [10] studied the low-carbon operation method of integrated plants based
on carbon capture units. Guo et al. [11] proposed a low-carbon planning method for an
integrated energy station considering combined P2G and gas-fired units equipped with
carbon capture systems.

In addition to employing P2G and carbon capture systems, increasing the capacity
of renewable energy in IESs is also an important means of carbon emission reduction.
To ensure the reliable and efficient operation of IESs, the uncertainty and volatility of
renewable energy are the problems that must be solved in the planning and operation of
IESs. He et al. [12] presented a distributed, robust planning methodology that incorporates
the electric–thermal demand response and the inertia of thermal loads. Cao et al. [13]
proposed a two-stage robust stochastic programming model for energy hub capacity
planning with a distributional robustness guarantee. Ozy et al. [14] proposed an adaptive,
robust planning method for distribution systems that considers the siting and sizing
of renewable energy structures. Pan et al. [15] proposed a decentralized robust planning
method for a multi-stakeholder IES under source–load uncertainties. Ge et al. [16] presented
an optimal planning model for an IES that considers distributed generation uncertainties
and carbon emission punishments. Li et al. [17] proposed an energy hub-based optimal
planning framework for a user-level IES that considers synergistic effects under multiple
uncertainties. Lei et al. [18] proposed a multi-stage scenario tree generation method for a
long time scale with multiple uncertainties based on a Markov chain.

In addition, the strict carbon emission reduction market policy urges IESs to have
their carbon emission reduction capabilities enhanced. Building the National Carbon
Emission Trading Market (NCET) is one of the planned means for China to achieve its
goals of carbon peak and carbon neutrality. The NCET was piloted in seven cities in 2017,
and the first batch of crucial emission units incorporated into the market covers almost
1700 thermal power generation enterprises in China [19]. In 2021, the launching ceremony
of the NCET was held in Beijing, Shanghai, and Wuhan, simultaneously, and the high-
profile NCET officially began online trading. According to the transaction rules of the NCET,
an IES can enjoy a carbon quota that matches its power generation capacity. The IES can
independently optimize the operation strategy of the system, and the surplus or insufficient
carbon quota of the IES can be traded through the NCET. Driven by the strict policy, some
studies have introduced carbon factors into the operation optimization of IESs. In Ref. [20],
a decentralized market model integrating electricity and carbon emission rights trading
was established for a microgrid. Wang et al. [21] proposed a low-carbon and economic
operation method for IESs based on the life cycle assessment of the energy chain and carbon
trading mechanisms. Huang et al. [22] proposed an energy sharing method with multiple
IESs for low-carbon and economic operation. Cheng et al. [23] studied the low-carbon
operation of IESs by coordinating transmission-level and distribution-level energy systems
through energy and carbon prices. Li et al. [24] proposed a stochastic operation method
for integrated low-carbon electric power, gas, and thermal delivery systems. Considering
the increasing couplings among various energy systems, Jiang et al. [25] investigated the
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multi-period optimal energy flow and energy pricing in an IES, including electricity, gas,
and thermal networks.

The above analysis shows that carbon emission reduction in an IES heavily depends on
the low-carbon economy operation method and low-carbon planning method. Especially
in the planning stage, considering the low-carbon factors has a significant impact on the
low-carbon operation of an IES. However, the existing studies have mainly focused on
increasing the renewable energy capacity and reasonably matching the capacity of units
with pollution emissions such as through using combined heat and power (CHP) and a
gas boiler (GB), and the carbon quota and carbon trading are not included in the low-
carbon planning of the IES [12–18]. In order to solve the problems as mentioned above, I
confirmthis study proposes a low-carbon-oriented capacity optimization method for an
electric-thermal integrated energy system that considers construction time sequence and
uncertainty, and the main contributions are as follows:

(1) A carbon quota and emission model of an IES is proposed. Based on carbon emission
flow theory, the carbon emission intensity (CEI) index is proposed to reflect the carbon
emission intensity of the IES. On this basis, the carbon quota and emission model of
IES were established.

(2) A low-carbon-oriented capacity optimization model that considers construction time
sequence and uncertainty was established. In the capacity optimization model, the
time sequences of different equipment investments and construction and carbon
transaction costs are considered, and the uncertainty of the photovoltaic (PV) and
a wind turbine (WT) power on the planning results of a low-carbon economy was
quantified using a two-stage robust planning method.

2. Method
2.1. System Structure and Theoretical Framework
2.1.1. System Structure

This paper focuses on the planning problem of an electric–thermal IES, and Figure 1
shows the typical structure of an electric–thermal IES. An IES includes an electricity sub-
system and a thermal sub-system. The electricity sub-system is connected to the power
grid, and the electricity sub-system includes CHP, energy storage (ES), photovoltaics (PV),
and wind turbine (WT) power. The thermal sub-system includes CHP and a gas boiler (GB).
In addition, the natural gas in the IES is provided by the gas grid. The carbon emissions
generated during the operation of equipment in the IES are finally traded through the
carbon trading market.
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Figure 1. Typical system structure of electric–thermal IES.

