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Abstract: Rare earth elements (REEs including Sc, Y) are critical minerals for developing sustainable
energy sources. The gradual transition adopted in developed and developing countries to meet
energy targets has propelled the need for REEs in addition to critical metals (CMs). The rise in
demand which has propelled REEs into the spotlight is driven by the crucial role these REEs play in
technologies that aim to reduce our carbon footprint in the atmosphere. Regarding decarbonized
technologies in the energy sector, REEs are widely applied for use in NdFeB permanent magnets,
which are crucial parts of wind turbines and motors of electric vehicles. The underlying motive
behind exploring the energy and carbon footprint caused by REEs production is to provide a more
complete context and rationale for REEs usage that is more holistic. Incorporating artificial intelligence
(AI)/machine learning (ML) models with empirical approaches aids in flowsheet validation, and
thus, it presents a vivid holistic picture. The energy needed for REEs production is linked with the
source of REEs. The availability of REEs varies widely across the globe. REEs are either produced
from ores with associated gangue or impurities. In contrast, in other scenarios, REEs can be produced
from the waste of other mineral deposits or discarded REEs-based products. These variations in
the source of feed materials, and the associated grade and mineral associations, vary the process
flowsheet for each type of production. Thus, the ability to figure out energy outcomes from various
scenarios, and a knowledge of energy requirements for the production and commercialization of
multiple opportunities, is needed. However, this type of information concerning REEs production
is not readily available as a standardized value for a particular material, according to its source
and processing method. The related approach for deciding the energy and carbon footprint for
different processing approaches and sources relies on the following three sub-processes: mining,
beneficiation, and refining. Some sources require incorporating all three, whereas others need two or
one, depending on resource availability. The available resources in the literature tend to focus on
the life cycle assessment of REEs, using various sources, and they focus little on the energy footprint.
For example, a few researchers have focused on the cumulative energy needed for REE production
without making assessments of viability. Thus, this article aims to discuss the energy needs for each
process, rather than on a specific flowsheet, to define process viability more effectively regarding
energy need, availability, and the related carbon footprint.

Keywords: rare earths; energy consumption; artificial intelligence; machine learning; processing

1. Introduction

The lanthanide group of elements in the periodic table consists of Rare Earth Elements
(REEs), which range from Lanthanum (La) to Lutetium (Lu), in addition to Scandium (Sc)
and Yttrium (Y). The “rare” term herein is misleading as it assumes these elements are
barely available. However, researchers have discovered and estimated 200 REE-bearing
minerals, of which, 160 have a remarkably high abundance. Ideally, the crystal abundance
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would be higher than some precious and base metals. Therefore, here, the term “rare”
means that the concentration values of REE, within a specific mineral type, are less than
only a few parts per million (ppm) [1,2]. In recent decades, the importance of REEs to
industrial needs has increased because these exhibit highly valued magnetic, spectral,
and mechanical properties. Their addition enhances the strength of steel and magnesium-
based alloys in metallurgy, stabilizes catalytic structures, and controls pollutants in the
automobile industry. Moreover, it increases dielectric constants and permeability values
in the electronics sector, captures UV radiation, aids glass polishing in the glass industry,
reduces magnet weight in manufacturing, enables the emission of a specific wavelength in
phosphor applications, and contributes to neutron absorption in the nuclear industry [3].

