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Abstract: Robotic friction stir welding (RFSW), with its wide application range, ample working space,
and task flexibility, has emerged as a vital development in friction stir welding (FSW) technology.
However, the low stiffness of serial industrial robots can lead to end-effector deviations and vibra-
tions during FSW tasks, adversely affecting the weld quality. This paper proposes a dynamic dual
particle swarm optimization (DDPSO) algorithm through a new comprehensive stability index that
considers both the stiffness and vibration stability of the robot to optimize the installation position
of complex space curve weldments, thereby enhancing the robot’s stability during the FSW process.
The algorithm employs two independent particle swarms for exploration and exploitation tasks and
dynamically adjusts task allocation and particle numbers based on current results to fully utilize
computational resources and enhance search efficiency. Compared to the standard particle swarm
optimization (PSO) algorithm, the DDPSO approach demonstrated superior search capabilities and
stability of optimization results. The maximum fitness value improved by 4.2%, the average value
increased by 12.74%, and the concentration level of optimization results rose by 72.91% on average.
The new optimization method pioneers fresh perspectives for optimizing the stability of RFSW,
providing significant grounds for the process optimization and offline programming of complex
spatial curve weldments.

Keywords: friction stir welding; robot stability index; robot stiffness; vibration stability; Cartesian
stiffness ellipsoid

1. Introduction

Friction stir welding (FSW) technology, as an advanced solid-phase welding technique,
has been widely used in aerospace, automotive manufacturing, and shipbuilding owing
to its advantages, such as broad material applicability, minimal residual stress, and lower
welding temperature [1,2]. Traditional FSW equipment is generally developed using CNC
machines [3]. While it offers high accuracy and strong structural stiffness, its limited
workspace restricts the welding of complex workpieces [4]. Industrial robots, with their
strong versatility, large working space, and low development costs, have already been
widely applied in the welding field [5]. The integration of general industrial robots with
FSW equipment has become an inevitable trend in the development of FSW [6]. However,
due to the high welding force in FSW and the limited end stiffness of serial industrial
robots, stability during FSW decreases, leading to welding errors from excessive end
displacement and reduced welding quality due to vibration [7–9]. These factors have
become the main obstacles hindering the further development and widespread application
of RFSW technology.

There are valuable studies to solve the problem of end displacement in FSW robots.
To reduce the impact of robot end displacement, offline programming methods were used
to pre-compensate for end errors in the RFSW process. Kolegain et al. [10] proposed a
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deflection model-based feedforward compensation technique and an offline path planning
using Bézier curves to solve the position and orientation deviations of the robot end effector
during welding. Bai et al. [3] presented a method for predicting and compensating for
the end displacement of FSW robots to solve the problem of insufficient plunge depth.
Other scholars are committed to reducing the welding errors of RFSW through online
compensation methods. Li et al. [11] developed a laser circular scanning-based multiparam-
eter sensing technique for five-axis RFSW. This method effectively tackles the limitations
of existing sensing techniques to accurately measure plunge depth and seam deviation.
Soron et al. [12] established an RFSW system using a force control algorithm on the ABB
IRB-7600-500 robot platform and achieved the anticipated welding accuracy.

Some scholars have studied the impact of vibration on the friction stir welding process.
Rahmi et al. [13] proposed an improved FSW process, named friction stir vibration welding
(FSVW). By applying vibration to the workpiece during the FSW process, experimental
results showed that FSVW could significantly improve the microstructure and mechan-
ical properties of the weld. Bagheri et al. [14] investigated the mechanical behavior and
microstructure of AA6061-T6 joints manufactured by the FSVW technique. The results
indicated that, compared to FSW, the FSVW technique could significantly enhance the
strength and hardness of the joints. Abbasi et al. [15] explored the effects of vibration on
dynamic recrystallization during the magnesium alloy FSVW process through numerical
simulation and experimental methods. The results suggested that compared to traditional
FSW, vibration could promote nucleation and grain growth, improve grain refinement, and
thus affect the microstructure and mechanical properties of the weld zone.