2.1.2. Carbon Quota and Emission Model of IES

(1) Carbon quota model

The total carbon quota of an IES will be allocated according to the total load and
capacity of its equipment with pollutant discharge, which consists of elemental quota and
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reward quota. The basic carbon is determined based on the electricity and thermal loads,
and the award carbon quota is determined according to the capacity of renewable energy
units [22]. This paper refines the time scale of the carbon quota to each scheduling cycle,
and the carbon quota in each scheduling cycle can be described as in Formulas (1)–(3):

Qsystem
c (t) = Qbasic

c (t) + Qaward
c (t) (1)

Qbasic
c (t) =

T

∑
t
[Pe

load(t) + Pt
load(t)Φ

−1]µe
co2

(2)

Qaward
c (t) =

Pwt.max + Ppv.max

Ppv.max + Pwt.max + Pchp.max + Pgb.max
Qbasic

c (t) (3)

where Qsystem
c (t) is the total carbon quota; Pe

load(t) and Pt
load(t) are the electrical load and

total thermal load; Φ is the thermal–electricity conversion coefficient; µe
co2

is the carbon
emission benchmark for the power supply; Qbasic

c (t) is the essential carbon quota; ∑ Pk.max is
the total installed capacity of energy supply equipment in the IES; Ppv.max, Pwt.max, Pchp.max,
and Pgb.max are the installed capacity of the PV, WT, CHP, and GB; and Qaward

c (t) is the
award carbon quota.

When the carbon emissions of the IES do not exceed the carbon quota, the IES can
emit carbon for free, and the excess carbon quota can be sold on the carbon trading market.
Once the total carbon emissions exceed the quota, the IES needs to buy the quota from the
carbon trading market. Moreover, the more carbon emissions that exceed the standard, the
more expensive the carbon trading price.

(2) Carbon emission model

Based on carbon emission flow theory, the carbon emission intensity (CEI) index is
proposed to reflect the carbon emission intensity of the IES [20,26]. The CEI index represents
the average carbon emissions related to the injected energy flow during a specific period,
equal to the weighted average of the carbon intensities of all the injected energy flows.

Formula (4) defines the electric CEI index of the power grid; Formulas (5) and (6)
define the electric CEI index and thermal CEI index of the IES; Formulas (7) and (8) define
the CEI index of the CHP and GB.

The carbon sources in the power grid include coal-fired units and the IES.

ρE
grid(t) =

ρE
coal Pbuy(t) + ρEE

IES(t)Psell(t)
Pbuy(t) + Psell(t)

(4)

The carbon accompanying electricity in the IES mainly comes from the CHP and
carbon input from the power grid. The carbon accompanying the thermal load in the IES
comes from the CHP and GB.

ρEE
IES(t) =

(1 + ηchp)
−1ρchp(t)Pchp(t) + ρE

grid(t)Pbuy(t)(
Pdis(t)− Pch(t) + Pbuy(t)

−Psell(t) + Pchp(t) + upv(t) + uwt(t)

) (5)

ρET
IES(t) =

ρgb(t)Pgb(t) + (1− (1 + ηchp)
−1)ρchp(t)Pchp(t)ηchp

Pchp(t)ηchp + Pgb(t)
(6)

ρchp(t) = ρgas
Pchp(t)

ηchp × LHVgas
(7)

ρgb(t) = ρgas
Pgb(t)

ηgb × LHVgas
(8)
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where ρEC
IES(t) is the electric CEI index of the IES, kg/kWh; ρTC

IES(t) is the thermal NCI index
of the IES, kg/kWh; and ρE

grid(t) is the electric CEI index of the power grid, kg/kWh.
The CEI index in the IES considers different carbon emission inflows, and the carbon

emission in the IES is calculated using the product of the CEI index and load:

Qies
c (t) = ρEE

IES(t)Pe
load(t) + ρTE

IES(t)Pt
load(t) (9)

where Qies
c (t) is the actual emissions of the IES, kg; Pe

load(t) is the electrical load of the IES,
kW; and Pt

load(t) is the thermal load of the IES, kW.

(3) Ladder carbon trading model

Formula (10) defines the carbon trading volume of the IES. The actual carbon trading
volume is the difference between the carbon emissions and carbon emission quotas.

∆Qies
c (t) = Qies

c (t)−Qsystem
c (t) (10)

where ∆Qies
c (t) is the carbon trading volume of the IES.