Additionally, REEs facilitate the increased storage of solid-state hydrogen as a metal
hydride [3]. According to data from the European market from 2012–2023, the magnets,
catalysts, and ceramics manufacturing industries showed a tremendous increase (nearly
twice) in the utilization of REEs [2,4,5]. Due to supply chain vulnerabilities and material
availability challenges in the transition to green energy, the United States Department of
Energy categorizes REEs as energy-critical elements [6]. We have highlighted this cate-
gorization because government policies promote sustainable extractions and they reduce
dependence on foreign suppliers like China, a global producer and supplier of REEs with
market shares [7]. Today, the global production of REEs relies heavily on the conventional
processing of primary ore bodies since they are highly suitable for superior leaching ef-
ficiency. Despite this advantage, these ore bodies’ non-renewable nature and limitations
underline the need to explore sustainable alternatives for sustaining REE production. Urban
processing seems to be a potential alternative; thus, tapping into these secondary sources
ensures a more sustainable supply of REEs [7,8]. A simple overview in Figure 1 depicts
the flowsheets of both conventional and urban processing concepts. Here, the process
cycle is explained, from mining to metal production, emphasizing the significant stages
and sources.
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The best economic mineable primary sources of REEs are bastnasite, monazite, and
xenotime deposits, which are associated with various gangue minerals based on the type
of deposit and its host rock. These deposits are processed through conventional processing,
as depicted in Figure 1. The REEs recovery from these sources is fast and high due to
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their high concentration (>1%), as compared with secondary sources [9]. Cerium (Ce) is
highly abundant among the naturally occurring deposits, and Thulium (Tm) is the least
abundant. Secondary resources comprising REEs encompass a wide range of sources,
including mine/mill tailings from the processing of gold/tungsten ores, electronic waste
products such as earphones, laptops, and batteries, residues from ore processing (e.g.,
bauxite), impurities from refining processes (dross/slag), residues from coal combustion
(ash), and some rare earth-based alloys which may be recycled (LTR) [10,11]. The urban
processing route, as shown on the right-hand side in Figure 1, is used for extracting
REEs from secondary sources. Recycling these resources using adaptable conventional
methods is critical because the concentration and associated impurities vary depending on
mineralogical factors and diverse feed sources. Therefore, the primary extraction processes
are partially modified when processing these sourced materials, and the same applies to
the associated constraints, conditions, and chemicals utilized. Moreover, regarding metal
production, the demand to meet consumers’ daily product needs is forcing manufacturers
to implement widely applicable and innovative techniques, thereby enforcing a need for
mapping energy consumption [12]. Therefore, estimating energy consumption (KWh) is
needed, and these values vary from place to place, depending on the sources of the REEs.
Energy consumption (EC) analysis involves deeply understanding intrinsic and extrinsic
parameters. This topic is quite familiar in the 21st century; it rose to prominence in 1968 in
the U.K., and in 1972 in the USA. The main aim of EC analysis is to provide a precise and
correct analysis by accounting for the factors of both the direct and indirect energy sources
used in production processes. Industrialists use EC as the quantitative analysis method
for task accomplishment [13]. The estimation of EC for REEs started in 1976, with an
estimation of 35.46 GJ; it was derived from the mining to leaching process, which produced
1 ton of Rare Earth Oxide (RO) from Bastnasite ore [14]. In 2013, the theoretical EC was
estimated as having produced 1 ton of REM from the primary sources of REEs (namely,
the Bastnasite required EC of 33.16–75.83 GJ, the Monazite required EC of 25.94–68.61 GJ,
and the Xenotime required EC of 26.02–68.69 GJ [15]. In 2015, the primary EC needed to
produce 1 ton of RO was 300–600 GJ, which is significantly higher than other estimates [16].
In 2016, the EC for the world’s deposits was analyzed, and the average was approximately
1218 GJ per 1 ton of RO [12]. The estimated EC for Ion adsorption clays to produce 1 ton
of RO was 19.86 GJ in 2016 [17] and 442.60 GJ [18] in 2019. In 2019, the estimated EC for
mining and mineral processing operations, to process 1 ton of mine/mill tailings, was
0.02–0.05 GJ [19,20]. Moreover, the estimated EC for producing 1 ton of RO from waste
fluorescent powders was 17.78 GJ [21]. In 2021, the estimated EC for the Bayan Obo deposit
varied from 10.60–291.07 GJ, to produce 1 ton of RO [22].

However, the available literature from the past to the present is focused only on the life
cycle assessments (LCA) and the carbon footprints of REEs, emphasizing environmental
impacts [12,20,22,23]. Furthermore, the variations in EC results, generated by different
researchers for similar types of ore bodies, are difficult to comprehend. Additionally, the
EC information is limited and discrete because its scope of explanation varies depending
on the type of process considered during the data collection period, and the types of pro-
cess vary significantly in terms of continent, conditions, and data assumptions. There is
still no brief discussion on the processes and factors that are considered for calculating
energy estimations. There are only a few studies in the literature that explain the energy
demand. However, these discussions are restricted to highlighting a particular set of pro-
cesses. Precise information concerning these aspects tends to be confined to the industries.
Thus, understanding and estimating the energy used is not yet known, and there are no
answers to the question of which route is most energy efficient. Therefore, this article is
aimed at discussing the empirical calculation for the specific energy consumption (SEC)
(KJ/t) needed to generate one metric ton of final product (Rare Earth Oxide/Metal) after
processing a specific feed with a known REE concentration. Although the conditions for
this article are similar to those in the available literature, we nevertheless used them as a
basis and focused on constructing a comprehensive and transparent depiction of EC, using
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those datasets and ensuring the accuracy of the analysis through well-justified assumptions
when the data were insufficient or incomplete. The present article analyzes the extracted
data and processes from those ten datasets for diverse feed grades. These datasets helped
us to generate an empirical equation, as discussed in Section 3. This analysis was further ex-
tended by training AI and ML-based systems using these datasets, resulting in a predictive
estimation of dimensionless scales for a given type of feed with a known REEs percentage,
which aided in the validation of our approach. Moreover, this analysis has opportunity for
application in designing flowsheets because it highlights the factor-to-factor considerations
that are either intrinsic or extrinsic to energy consumption.

2. Methodology and Scope

This work’s main goal and scope are focused on deriving the theoretical EC needed to
produce a holistic processing route. The aim was to formulate a mathematical relationship,
using the necessary information from those datasets, to obtain an extensive understanding
of the EC for each unit operation by considering all the associated auxiliary operations. The
methodological framework adopted here involves steps which systematically progress to
yield a reasonable and well-founded conclusion. The procedure followed here is based on
directions and guidelines in the literature [13,24].