Current research regarding vibrations caused by insufficient robot stiffness during
welding is relatively scarce. Yu [16] analyzed the vibration signals of the RFSW process
and pointed out that the feeding direction affected the vibration, but further research has
not been conducted. Like RFSW, robotic milling also uses general industrial robots as
the working platform. More research has been conducted on the vibration phenomenon
during robotic milling processes. These studies mainly focused on vibration detection
and signal analysis [17], pose optimization [18], active vibration suppression [19], and
robot structure optimization [20]. Due to milling characteristics, the vibration was mainly
manifested by chatter and regenerative chatter during the machining process [21]. However,
periodic forces acting on the stirring tool were still observed during the FSW process.
It was suggested that the reason for the periodic forces is the eccentricity error of the
stirring pin relative to the electric spindle [22]. Eccentricity errors arise from the stirring
tool’s positional deviation during installation and wear-induced clearance within the
electric spindle under high-load operation. This is an inherent characteristic of FSW and
cannot be eliminated [23]. Some researchers have found that a moderate eccentricity
error can promote material flow and improve welding quality [24]. However, excessive
eccentricity errors can worsen welding quality, increase welding defects, and increase
welding force fluctuations [25]. Traditional FSW equipment utilizing CNC machines
typically features high stiffness, making the mechanical structure largely unaffected by
fluctuations in welding force [26]. However, in RFSW systems employing serial industrial
robots, excessive welding force fluctuations may lead to end vibrations, undermining
welding stability and quality [8].

Current research on stability optimization in RFSW mainly focuses on enhancing robot
stiffness, which varies with the robot’s pose. Studies have concentrated on optimizing the
RFSW welding trajectory to maintain the robot in a position of optimal stiffness throughout
the welding process. Jain et al. [27] studied the lateral displacement of the robot’s end
during the welding process. A method was proposed to determine an optimal workspace
of operation by minimizing the lateral deflection errors in the position and orientation of
the end effector during FSW. This method can calculate the weld seam’s starting position or
optimal welding direction to achieve the best welding quality. Zhao et al. [28] studied robot
stiffness in various poses and created an ellipsoidal end stiffness model. They introduced
a method leveraging the sigmoid function to adjust stiffness based on dexterity or joint
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limits, optimizing robot poses for welding tasks to improve end stiffness and flexibility.
Xiao et al. [29] studied the strategies to enhance the axial stiffness of a hybrid FSW robot,
and a workpiece position optimization method based on the optimal stiffness interval was
proposed to maintain a relatively optimal axial stiffness posture of the robot during the
welding process.

Current research on RFSW optimization mainly addresses the robot’s end effector
deviations, neglecting vibration’s impact on stability. The research often focuses on simple
welds, overlooking complex space curve weldments with more practical relevance. This
study addresses the stability issues of serial industrial robots in the FSW process due to low
stiffness, introducing a dynamic dual particle swarm optimization algorithm. By optimizing
the installation position of complex space curve weldments through a novel stability index,
it enhances the robot’s stability in the FSW process. The rest of this study is organized
as follows. Section 2 describes the environment and steps of the RFSW welding stability
experiment and analyzes the results. In Section 3, based on experimental conclusions
and the stiffness characteristics of the robot, the method for establishing a comprehensive
stability index is explained and validated. In Section 4, the comprehensive stability function
of the weldment is used as the fitness function. Optimization was conducted using both
the standard PSO algorithm and the DDPSO algorithm. The comparison of the results
confirmed DDPSO’s effectiveness, and the weldment’s optimal position was obtained.
Section 5 summarizes the research.

2. RFSW Stability Experiment and Analysis

Due to the serial characteristics, industrial robots exhibit significant variations in
Cartesian stiffness at the robot end effector in different directions [28]. The following
experiments were designed to study the effect of different feed directions on the welding
quality of RFSW.

Figure 1 shows the experimental platform used in this study. Figure 1c is a heavy-duty
FSW robot equipped with a dedicated electric spindle at the robot’s end. The stirring tool
used in the experiment is shown in Figure 1f, with a conical stirring pin of 5 mm. Figure 1e
shows that the accelerometer was fixed in the x, y, and z directions near the stirring tool at
the end of the electric spindle. The accelerometers were connected to the computer through
an amplifier and a data acquisition card to record vibration signals during welding. The
sampling rate of the vibration signal was 25,000 Hz. The relative position between the
workpiece and the robot is shown in Figure 1c. The workbench (Figure 1a) was located
2.1 m in the negative y direction of the robot, and the workbench height was 0.7 m in
the positive z direction. An AA6061-T6 aluminum alloy plate with 300 × 150 × 5 mm
dimensions was welded. The welding direction is shown in Figure 1b, and the welding
was carried out along +x, −x, +y, and −y on the same plate.