Compared with the traditional carbon emission pricing mechanism, the ladder carbon
emission pricing method was adopted to further limit the carbon emissions of the IES. The
ladder pricing mechanism divides multiple ranges, and the more carbon emission quotas
that need to be purchased, the higher the purchase price of the corresponding range [27,28].
The ladder carbon trading cost can be defined by Formula (11):

Cct.i =



ctrade
c (1 + ϕ)(∆Qies

c (t)− l(t)) + ctrade
c ∆Qies

c (t),
i f l(t) ≤ ∆Qies

c (t) ≤ 2l(t)
ctrade

c (1 + ϕ)(∆Qies
c (t)− l(t)) + ctrade

c ∆Qies
c (t),

i f l(t) ≤ ∆Qies
c (t) ≤ 2l(t)

ctrade
c (1 + 2ϕ)(∆Qies

c (t)− 2l(t)) + ctrade
c (2 + ϕ)∆Qies

c (t),
i f ∆Qies

c (t) ≥ 2l(t)

(11)

where Cct.i is the carbon quota transaction cost; ctrade
c is the base price of carbon quota

trading; ϕ is the price growth rate; and l(t) is the carbon emission interval.

2.1.3. Planning Framework Based on CTS

In this study, the IES multi-stage planning method of a park was closely combined
with the development process of the park and synchronized with the construction of the
park [29]. Figure 2 shows a schematic of the park IES’s multi-stage planning considering
the CTS.

This study divided the development of the park into multiple stages according to the
expected time, scale of future users, and the growth rate of the load. As shown in Figure 2,
new users will enter each stage in turn, and the load demand of the park will also show a
step-by-step growth with the progress of the development process. The load level of each
stage is the maximum load predicted at that stage.

In this study, the planning cycle of the park IES was divided into N stages, and the
multi-stage sequence S can be expressed as in Formula (12):

S = [S1, S2, Si . . . SN ] (12)

The planned equipment set sequence corresponding to N construction stages can be
expressed as Formula (13):

Eset = [Eset1 , Eset2 , Eseti . . . EsetN ] (13)

where EsetN is the incremental set of equipment based on EsetN−1 .
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In considering the construction time sequence, the multi-stage planning idea of the
park IES includes the following steps:

(1) Input parameters such as equipment, load, carbon emission, and energy prices.
(2) As shown in the lower part of Figure 2, in the early year S1, the Eset1 is planned and

configured to determine the capacity of various types of equipment to meet the load
demand S1.

(3) In the early years S2, Eset2 is planned and configured based on Eset1 , and the capacities
of various types of equipment in S2 are determined to meet the energy supply demand
of S2 under load growth.

(4) By analogy, in the early years Si, based on the planned equipment set Eset1 ∪ Eset2 . . .∪
Eseti−1 , the capacities of various types of equipment in the set Eseti can be obtained to
meet the load demand of Si until the last planning stage SN .

2.2. Low-Carbon-Oriented Capacity Optimization Model
2.2.1. Objective Function

The uncertainty of renewable energy power generation will lead to the fluctuation of
the energy supply power in the IES. The dynamic balance of the electricity and thermal
supply and demand is closely coupled with the operation characteristics, which will
eventually affect the capacity allocation of the system’s energy equipment. In this study,
the equipment capacity was taken as the optimization variable to minimize the total system
cost in the worst case caused by the uncertainty of photovoltaic and wind power. A double-
layer configuration model of the IES capacity based on robust optimization was constructed.
This study used the minimum comprehensive cost as the objective function.

minC = Cint + Cope (14)

Cint = ρ(1+ρ)res

(1+ρ)r−1 ∗ ces.intPes.cap

+ ρ(1+ρ)rPV

(1+ρ)rPV−1 ∗ cpv.intPpv.cap +
ρ(1+ρ)rWT

(1+ρ)rWT−1 ∗ cwt.intPwt.cap +
ρ(1+ρ)

rchp

(1+ρ)
rchp−1

∗ cchp.intPchp.cap +
ρ(1+ρ)

rgb

(1+ρ)
rgb−1

∗ cgb.intPgb.cap
(15)

Cope =
I

∑
i=1

365ki[Cgrid.i + Com.i + Ces.i + C f uel.i + Cct.i] (16)

Cgrid.i =
T

∑
t=1

[cgrid(t)Pbuy.i(t)∆t− cgrid(t)Psell.i(t)∆t] (17)
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Com.i =
W

∑
w=1

T

∑
t=1

com.wPw.i(t)∆t (18)

C f uel.i =
T

∑
t=1

c f uel [Pchp.i(t) + Pgb.i(t)]∆t (19)

Ces.i =
ces.int · 106

2L(SOCmax − SOCmin)
·

T

∑
t=1

Pes.i(t)∆t (20)

where Cint is the investment cost; Cope is the operation cost; and Cgrid.i, Com.i, Cbat.i, C f uel.i,
and Cct.i are the electricity cost, maintenance cost, battery degradation cost, fuel consump-
tion cost, and carbon trading cost.