The commencement of the EC assessment starts with defining the system boundaries,
as shown in Figure 2. The first boundary is type of feed, followed by mining, beneficiation,
and metallurgical processing to achieve rare earth oxide. The next vital step concerns
defining the method for the processing route, which is crucial for extracting the auxiliary
unit operations and identifying parameters. This step is vital as it involves the REEs
concentrations across feed sources; thus, the processing route defines the need for unit
operations. In this work, we focused on two processing routes, namely, conventional
(primary sources) and urban (secondary sources) mining, with variations in the initial unit
operations. This analysis explicitly focuses on feed sources that were chosen for the primary
processing route, as follows: the bastnaesite, monazite, xenotime deposits, Ion adsorption
clay (IAC), and their process flow sheets, as obtained through industrial databases and LCA
reports. Concurrently, the feed sources for the chosen secondary resource processing routes
are extracted from coal ash and mine/mill tailings. Thus, using the available information,
an illustrative schematic flowsheet was created, as was the additional objective to consider
all the interconnected factors; this was followed by standardized unit conversion for
the feed and product, as expressed in ppm or as a percentage of rare earth oxide. This
conversion eases the EC needed to produce one metric ton of REEs oxide/metal. The
following process concerns training the AI and ML model obtained from AIandLearn
(https://aiandlearn.com/, accessed on 7 January 2024) software; here, a predictive analysis
of the EC was performed to understand how the EC varies with REE content. Additionally,
a deeper exploration further revealed that understanding the individual unit operation
involved in EC estimation could be a sustainable way to estimate the cumulative EC for the
derived theoretical flowsheet, which varies depending on research needs. Thus, the final
empirical equation concerns that which comprises all the factors that are associated with
each processing stage, which therefore provides a holistic picture. The following section
will provide a detailed description of the unit operations and the factors considered.

https://aiandlearn.com/
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Figure 2. System boundary for energy estimation.

3. Functional Units and Factor Determination
3.1. Composition of REEs in Feed Type

The REE feed sources considered in this work are the bastnaesite, monazite, xenotime
deposits, ion adsorption clays, coal ash, and mine/mill tailings. The EC estimation is
based on the REEs content because the unit operations are decided using these parameters.
Based on the literature data available [17,19,25,26], the analysis of the variations in REEs
content (except Sc) is explained using Figure 3. This heatmap helps to understand the
variations in La-Lu based on the feed source. Additionally, it is evident that almost all of
the resources are Ce-dominant (other than Xenotime, which is Y-dominant). This aspect of
Ce/Y dominance reflects initial researchers’ attempts at a sort of early segregation of REEs.
The supporting graph, shown in Figure 4, clearly explains where almost all of the resources
(except Xenotime resources) are potentially rich in light REEs (REEs), as compared with
heavy REEs (HREEs), and this also emphasizes the importance of selecting both of the
required primary and auxiliary operations.
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3.2. Mining Unit

In mining operations, a diverse array of techniques are accessed, depending on the
geological factors of the deposit found; for instance, the type (weathered/sedimentary),
location, and feasibility of cost-efficient extractions, as well as the depths, grade, and miner-
alogy of the deposit. These factors segregate mining operations into open-pit, underground,
and leaching-based (heap and dump) mining. To simplify EC estimations in this article,
the factors associated with leaching-based mining were not considered in the mining sec-
tion, but were explained by the metallurgical processing unit. The mining operations
implemented were open pit/underground for deposits like Bayan Obo and Mountain
Weld. These methods involve the auxiliary process of the Drill-Blast-Load-Haul (D-B-L-H).
The primary energy consumption factor for open pit operations was fuel usage for heavy
machinery. For the underground operations, the EC was related to mine development
and infrastructure, like tunnel creation, ventilation, and electrification. Therefore, the EC
in mining was related to all factors, such as the consumption of explosives, diesel, and
power usage in mine electrification [12,14,27], and their details are listed in Table 1. Table 1
features the factors considered, as well as their quantity and the net energy consumption
needed. However, these factors were either partially or fully linked with the feed grade and
recovery percentage. More precisely, feed grade and mineral (ore) recovery from the host
rock at the mine site were used to figure out the quantity of ore to be mined. Furthermore,
the diesel consumption factors were drilling equipment, blasting agents, load and haul
vehicles, and auxiliary mine vehicles for developed mine maintenance. Likewise, the host
rock hardness was essential for the blasting agent, which was governed by the feed grade
and recovery [28].

Table 1. Estimation of energy consumption at the mining unit.

Factors Quantity Needed Equivalent Energy Net Energy
Consumption

Blasting Explosive a1 (Kg) e1 (KJ/Kg) a1 × e1
Diesel a2 (gal) e2 (KJ/gal) a2 × e2

Electricity a3 (KWh) e3 (KJ/KWh) a3 × e3
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The theoretical material needed to produce 1 ton of RO is explained in Equation (1),
where NO tons of Ore are to be mined, or NT tons of tailings are to be processed with a feed
grade of f% and recovery of r% during processing.