To make the fluctuation of welding force more obvious while avoiding the natural
frequency of the robot to prevent resonance, the welding parameters of this study were
a spindle speed of 2200 rpm, a feed rate of 2 mm/s, and a tilt angle of 2◦ for welding
experiments. The eccentricity error of the current stirring tool was 0.05 mm. The welding
results are shown in Figure 2a,b. The green dashed line in the figure represents the teaching
trajectory of the weld seam, and the red dashed line represents the actual centerline of the
weld seam. Observing the trajectory of the weld seam, it was found that the surface of
the weld seam in all four feed directions was relatively flat and uniform, but there were
varying degrees of deviation. The minimum displacement was about 2 mm along the −x
direction, and the maximum was about 7 mm along the +x direction. The error along the
+y and −y directions was similar, at about 5 mm. Analyzing the vibration signals during
the welding process, it was found that the vibration situation along the four directions was
identical under the current parameters.
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Figure 1. The experiment equipment and relative position of the weldment and the robot.
(a) Welding fixture. (b) Weldment dimensions and materials. (c) FSW robot and welding posi-
tion. (d) Accelerometer mounting position. (e) Accelerometer. (f) Stirring tool.

Processes 2024, 12, 536 4 of 22 
 

 

To make the fluctuation of welding force more obvious while avoiding the natural 

frequency of the robot to prevent resonance, the welding parameters of this study were a 

spindle speed of 2200 rpm, a feed rate of 2 mm/s, and a tilt angle of 2° for welding exper-

iments. The eccentricity error of the current stirring tool was 0.05 mm. The welding results 

are shown in Figure 2a,b. The green dashed line in the figure represents the teaching tra-

jectory of the weld seam, and the red dashed line represents the actual centerline of the 

weld seam. Observing the trajectory of the weld seam, it was found that the surface of the 

weld seam in all four feed directions was relatively flat and uniform, but there were var-

ying degrees of deviation. The minimum displacement was about 2 mm along the −x di-

rection, and the maximum was about 7 mm along the +x direction. The error along the +y 

and −y directions was similar, at about 5 mm. Analyzing the vibration signals during the 

welding process, it was found that the vibration situation along the four directions was 

identical under the current parameters. 

a.
x

y
X+

X-

y+

y-

y

x

10mm 10mm

b.

f. g. h.

c.

Idling Welding
Plunging
Dwelling Retracting

d. e.

 

Figure 2. Analysis of the vibration signal. (a) Weld seams along the +x and −x directions. (b) Weld 

seams along the +y and −y directions. (c) Vibration data of the welding process along the −x direc-

tion. (d,e) Comparison of vibration data spectra between idle and welding stages. (f) Vibration data 

after low-pass filtering. (g,h) Spectrum of low-frequency vibration data. 

Due to the periodic fluctuation of welding force during FSW, which was mainly 

caused by the eccentricity error of the stirring tool [22], the eccentricity error primarily 

affected the radial movement of the rotating axis. Therefore, this study mainly analyzed 

the vibration data in the x and y directions. The vibration data of the welding process feed 

along the −x direction is shown in Figure 2c, with time (s) as the horizontal axis and 