2.2.2. Constraint Conditions

Formula (21) is the installed capacity constraint; Formulas (22) and (23) define the
energy balance constraint of the electric power and thermal power in the IES.

0 ≤ Pi.cap ≤ Pi.cap.max (21)

Pdis(t)− Pch(t) + Pbuy(t)− Psell(t) + Pchp(t) + upv(t) + uwt(t) = Pe
load(t) (22)

Pchp(t)ηchp + Pgb(t)ρgb = Pt
load(t) (23)

Formulas (24)–(27) define the operation constraints of the CHP, GB, PV, and WT.

0 ≤ Pchp(t) ≤ Pchp.max (24)

0 ≤ Pgb(t) ≤ Pgb.max (25)

0 ≤ upv(t) ≤ Ppv.max (26)

0 ≤ uwt(t) ≤ Pwt.max (27)

Formulas (28)–(32) define the constraints related to the ES operation. Formula (33)
represents the power constraint of power interaction between the IES and the power grid.{

0 ≤ Pdis(t) ≤ [1−Ues(t)]Pes.max
0 ≤ Pch(t) ≤ Ues(t)Pes.max

(28)

Pes.max = µEes.max (29)

SOC(t) = [E(0) + η
T

∑
t=1

Pch(t + 1)− 1
η

T

∑
t=1

Pdis(t + 1)]/Ees.max (30)

SOCmin ≤ SOC(t) ≤ SOCmax (31)

η
24

∑
t=1

Pch(t)∆t− 1
η

24

∑
t=1

Pdis(t)∆t = 0 (32)

{
0 ≤ Pbuy(t) ≤ Ugrid(t)Pgrid.max
0 ≤ Psell(t) ≤ [1−Ugrid(t)]Pgrid.max

(33)
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2.2.3. Two-Stage Robust Planning Model

In order to solve the operation uncertainty of the WT and PV power, the robust opti-
mization method was introduced into the deterministic model established in
Section 2.2.1 [30,31]. The uncertainty of the PV and WT output is expressed as a box-
type uncertain U set with equal scaling of the upper and lower bounds:

U :=

 u = [upv(t), uwt(t)]
T ∈ RT×2, t = 1, 2, . . . , T|

upv(t) ∈ [ûpv(t)− ∆upv,max(t), ûpv(t) + ∆upv,max(t)]
uwt(t) ∈ [ûwt(t)− ∆uwt,max(t), ûwt(t) + ∆uwt,max(t)]

(34)

where upv(t) and uwt(t) are the uncertain variables of the PV output and WT output after
considering uncertainty; upv,p(t) and uwt,p(t) are the predicted output of the PVs and
WT; and ∆upv,max(t) and ∆uwt,max(t) are the maximum power fluctuations of the PV and
WT power.

Among the IES investigated in this study, when the PV and WT output reaches the
interval boundary, the operating cost of the IES is higher, which is more in line with the
definition of the “worst scenario”. Therefore, Formula (35) can be rewritten as follows [30]:

U :=



u = [upv(t), uwt(t)]
T
∣∣∣

upv(t) = ûpv(t) + (bpv
+(t)− bpv

−(t))∆upv,max(t)
bpv

+(t), bpv
−(t) ∈ {0, 1}

bpv
+(t) + bpv

−(t) ≤ 1
24
∑

t=1
bpv

+(t) + bpv
−(t) ≤ Γpv

uwt(t) = ûwt + (bwt
+(t)− bwt

−(t))∆uwt,max(t)
bwt

+(t), bwt
−(t) ∈ {0, 1}

bwt
+(t) + bwt

−(t) ≤ 1
24
∑

t=1
bwt

+(t) + bwt
−(t) ≤ Γwt

(35)

where b+(t) and b−(t) are binary variables, and when b+(t) = 1, it means that the uncertain
variable is taken to the upper boundary of the interval; Γpv and Γwt are the uncertainty
adjustment parameters of PV output and WT power. The values of Γpv and Γwt are integers
ranging from 0 to T, indicating the total number of periods in which the PV and WT output
power reach the minimum or maximum value in the dispatching cycle. They can be used to
adjust the conservatism of the optimal solution. The bigger the value, the more conservative
the scheme; conversely, the riskier the scheme.