No,T =
1

f% × r%
× 10, 000 (1)

Equation (2) is a modified form of Equation (1) where the scale is changed in terms
of REE metal (RM), and to produce 1 ton of RM, K tons of ore need to be mined if the RO
contains m% of RM per ton of RO.

K =
NO,T

m%
× 100 (2)

Therefore, Equation (3) estimates the mining unit’s net theoretical EC (KJ).

ECMiningunit = NO × [∑ (a1,2,3 × e1,2,3)] + NT × [∑ (a2,3 × e2,3)] (3)

3.3. Beneficiation Unit

Once the mining of a particular ore body is completed, the following process of en-
riching the ore occurs through the beneficiation unit, where the choice of equipment and
the unit operations are related to the mineralogy and the liberation characteristics of the
ore body. During this process, the ore and a mixture of REE-bearing minerals are unlocked
from the gauge associated with it, due to deposit formation in the host rock. This unlocking
process exploits a wide range of properties, like particle size reduction, using comminution,
density, electrostatic and magnetic behavior, and surface charge modifications (namely
flotation, but no change occurs in the chemical composition). Therefore, the beneficiation
operations are decided based on either the processing of the ore deposit (bastnaesite, mon-
azite, and xenotime) or tailings (mill/mine/coal ash). The ideal flowsheets for designing a
REEs-based beneficiation operation for these feed sources are represented in Figure 5. In
Figure 5, the process for primary and secondary sources are explained with material flows
(presented in the figure) in order to help us exactly understand the process that is followed
for a given feed type. The unit operations considered for these feed sources are crushing,
grinding, classification, conditioning, flotation, gravity separation, magnetic separation,
dewatering, and tailing disposal [19,23,29,30]. Magnetic separation is sometimes essential
for ores rich in high iron content, like Bayan Obo [22]. Table 2 explains the intrinsic and
extrinsic factors associated with unit operations, as shown in Figure 5. Moreover, Table 2
provides a comprehensive understanding of net energy consumption in relation to recovery.
This section explains the most energy-intensive operations, where the energy requirement
and extraction properties are aligned with the properties [12]. Thus, the calculation for EC
in this section is both intrusive and extrusive to the factors of all these operations, and it
is aligned with feed grade, recovery, and ore hardness. Therefore, the net EC (K.J.) of the
beneficiation unit was calculated using Equation (4).

ECBeneficiation unit = ∑ ax × ex × Nk.x (4)

x = c, g, cl, gs, ms, d, es, flo, con, dew;
k = concentrate (c.c), tailing (t.t).
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grinding media)

ag.s (Kg) eg.s (KJ/Kg) - No, NT

(ag.s × eg.s × No)
+

(ag.s × eg.s × NT)

Water
Pumping aw.g (KWh) ew.g (KJ/KWh) - No, NT

(aw.g × ew.g × No)
+

(aw.g × ew.g × NT)

C
la

ss
ifi

ca
ti

on
(c

l)

Electrical
Energy ae.cl (KWh) ee.cl (KJ/KWh) - No, NT

(ae.cl × ee.cl × No)
+

(ae.cl × ee.cl × NT)

Steel
(Installation) acl.s (Kg) ecl.s (KJ/Kg) - No, NT

(acl.s × ecl.s × No)
+

(acl.s × ecl.s × NT)

Water
Pumping aw.cl (KWh) ew.cl (KJ/KWh) - No, NT

(aw.cl × ew.cl × No)
+

(aw.cl × ew.cl × NT)
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Table 2. Cont.

Unit
Operation Factors Quantity

Required
Equivalent

Energy
Recovery

%
Material

Flow (Tons)
Net Energy Consumption

(KJ)

G
ra

vi
ty

se
pa

ra
ti

on
(g

s)

Electrical
Energy ae.gs (KWh) ee.gs (KJ/KWh) - No, NT

(ae.gs × ee.gs × No)
+

(ae.gs × ee.gs × NT)

Steel
(Installation) ags.s (Kg) egs.s (KJ/Kg) - No, NT

(ags.s × egs.s × No)
+

(ags.s × egs.s × NT)

Water
Pumping aw.gs (KWh) ew.gs (KJ/KWh) - No, NT

(aw.gs× ew.gs × No)
+

(aw.gs × ew.gs × NT)

Concentrate
Pumping ac.gs (KWh) ec.gs (KJ/KWh) Rgs

NG.C.1,
NG.C.2

(ac.gs× ec.gs × NG.C.1)
+

(ac.gs × ec.gs × NG.C.2)

Tailings
Pumping at.gs (KWh) et.gs (KJ/KWh) 1-Rgs

NG.T.1,
NG.T.2

(at.gs× et.gs × NG.T.1)
+

(at.gs × et.gs × NG.T.2)

M
ag

ne
ti

c
se

pa
ra

ti
on

(m
s)

Electrical
Energy ae.ms (KWh) ee.ms (KJ/KWh) - NG.C.1,

NG.C.2

(ae.ms × ee.ms × NG.C.1)
+

(ae.ms × ee.ms × NG.C.2)