Figure 2. Analysis of the vibration signal. (a) Weld seams along the +x and −x directions.
(b) Weld seams along the +y and −y directions. (c) Vibration data of the welding process along
the −x direction. (d,e) Comparison of vibration data spectra between idle and welding stages.
(f) Vibration data after low-pass filtering. (g,h) Spectrum of low-frequency vibration data.
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Due to the periodic fluctuation of welding force during FSW, which was mainly caused
by the eccentricity error of the stirring tool [22], the eccentricity error primarily affected the
radial movement of the rotating axis. Therefore, this study mainly analyzed the vibration
data in the x and y directions. The vibration data of the welding process feed along the
−x direction is shown in Figure 2c, with time (s) as the horizontal axis and acceleration
(g) as the vertical axis. The welding process was divided into the idle stage, plunging
and dwelling stage, welding stage, and retracting stage. The peak value of the vibration
signal during the idle stage was around 1.2 g, and the peak value during the welding stage
was about 1.8 g. The root mean square (RMS) of the signal was used as the indicator for
judging vibration intensity. Taking a signal of about 5 s in length from the middle part of
the idle stage as the blue dashed square in Figure 2c, the RMS values in the x direction and
y direction during the idle stage were calculated to be 0.353 and 0.360, respectively. Taking
the vibration stable signal during the last third of the welding stage for about 5 s as the
red dashed square in Figure 2c, with an RMS value of 0.488 in the x direction and 0.507 in
the y direction, it can be concluded that the increase in vibration intensity was 38.2% and
40.8%, respectively.

The frequency spectra of vibration signals in the x and y directions during the idle and
welding stages were obtained by Fourier transform of the intercepted vibration signals,
as shown in Figure 2d,e. The vibration generated by the operation of the electric spindle
itself was mainly concentrated in the high-frequency range of 8000 Hz to 10,000 Hz. In con-
trast, the frequency component added during welding was focused on the low-frequency
range. The spectral range of the vibration signals during the welding process was adjusted
to 0–300 Hz, as illustrated in Figure 2g,h, indicating that the vibrations during welding
were mainly concentrated in the region below 200 Hz. The vibration signal consisted of a
fundamental frequency signal with the same frequency as the spindle rotation frequency
(36.7 Hz) and harmonic signals with integer multiples of the fundamental frequency. The
fundamental frequency component was much greater than the harmonic components.
Low-pass filtering on the welding process was performed on the vibration signal with a
cutoff frequency of 200 Hz, and the vibration curve is shown in Figure 2f. It can be seen
that the vibration signals were relatively smooth, and the vibration period was consistent
with the spindle rotation period. It can be concluded that when the eccentricity error
of the stirring tool is small, the proportion of vibration generated during the welding
process is relatively small, and the impact on welding stability is insignificant. The insuffi-
cient stability of the FSW robot is mainly reflected in the weld trajectory error caused by
end displacement.

Subsequently, the handle of the stirring tool was grinded to increase the eccentricity
error between the stirring pin and the electric spindle to simulate situations such as sig-
nificant assembly errors or wear of the electric spindle. The eccentricity error between the
stirring tool and the electric spindle after grinding was 0.18 mm. Using the same welding
parameters, the welding results are shown in Figures 3 and 4. The surface of the weld seam
along the −x and −y directions was relatively flat and uniform, but there were different
degrees of surface defects in the weld seam along the +x and +y directions. The surface
of the weld seam along the +y direction showed changes in appearance characteristics,
showing obvious segmentation and changes in the feed direction. The weld seam along
the +x direction exhibited a “crawling” phenomenon during welding, which appeared as a
fish-scale-like feature on the surface.

The deviations in the weld seam in the four feed directions were similar to those
before the increase in the eccentricity error. The vibration signal during the welding process
along the −x direction was first analyzed as a comparison. Figure 3b indicates that the
vibration signal during the welding process along the −x direction was relatively stable.
The peak value of the vibration signal during the welding stage was around 2.5 g. We
extracted a vibration signal of about 5 s from the last third of the welding stage as the red
dashed square in Figure 3b, with an RMS value of 0.788 in the x direction and 0.767 in the y
direction. The vibration intensity increased by 123.2% and 113.1%, respectively, compared
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to the idle stage and by 61.5% and 51.3%, respectively, compared to the eccentricity error
of 0.05 mm. Fourier transform on the intercepted signal analysis was performed to obtain
the vibration signal spectrum, as shown in Figure 3d,e. Compared with an eccentricity
error of 0.05 mm, the intensity of the fundamental frequency signal in the vibration signal
increased, while the intensity of the harmonic signals significantly increased. The low-pass
filtering with a cutoff frequency of 200 Hz was applied to the signal and the vibration
curve (Figure 3c). It can be seen that the vibration signal exhibited periodic changes and
complex waveforms.
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Figure 3. The welding results along the X direction after grinding. (a) Weld seams along the −x
and +x directions. (b) Vibration data of the welding process along the −x direction. (c) Vibration
data after low-pass filtering along the −x direction. (d,e) Spectrum of low-frequency vibration data.
(f) Vibration data of the welding process along the +x direction. (g,h) Vibration data after low-pass
filtering along the +x direction.
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Figure 4. The welding results along the Y direction after grinding. (a) Weld seams along the +y and
−y directions. (b) Grinding position of the stirring tool. (c) Vibration data of the welding process
along the +y direction. (d) Comparison of vibration data and spectra in four sections along the
+y direction.