After sorting out the above constraints, the two-stage robust equivalent optimization
model can be expressed as follows [31]:

min
x
{ f1(x) + max

u∈U
r(x, u)}

h(x) ≤ 0

s.t.


r(x, u) = min

y
f2(y, x, u)

s.t.
{

g(y, x, u) ≤ 0
l(y, s, u) = 0

(36)

x = [Pes.cap, Ppv.cap, Pwt.cap, Pchp.cap, Pgb.cap]
T (37)

u = [upv(t), uwt(t)]
T (38)

y = [Pdis(t), Pch(t), Pbuy(t), Psell(t), Pchp(t), Pgb(t)]
T (39)
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s = [Ues(t), Ugrid(t)]
T (40)

where f1(x) is the objective function of the capacity allocation model of the first stage, which
can be expressed by Formula (15); h(x) ≤ 0 is the first stage constraint, corresponding to
the installed capacity constraint of Formula (21); f2(y, x, u) is the objective function of the
second stage, which can be expressed by Formula (16); x defines the decision variable of
the first stage, that is, the configuration capacity of each energy equipment; u defines the
uncertain variable, including the PV and WT output; y defines the decision variable of the
second stage, that is, the output power of each energy equipment; s defines the decision
variable of the second stage, which is the 0/1 state variable related to the power of the ES
and power grid; g(y, x, u) is the inequality constraint of the second stage, which can be
expressed by Formulas (24)–(28), (31), and (32); and l(y, s, u) is the equality constraint of
second stage, which can be expressed by Formulas (22), (23), (29), (30), and (32).

2.3. Model Solving Method

Aiming at the above two-stage robust optimization model, this study used the column
constraint generation algorithm (C&CG) to solve it [32,33]. The C&CG divides the estab-
lished model into the main problem and sub-problem for iterative solutions. The main
problem is the capacity planning problem, and the sub-problem is the economic operation
problem under the worst scenarios.

The main problem can be expressed by Formula (41):

min
x

(cTx + θ)

s.t.



θ ≥ dTyl
Ax ≥ g
Bx + Cyl ≥ h
Dyl = 0
Eyl ≥ e
Fyl = ul

∗

∀l ≤ k

(41)

where k is the current iteration; yl is the solution of the sub-problem after the lth iteration;
and ul

∗ is the value of the uncertain variable u in the worst scenario obtained after the
lth iteration.

The sub-problem can be expressed by Formula (42):

max
u∈U

min
y∈Ω(x,u)

dTy (42)

where c, d are the coefficient vectors corresponding to objective functions; θ is the intermedi-
ate vector; A, B, C, D, E, and F are the coefficient matrices of variables under corresponding
constraints; and g, h, and e are the constant column vectors.

The feasible domains of operation variables in the sub-problem are as follows:

Ω(x, u) :=


y|

Ey ≥ e→ Dγ

Dy = 0→ Dλ

Bx + Cy ≥ h→ Dυ

Fy = u→ Dπ

 (43)

where Dγ, Dλ, Dυ, and Dπ are the dual variables of the constraints contained in the inner
minimization problem in the sub-problem.

Since the worst operation scenario in the sub-problem is related to the operation
variables, the dual maximization problem of the inner minimization problem in the sub-
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problem is solved first and then merged with the outer maximization problem. The dual
problem is obtained as follows:

max
u∈U,Dγ ,Dλ ,Dυ ,Dπ

eT Dγ + (h− Bx)T Dυ + uT Dπ

s.t.
{

ET Dγ + DT Dλ + CT Dυ + FT Dπ ≤ d
Dγ ≥ 0, Dλ ≥ 0, Dυ ≥ 0, Dπ ≥ 0

(44)

When the uncertain variable expression in Formula (35) is substituted into Formula (41),
the product of the binary variable and continuous variable appears. In introducing auxiliary
variables and related constraints, it is linearized as follows:

max
b,b′ ,b′′ ,Dγ ,Dλ ,Dυ ,Dπ

eT Dγ + (h− Bx)T Dυ + ûT Dπ + ∆uTb′ + ∆uTb′′

s.t.



ET Dγ + DT Dλ + CT Dυ + FT Dπ ≤ d
0 ≤ b′ ≤ Dπb+

Dπ − Dπ(1− b+) ≤ b′′ ≤ Dπ

0 ≤ b′′ ≤ Dπb−

Dπ − Dπ(1− b−) ≤ b′′ ≤ Dπ

b+(t), b−(t) ∈ {0, 1}
b+(t) + b−(t) ≤ 1
24
∑

t=1
bpv

+(t) + bpv
−(t) ≤ Γpv

24
∑

t=1
bwt

+(t) + bwt
−(t) ≤ Γwt

Dγ ≥ 0, Dλ ≥ 0, Dυ ≥ 0, Dπ ≥ 0

(45)

where ∆u = [∆upv,max(t), ∆uwt,max(t)]
T, b′ = [bpv(t)

+′, bwt(t)
+′]

T
, and b′′ = [bpv(t)

−′′ , bwt(t)
−′′ ]

T

are the continuous auxiliary variable, and Dπ is the upper bound of the dual variable,
which can be taken as a sufficiently large positive real number.