Steel
(Installation) ams.s (Kg) ems.s (KJ/Kg) - NG.C.1,

NG.C.2

(ams.s × ems.s × NG.C.1)
+

(ams.s × ems.s × NG.C.2)

Water
Pumping aw.ms (KWh) ew.ms

(KJ/KWh) - NG.C.1,
NG.C.2

(aw.ms× ew.ms × NG.C.1)
+

(aw.ms × ew.ms × NG.C.2)

Concentrate
Pumping ac.ms (KWh) ec.ms (KJ/KWh) Rms

NM.C.1,
NM.C.2

(ac.ms× ec.ms × NM.C.1)
+

(ac.ms × ec.ms × NM.C.2)

Tailings
Pumping at.ms (KWh) et.ms (KJ/KWh) 1-Rms

NM.T.1,
NM.T.2

(at.ms× et.ms × NM.T.1)
+

(at.ms × et.ms × NM.T.2)

D
ry

in
g

(d
) Electrical

Energy ae.d (KWh) ee.d (KJ/KWh) - NM.C.1,
NM.C.2

(ae.d × ee.d × NM.C.1)
+

(ae.d × ee.d × NM.C.2)

Fuel oil/Steam ao.d (gal) eo.d (KJ/gal) - NM.C.1,
NM.C.2

(ao.d × eo.d × NM.C.1)
+

(ao.d × eo.d × NM.C.2)

El
ec

tr
ic

al
se

pa
ra

ti
on

(e
s)

Electrical
Energy ae.es (KWh) ee.es (KJ/KWh) - NM.C.1,

NM.C.2

(ae.es × ee.es × NM.C.1)
+

(ae.es × ee.es × NM.C.2)

Steel
(Installation) aes.s (Kg) ees.s (KJ/Kg) - NM.C.1,

NM.C.2

(aes.s × ees.s × NM.C.1)
+

(aes.s × ees.s × NM.C.2)

Electrical Energy
(Concentrate
processing)

ae.c.es (KWh) ee.c.es
(KJ/KWh) Res

NE.C.1,
NE.C.2

(ae.c.es × ee.c.es × NE.C.1)
+

(ae.c.es × ee.c.es × NE.C.2)

Electrical Energy
(Tailing

processing)
ae.t.es (KWh) ee.t.es

(KJ/KWh) 1-Res
NE.T.1,
NE.T.2

(ae.t.es × ee.t.es × NE.T.1)
+

(ae.t.es × ee.t.es × NE.T.2)
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Table 2. Cont.

Unit
Operation Factors Quantity

Required
Equivalent

Energy
Recovery

%
Material

Flow (Tons)
Net Energy Consumption

(KJ)

C
on

di
ti

on
in

g
(c

on
)

Electrical
Energy ae.con (KWh) ee.con

(KJ/KWh) - NE.C.1,
NE.C.2

(ae.con × ee.con × NE.C.1)
+

(ae.con × ee.con × NE.C.2)

Steel
(Installation) acon.s (Kg) econ.s (KJ/Kg) - NE.C.1,

NE.C.2

(acon.s × econ.s × NE.C.1)
+

(acon.s × econ.s × NE.C.2)

Water
Pumping aw.con (KWh) ew.con

(KJ/KWh) - NE.C.1,
NE.C.2

(aw.con × ew.con × NE.C.1)
+

(aw.con × ew.con × NE.C.2)

Fuel oil ao.con (gal) eo.con (KJ/gal) - NE.C.1,
NE.C.2

(ao.con × eo.con × NE.C.1)
+

(ao.con × eo.con × NE.C.2)

Chemicals achem.con (Kg) echem.con
(KJ/Kg) - NE.C.1,

NE.C.2

(achem.con × echem.con ×
NE.C.1)

+
(achem.con × echem.con ×

NE.C.2)

Electrical Energy
(Slurry

pumping)
ae.sl.con (KWh) ee.sl.con

(KJ/KWh) - NE.C.1,
NE.C.2

(ae.sl.con × ee.sl.con ×
NE.C.1)

+
(ae.sl.con × ee.sl.con ×

NE.C.2)

Fl
ot

at
io

n
(fl

o)

Electrical
Energy ae.flo (KWh) ee.flo (KJ/KWh) - NE.C.1,

NE.C.2

(ae.flo × ee.flo × NE.C.1)
+

(ae.flo × ee.flo × NE.C.2)

Steel
(Installation) aflo.s (Kg) eflo.s (KJ/Kg) - NE.C.1,

NE.C.2

(aflo.s × eflo.s × NE.C.1)
+

(aflo.s × eflo.s × NE.C.2)

Water
Pumping aw.flo (KWh) ew.flo (KJ/KWh) - NE.C.1,

NE.C.2

(aw.flo × ew.flo × NE.C.1)
+

(aw.flo × ew.flo × NE.C.2)

Fuel oil ao.flo (gal) eo.flo (KJ/gal) - NE.C.1,
NE.C.2

(ao.flo × eo.flo × NE.C.1)
+

(ao.flo × eo.flo × NE.C.2)

Reagents area.flo (Kg) erea.flo (KJ/Kg) - NE.C.1,
NE.C.2

(area.flo × erea.flo × NE.C.1)
+

(area.flo × erea.flo × NE.C.2)

Concentrate
Pumping ac.flo (KWh) ec.flo (KJ/KWh) Rflo

NF.C.1,
NF.C.2

(ac.flo × ec.flo × NF.C.1)
+

(ac.flo × ec.flo × NF.C.2)

Tailings
Pumping at.flo (KWh) et.flo (KJ/KWh) 1-Rflo NF.T.1, NF.T.2

(at.flo × et.flo × NF.T.1)
+

(at.flo × et.flo × NF.T.2)
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Table 2. Cont.

Unit
Operation Factors Quantity

Required
Equivalent

Energy
Recovery

%
Material

Flow (Tons)
Net Energy Consumption

(KJ)

D
ew

at
er

in
g

(d
ew

)(
Th

ic
ke

ni
ng

-F
ilt

ra
ti

on
)

Electrical
Energy ae.dew (KWh) ee.dew

(KJ/KWh) - NF.C.1,
NF.C.2

(ae.dew × ee.dew × NF.C.1)
+

(ae.dew × ee.dew × NF.C.2)

Steel
(Installation) adew.s (Kg) edew.s (KJ/Kg) - NF.C.1,

NF.C.2

(adew.s × edew.s × NF.C.1)
+

(adew.s × edew.s × NF.C.2)

Water
Pumping aw.dew (KWh) ew.dew

(KJ/KWh) - NF.C.1,
NF.C.2

(aw.dew × ew.dew × NF.C.1)
+

(aw.dew × ew.dew × NF.C.2)

Concentrate
Disposal ac.dew (KWh) ec.dew

(KJ/KWh) - NF.C.1,
NF.C.2

(ac.dew × ec.dew × NF.C.1)
+

(ac.dew × ec.dew × NF.C.2)

Tailing
Disposal at.dew (KWh) et.dew

(KJ/KWh) -

NG.T.1,
NG.T.2,
NM.T.1,
NM.T.2,
NE.T.1,
NE.T.2,

NF.T.1, NF.T.2

(at.dew × et.dew × (NG.T.1 +
NM.T.1 + NE.T.1 + NF.T.1))

+
(at.dew × et.dew × (NG.T.2 +

NM.T.2 + NE.T.2 + NF.T.2))

The material flow for either concentrate or tailing was calculated using recovery (Rx),
as shown in Equations (5) and (6).

Nc.c.x.n =
Rx.n

100
× Nc.c.x.(n−1) (5)

Nt.t.x.n =

(
100 − Rx.n

100

)
× Nt.t.x.(n−1) (6)

here, n = output operation and n − 1 = input operation.

3.4. Metallurgical Processing Unit

The beneficiation of REE concentrate produced from ore/tailings has an enriched REE
product in mixed REE carbonates/chlorides/phosphates/fluorides. The REE concentration
can vary from 0–100% for a specific REE, depending on the material obtained from mining.
Since it is a mixed product, metallurgical processing aims to produce products that are
oxides of a specific REE with 99% purity. The overview of the metallurgical processing
unit is presented in Figure 6. As shown in Figure 6, the REE concentrate can be directly
leached in these operations using an acid/alkali-based solution. An example of this type of
operation is the Mountain Pass Mine operation. However, some ore mineralogies, as in
Bayan Obo, are initially cracked/calcined (C) in a rotary kiln using an acid, as this operation
can enhance recovery [15]. This roasting residue is sent for leaching (L) to dissolve the solid
forms of REEs so that they become ionic forms. In addition to these concentrates, the ion
adsorption clay ores do not need any beneficiation operations; the precipitate (obtained as
a REE carbonate/sulfate) can either be calcinated or directly leached and sent for further
processing [22,23]. At this point, REE-based solids are converted to REE-based liquids
through leaching.

The ions that enter the solution via RO through leaching need to be separated. Among
the several procedures described in the literature, the industrially commercialized processes
are adsorption (A), solvent extraction (SX), ion exchange (IC), membrane separation (MB),
crystallization (CN), precipitation (PP), oxidation (OX) and reduction (RD), and liquid–
liquid chromatography (LC). Table 3 and Figure 6 explain the details of those processes,
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which have been proven with appreciable selectivity, as per the literature, for individual
REE elements. From Table 3, it can be inferred that A is preferred for alternate lanthanides,
starting with La. SX is suitable for most of the REEs, IX is preferred for Sc, Y, and Ho,
MB is suitable for HREEs, CN, PP, OX, and RD are preferred for those that can exhibit
variable valency, and finally, LC is most suitable for Y. The net EC consumption in this unit
depends on the process route that is linked with the grade of concentrate and mineralogy
of the ore body. The calculation for the net EC can be performed using a modified form of
Equations (4)–(6), as shown in Equations (7)–(9),