After the derivation and transformation, the two-stage robust model is decoupled into
a central problem (Formula (44)) and a sub-problem (Formula (45)) with a relaxed integer
linear form. The transformed model can be solved using the C&CG algorithm [32,33]
as follows:

(1) Set a group of uncertain variables as the initial worst scenario, and set the lower
bound of the optimization problem LB = −∞, the upper bound of the optimization
problem UB = +∞, the maximum gap between the upper and lower bounds ε, and
the number of iterations k = 1;

(2) Solve the main problem (Formula (44)) according to the worst scenario u∗1 to obtain
the optimal solution (x∗k , θ∗k , y∗1 , . . . , y∗k ), and update the lower bound LB = cTx∗k + θ∗k ;

(3) Substitute the solution x∗k of the main problem into Formula (44) to obtain the objective
function value f ∗k (x∗k ) of the sub-problem and the corresponding uncertain variable
value u∗k+1 in the worst scenario, and update the upper bound
UB = min

{
UB, cTx∗k + f ∗k (x∗k )

}
;

(4) If UB− LB ≤ ε, terminate the iterative process, and the optimal decision result is
then x∗k ; otherwise, add the auxiliary variable y∗k+1 and its corresponding constraint
condition (46) to the main problem, update the iteration number k = k+1, and return
to step (2) until the algorithm converges.

θ ≥ dTyk+1
Bx + Cyk+1 ≥ h

Dyk+1 = 0
Eyk+1 ≥ e

Fyk+1 = uk+1
∗

(46)
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3. Results and Discussion

In order to verify the validity and accuracy of the proposed model, the carbon-oriented
planning method was applied to a planned IES with CHP, an EB, a ES, PVs, and a WT. The
planning period of the IES was 15 years. According to the load growth in the park, it was
assumed that the initial load growth rate would be faster; the mid-term load growth rate,
lower; and the late-term load level, gradually stabilized.

3.1. Basic Parameters

The planning cycle of the IES was divided into three stages, and the duration of each
stage was 3 years, 5 years, and 7 years. Table 1 shows the load information of each stage of
the IES. The economic and technical parameters of the candidate planning equipment are
shown in Tables 2 and 3.

Table 1. Load information on each stage of IES.

Stage Starting Time Maximum Electrical Load Maximum Thermal Load

Stage 1 Year 1 800 kW 800 kW
Stage 2 Year 4 1000 kW 1200 kW
Stage 3 Year 9 1200 kW 1600 kW

Table 2. Economic parameters of candidate planning equipment.

Equipment Investment Operation Cost Lifetime

CHP 7000 CNY/kW 0.05 CNY/kW 25 years
GB 1000 CNY/kW 0.04 CNY/kW 25 years
ES 2000 CNY/kW 0.026 CNY/kW 15 years
PV 4500 CNY/kW 0.039 CNY/kW 25 years
WT 5100 CNY/kW 0.025 CNY/kW 25 years

Table 3. Technical parameters of candidate planning equipment.

Parameters Value

Generating efficiency of CHP 0.3
Thermal–electricity ratio of CHP 1.47

Heating efficiency of GB 0.89
Efficiency of waste heat boiler 0.8

Charge/discharge efficiency of ES 0.95/0.95

To truly reflect the actual operating conditions of the IES, the data of the electrical
load, thermal load, predicted WT power, and predicted PV power of four typical days in
spring, summer, autumn, and winter were selected for optimization. Figure 3a,b show the
typical daily electrical load and thermal load, respectively. Figure 3c,d show typical daily
predicted power curves of the WT and PVs in different seasons, respectively. It is assumed
that the prediction error of the WT was 20% and that of the PVs was 15%. The uncertainty
adjustment parameters of the WT and PVs are 10 and 8, respectively. The optimal time
period was 24 h, and the time interval for each optimization was 1 h.

Table 4 shows the wholesale electricity price in the electricity market. The natural gas
price is 3.25 CNY/m3, and the on-grid tariff is 0.45 CNY/kWh. The introductory price of
carbon trading is 78.97 CNY/t, the growth coefficient of the trading price is 0.25, and the
interval length of the carbon trading price is 80,000 kg. The CEI index of natural gas is
1.96 kg/m3, the CEI index of coal power is 0.85 kg/kWh, and the low-calorific value of
natural gas is 9.78 kWh/m3. The carbon emission benchmark for the comprehensive power
supply of units is 0.392 kg/kWh, and the thermal–electricity conversion coefficient is 1.25.
The electricity input of the IES from the grid is assumed to be coal electricity only.
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Table 4. Wholesale electricity prices in the electricity market.

Time Windows Value

1:00~7:00 0.564 CNY/kWh
8:00~9:00; 14:00~17:00 0.826 CNY/kWh

10:00~13:00; 18:00~24:00 1.134 CNY/kWh

To illustrate the effectiveness of the established method in improving system operation
economy and carbon emission reduction, two scenarios were set for comparison.