ECMetallurgical Processing unit = ∑ ay × ey × Nk.y.n (7)

y= C, L, A, SX, IC, MB, CN, PP, OX, RD, LC;
k = valuable concentrate (v.c), gangue (g).
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The material flow for each operation can either be in the form of a valuable concentrate
or gangue, and it is calculated using recovery (Ry), as shown in Equations (5) and (6)

Nv.c.y.n =
Ry.n

100
× Nv.c.y.(n−1) (8)

Ng.y.n =

(
100 − Ry.n

100

)
× Ng.y.(n−1) (9)

here, n =output operation and n − 1 = input operation.
If individual REEs produce oxide from the separated solutions, the general approach

concerns oxalic acid precipitation and calcination. Hence, Equations (7)–(9) can be ap-
plicable for those calculations. However, if the target is to produce metallic film, the
electrolysis process can be used for ionic solvents. Then, the EC (KJ/Ton of REE metal) for
the electrolysis operation can be calculated using Equation (10) [31].

E.C.Electrolysis =
E × n × 26, 800 × 3600

A.w. ×
(
β%
100

) (10)
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here E = Voltage applied (V), n = number of e− consumed in the reaction,
Aw = atomic weight of ion (gm/mol), β = efficiency of the electrolytic cell (%).

Table 3. REEs’ separation mechanisms with appreciable selectivity.

Separation Method Suitable REEs

Adsorption Sc [32], La [33], Nd [34], Gd [35,36], Dy [37,38], Er [39],
Tm [40]

Solvent Extraction Sc [41], Y [42], Pr [43], Nd [44], Sm [45], Eu [46], Gd [36], Tb
[47], Tm [48]

Ion exchange Sc [49,50], Y [51], Ho [52]

Membrane Separation Sc [53], Y [54], La [55], Nd [56,57], Ho [58,59], Er [60], Yb
[61,62], Lu [63,64]

Crystallization and Precipitation Ce [65]
Oxidation and Reduction Ce [1], Pr [1], Sm [1], Eu [1,46], Tb [1], Yb [1]

Liquid–Liquid Chromatography Y [66]

4. Analysis of Energy Consumption and Opportunities for Reduction

The total EC (KJ/Ton of REE oxide, metal) in a plant operation is the cumulative sum
of the individual EC function units, as represented in Equation (11).

ECCumulative = ECMining + ECBene f iciation + ECMetallurgical Processing (11)

4.1. Data Analysis of the Literature Concerning the EC per Ton of REE Metal Produced

Based on the theoretical energy consumption values, as per the literature [15], the
analysis of the EC, per ton of REE metal produced, is presented in Figures 7 and 8. Most of
the EC in metal production occurs due to electrolysis operations. However, the EC can be
reduced by replacing the operations with metallothermic reductions (*the EC calculation
was performed using on the theoretical estimate for Ce production). Based on these figures,
the mineralogy of the ore deposit significantly impacted EC. During the beneficiation stage
for Bastnaesite ore (Bayan Obo and Mountain Pass), the EC was higher due to its high
grade, and the fact that it comprised significantly more unit operations than the Xenotime
and Monazite ores. Moreover, the selection of unit operations in a functional unit is related
to the EC values. This is evident in the graph where the MountainPass_1 has the Moly
Corp process implemented within the beneficiation stage; here, the EC is relatively low
compared with MountainPass_2 and the Goldschmidt process [15]. Further analysis of
Figure 8 shows that the metallurgical processing stage contributes to a larger share of the
EC (*the process assumed here is SX). These inferences in the data suggest that some major
or minor modifications in the functional unit operation or the subunit can cause the EC to
vary by 10–50%.
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Figure 8. EC analysis for primary ore sources with metallothermic reduction operations to pro-
duce RM.

4.2. Prediction of EC for Secondary Sources Using an AI/ML-Based Approach

The AI/ML-based methodology is a new regression-based prediction. This process
eases the flowsheet design and validation aspect, as these factors can be considered engineer-
driven strategies. The integration of the AI/ML approach into the conventional empirical
equation aided in generating a (normalized) dimensionless scale of outputs, which is shown
in Table 4. Furthermore, understanding the selection of the particular process flowsheets
that can be implemented during commercial production was made significantly more
accessible. Another helpful aspect of flowsheet validation was the predicted output, which
helped the operations set and defined the threshold EC, thus aligning the subprocess of
major sections, as discussed in Section 3. The output generated was performed after several
iterations, and the validation of those values was based on root mean squared error, mean
squared error and r-squared values. The specific reason why AIandLearn software was
used for this approach is that it can handle multiple variables (up to 13) to produce output.
Moreover, it provides a holistic comparison of multiple models in a single interface, in
addition to a heatmap, in order to help us better understand the correlation between the
several factors in the dataset that were used for training the model.

Table 4. Prediction of EC scales using AIandLearn software.