Scenario 1: The equipment configuration of the whole planning cycle is planned only
at the beginning of the first year, regardless of the IES construction sequence.

Scenario 2: In considering the IES construction sequence, the multi-stage planning
method proposed in this paper is adopted to plan the equipment configuration scheme at
each stage.

3.2. Simulation Results

In solving the planning schemes of Scenario 1 and Scenario 2, the equipment planning
results of each stage can be obtained. Table 5 shows the capacity planning result of the IES
at different stages. Figure 4 shows the construction time sequence of various equipment.

As shown in the data in Table 5, in the phased planning scenario, the total installed
capacities of the CHP and WT were 1500 kW and 400 kW, respectively, which are 11.11%
and 33.33% higher than the scenario capacity planned once at the beginning of the year.
In the phased planning scenario, the total installed capacities of the GB, PVs, and ES were
300 kW, 200 kW, and 150 kW, respectively, which are 8.33%, 13.33%, and 25.00% lower than
the scenario capacity planned once at the beginning of the year. In addition, in analyzing the
data changes in Table 5, it can be seen that in the scenario of phased planning, the capacities
of the CHP, PVs, and ES are relatively large in the first stage of planning, accounting for
more than or equal to 50% of the total capacity, which indicates that this equipment is the
primary energy supply equipment in the optimization of system operation.
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Table 5. Capacity planning results of the IES.

Equipment Scenario Stage 1 Stage 2 Stage 3 Total

CHP/kW
Scenario 1 1350 0 0 1350
Scenario 2 800 350 350 1500

GB/kW
Scenario 1 360 0 0 360
Scenario 2 150 100 50 300

PV/kW
Scenario 1 260 0 0 260
Scenario 2 150 150 0 300

WT/kW
Scenario 1 300 0 0 300
Scenario 2 150 150 100 400

ES/kW
Scenario 1 200 0 0 200
Scenario 2 100 50 0 150
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Figure 4. Construction time sequences of various equipment.

From the perspective of the constructed time sequences, the planned capacity of the
PVs and ES reaches saturation in the second stage, while the planned capacity of the
CHP, GB, and WT reaches saturation in the third stage. To further analyze the operational
status of the system in a phased planning scenario, we simulated the operating conditions
of the system in all four seasons when the planned capacity of the equipment in this
scenario reached saturation. Figures 5–8 show the dispatching strategy of the energy
supply equipment in the spring, summer, autumn, and winter.
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Figure 5. Dispatching strategy of energy supply equipment in spring.
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Figure 6. Dispatching strategy of energy supply equipment in summer.
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Figure 8. Dispatching strategy of energy supply equipment in winter.

Based on the above simulation results, the calculation results of the operation economy,
renewable energy utilization rate, and carbon emissions were obtained. Table 6 shows the
life cycle cost of the IES in different scenarios, and Figure 9 shows the variation trend of the
accumulated net cash flow with the life cycle. Figure 10 shows the energy utilization rate of
the PVs and WT in different scenarios, and Figure 11 shows the carbon emission changing
with the change in carbon trading prices.



Processes 2024, 12, 648 15 of 19

Table 6. Life cycle cost of IES in different scenarios.

Composition of Cost Scenario 1 Scenario 2

Investment cost/10,000 CNY 1295.000 1286.000
Electricity cost/10,000 CNY 6832.800 5978.700

Maintenance cost/10,000 CNY 908.250 886.727
Battery degradation cost/10,000 CNY 85.410 76.869
Fuel consumption cost/10,000 CNY 8634.951 7443.482

Carbon trading cost/10,000 CNY −70.058 −91.902
Total cost/10,000 CNY 17,686.353 15,579.875
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Figure 10. Energy utilization rate of PV and WT power in different scenarios.

In order to further verify the advantages of the model considering the carbon quota
in improving economy and carbon emission reduction, the proposed model in this paper
and other models that consider the carbon cost in their objective function were compared.
The models and parameters used in the simulation are consistent with this paper, but the
carbon cost model refers to Ref. [34], and the carbon cost coefficient, like the basic price of
carbon trading, was 78.97 CNY/t. The difference between the two models above is that the
model established in this paper can participate in carbon quota trading to flexibly adjust
carbon emissions and carbon costs, while the model in Ref. [34] can solve only the problem
of excessive carbon emission by paying carbon emission costs. Table 7 shows the simulation
results of the two models.
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Table 7. Simulation results of two models.

Composition of Cost Model in Ref. [34] Model in This Paper

Investment cost/10,000 CNY 1289.000 1286.000
Electricity cost/10,000 CNY 6123.590 5978.700

Maintenance cost/10,000 CNY 899.260 886.727
Battery degradation cost/10,000 CNY 79.265 76.869
Fuel consumption cost/10,000 CNY 8016.390 7443.482

Carbon cost/10,000 CNY 16.355 −91.902
Total cost/10,000 CNY 16,423.860 15,579.875

As can be seen from the data in Table 7, the model established in this paper has more
advantages than the model in Ref. [34] in reducing the total cost and carbon cost. The model in
Ref. [34] has no flexible mechanism with which to participate in carbon trading because it does
not consider the carbon quota. As a result, the system is always subject to strict constraints of
carbon emission during operation, and it is impossible to flexibly adjust the carbon emission
strategy without carbon quota trading. In some cases of excessive carbon emission, only a
high carbon cost can be paid. The model established in this paper can gain profits by trading
surplus carbon quota flexibly. The numerical simulation results show that the total cost of the
model established in this paper is 5.14% lower than that of the model in Ref. [34].

3.3. Result Analysis

To further illustrate the significant effects of phased planning in improving operational
efficiency and reducing carbon emissions. This section analyzes the full lifecycle cost, renewable
energy utilization efficiency, and carbon emissions of the IES in two planning scenarios [12–18].

Compared with the scenario of completing planning at the beginning of the life
cycle at one time, the low carbon-oriented capacity optimization method considering
construction time sequence and uncertainty can reduce the cost of the integrated energy
system. According to the data in Table 6, the total system costs for Scenario 1 and Scenario 2
were CNY 176.86353 million and CNY 155.79875 million, respectively. The total cost of
phased planning was reduced by 11.91% compared to the total cost of one-time planning at
the beginning of the year. Among them, the system capacity planning cost in Scenario 2
was CNY 12.86 million, 0.69% lower than that of one-time planning. In addition, the carbon
trading returns of the system in two scenarios were CNY 7,005,800 and CNY 9,190,200,
respectively, indicating that the carbon emissions in the system did not exceed the carbon
quota in both scenarios. From Figure 9, it can be seen that in the phased planning scenario,
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the dynamic investment payback period of the investment is 10.59 years, achieving a
balance between income and expenditure.

Compared with the scenario of completing planning at the beginning of the life cycle at
one time, the low carbon-oriented capacity optimization method considering construction
time sequence and uncertainty can enhance renewable energy utilization. From Figure 10,
it can be seen that the average utilization rates of PV and WT power in the first stage of
Scenario 1 were 96.67% and 98.67%, respectively, indicating the presence of PV and WT
electricity abandonment phenomena. The reason for these phenomena is that in Scenario 1,
all equipment was planned as disposable cups, and the load level of the IES has not yet
reached its peak, resulting in the PV and WT power generation not being fully utilized. On
the other hand, in Scenario 2, as both the PV and WT power were planned in stages, the
matching degree between their power generation and load are relatively high, resulting in
a utilization rate of 100% for both PV and WT power throughout their entire lifecycle.

Compared with the scenario of completing planning at the beginning of the life cycle at
one time, the low carbon-oriented capacity optimization method considering construction
time sequence and uncertainty can reduce system carbon emissions. Figure 11 shows the
carbon emission and carbon trading cost changes with the changes in carbon trading prices.
Due to the consideration of system carbon quotas and carbon emission factors during the
planning phase, and the consideration of carbon trading costs in the optimization objective
function, the carbon emissions of the system never exceeded the standard. Therefore, when
the carbon trading price changes, the changes in the system carbon emissions and carbon
trading costs are relatively small.

Based on the above analysis, the method established in this paper can be applied in
the practical engineering of equipment capacity planning and the low-carbon operation
optimization of IESs to reduce the cost and carbon emission of the systems at the planning
stage as much as possible and improve the utilization rate of renewable energy. In addition,
the current research focused only on optimizing the energy system capacity and did not
consider the choice of equipment construction location. In the future, the low-carbon-
oriented capacity and location optimization methods can be considered and studied.

4. Conclusions

This study focused on the low-carbon-oriented capacity optimization of an electric–
thermal IES by considering construction time sequence and uncertainty, and through
simulations and analyses, some important conclusions were obtained. (1) The established
method can effectively reduce the cost of the system; the total cost of phased planning was
reduced by 11.91% compared to the total cost of one-time planning at the beginning of the
year. (2) The established method can effectively enhance the renewable energy utilization
of the system compared to the one-time planning method; the utilization rate of both PV
and WT power can reach 100%. (3) The established method can effectively reduce the
carbon emissions of the system compared to the one-time planning method; the carbon
emissions of the system decreased by 23.77%. (4) The numerical simulation results show
that the total cost of the model established in this paper was 5.14% lower than that of
the model considering the carbon cost in the objective function. To sum up, compared
with the scenario of completing planning at the beginning of the life cycle at one time, the
proposed low-carbon-oriented capacity optimization method that considers construction
time sequence and uncertainty can not only reduce the cost of integrated energy system,
but also help to enhance renewable energy utilization and reduce system carbon emissions.
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