Bayesian
Ridge Model

Scales

Ideal
Situation

Bastnasite
(Bayan Obo)

Bastnasite
(Mountain

Pass_1)

Coal Ash
(Poland)

Coal Ash
(West

Virginia)

Gold Tailings
(New Kankberg)

Tungsten
Tailings
(Covas)

Predicted
Scales 53.39 142.06 130.41 141.68 136.75 144.14 138.05

Normalized
scales 1.00 2.66 2.44 2.65 2.56 2.70 2.59

The dataset used in Sections 3.1 and 4.1 (*as shown in Figure 7) were visualized
using AIandLearn software, as shown in Figure 9. The model was trained to produce a
linear regression output to understand each parameter’s dependency on the target (Net
EC). Details of the +/− correlation between various inputs are presented as a heatmap in
Figure 10, and the root mean squared error (not same as Standard deviation), mean squared
error (Sum of variance), and r-squared value are presented in Figure 11. Figure 11 suggests
that the error and r-squared values were better for the Bayesian Ridge regression model
than for the Random Forest, Gradient Boosting regressor, Lasso, KNeighbour regressor,
and Elastic net. Therefore, this model was used for further analysis. The EC scales for
the secondary sources were predicted based on the inputs of the REEs distribution, as
per Figure 4, for the Coal Ash/Mine and Mill tailings, where ECMining was assumed to
be 0.5 times the primary source, ECBeneficiation was assumed to be 1.5 times the primary
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source, and ECMetallurgical processing was assumed to be similar to that of the primary source.
The net EC’s AI/ML-based prediction estimates for primary and secondary sources were
almost similar, as shown in Table 4. The comparison seems rational since the Bastnasite
processing routes were almost the same. Table 4 shows the scale of the Net EC value when
this secondary feed source was processed through the Bastnasite route. However, this
prediction is only valid if the same feed grades exist for primary and secondary sources,
otherwise, it is generally invalid. This type of prediction is assumed to be logical because it
supports the fact, as discussed earlier, that any slight modification in the unit operation
will modify the net EC by a factor of 0.05–0.3 on a normalized scale. Additionally, it can be
inferred that variation in feed grades will undoubtedly impact the EC, and a significant
reduction in feed grade will surely raise the EC demand.

Processes 2024, 12, x FOR PEER REVIEW 15 of 20 
 

 

Figure 9. Representation of the AIandLearn interface. 

 

Figure 10. Heat Map analysis of the data from the literature. 

Figure 9. Representation of the AIandLearn interface.

Processes 2024, 12, x FOR PEER REVIEW 15 of 20 
 

 

Figure 9. Representation of the AIandLearn interface. 

 

Figure 10. Heat Map analysis of the data from the literature. 

Figure 10. Heat Map analysis of the data from the literature.



Processes 2024, 12, 570 16 of 20
Processes 2024, 12, x FOR PEER REVIEW 16 of 20 
 

 

Figure 11. Root Mean squared error (top), Mean squared error (middle), and r-squared value (bot-

tom). 

Figure 11. Root Mean squared error (top), Mean squared error (middle), and r-squared
value (bottom).



Processes 2024, 12, 570 17 of 20

4.3. Perspectives on Opportunities for Energy Reduction

Based on the estimation above, the low-grade REEs deposits (<1%), such as IAC/mine/
mill tailings, used for conventional mining and processing, require large volumes of
material and often involve a great deal of comminution energy to liberate particles unless
other techniques are used. The EC for low-grade ore scenarios can be reduced by extensively
utilizing alternative approaches such as blunging and bioleaching techniques [67–71].
Innovative beneficiation and alternative processing can reduce the overall EC. Applying
energy-efficient separation processes, such as A, MB, and IX, can also reduce the EC
in metallurgical processing. These operations require less process equipment, thereby
reducing the EC. These processes can be implemented as auxiliary processes, or they can
replace some SX stages. In addition, ore blending or geo-metallurgical knowledge of ore
bodies can help operations to be more consistent at the plant, thus reducing EC caused by
variations.

5. Conclusions

In conclusion, rare earth elements are critical minerals that are essential for sustainable
energy development. The global shift towards renewable energy sources has heightened
the demand for REEs, especially in technologies that reduce carbon emissions. Notably, the
application of REEs in NdFeB permanent magnets, which are crucial components of wind
turbines and electric vehicle motors, underscores their significance in terms of creating
decarbonized technologies. The diverse sources of REEs, ranging from ores to recycled
materials, result in varied production processes and energy requirements. Despite the
extensive literature on the life cycle assessment of REEs, there is a notable gap in terms of
understanding the specific energy footprint associated with different production processes.
This paper aims to address this gap by delving into the distinct energy needs of each
production process, providing valuable insights into the viability of REE production in
terms of energy demand and availability. We have provided a step-by-step calculation
methodology, in addition to an explanation of the reasonable impact of a few parameters, to
calculate the energy needs. Thus, we have provided a more effective comparison of energy
use, which is also directly linked to the carbon footprint, concerning overall REE processing.
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