Next, the vibration signals during the welding process were analyzed along the +y
direction (Figure 4c). The vibration signals during the welding stage showed four distinct
parts corresponding to Figure 4a. A signal of about 5 s was taken from the middle of each
part as the red dashed squares in Figure 4c, and then the Fourier transform was performed
to obtain the spectrum. The low-pass filtering served with a cutoff frequency of 200 Hz.
Figure 4d shows the vibration curve. The overall vibration signal exhibited periodic
changes, but the vibration waveform was more complex, and there were significant differ-
ences in the vibration curves between different parts. By comparing the spectrograms, there
were substantial differences in the amplitude of the frequency components of different parts
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of the vibration signal, with more significant changes in the −y direction. The amplitude of
the −y direction frequency component in the first and third parts was relatively similar,
and it was relatively similar in the second and fourth parts. It is speculated that during
the welding process, as the robot’s pose changed, its end switched between two vibration
modes, affecting the welded seam’s quality. After analyzing the vibration signal in the +x
direction during the welding process (Figure 3f), it was found that the vibration signal in
the y direction exhibited periodic fluctuations along with the fish-scale-like characteristics
during the welding process. The vibration curve is shown in Figure 3g,h after amplifying
the signal with one fluctuation period, and low-pass filtering was performed with a cutoff
frequency of 200 Hz. It can be observed that the vibration signal period was consistent with
the spindle rotation period, but the amplitude showed irregular changes.

The welding process’s vibration intensity significantly improved as the stirring tool’s
eccentricity error increased. Due to the low stiffness and complex structure of robots, the
impact of vibration on welding stability became more pronounced. Comparing the welding
results in different feed directions, welding along the −x and −y directions can achieve
good welding stability. Still, there is a phenomenon of insufficient stability when welding
along the +x and +y directions.

Figure 5a shows the force analysis of the FSW process. The force acting on the stirring
tool during the welding process can be decomposed into three directions: the axial force
Fd along the axis direction, the forward resistance force Fr opposite to the feed direction,
and the lateral force Fl generated by the friction between the stirring pin and the base
material. The force analyses of the welding process in different feed directions are shown
in Figure 5b. Feeding along the −x and −y directions with good welding stability, the force
in the y-axis was directed towards the positive direction, which was the direction in which
the robot was located. While feeding along the +x and +y directions with poor stability, the
force in the y-axis was directed towards the negative direction, which was away from the
robot. Therefore, it is speculated that the welding stability of the FSW robot is related to
its force direction. The force in the y-axis significantly impacts the welding stability at the
current welding position.
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Figure 5. Force analysis during the FSW process. (a) Force analysis of the stirring tool. (b) Force
analysis of different feed directions.

3. Comprehensive Stability Index of the FSW Robot

To further analyze the reasons for the influence of feed directions on welding stability
and to optimize the feed direction and robot pose, it was necessary to study the directional
characteristics of the end effector of the FSW robot. The serial industrial robots exhibited
different stiffness characteristics along different directions at the end of the robot due to
their structural characteristics. Establishing kinematic and stiffness models of the robot is a
prerequisite for studying the end effector’s directional stiffness.
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3.1. Robot Kinematic and Stiffness Model

The Denavit–Hartenberg (DH) method is the most used approach for establishing a
robot kinematic model. Each joint of the FSW robot was moved to its initial position, and a
modified DH (MDH) model was established, as illustrated in Figure 6.
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Figure 6. MDH model of FSW robot. 
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Figure 6. MDH model of FSW robot.

Based on the MDH model and the parameters of the FSW robot, the DH parameters,
the joint stiffness, and joint range limits are shown in Table 1.

Table 1. MDH parameters and joint stiffness of the FSW robot.

i θi (◦) di (mm) ai−1 (mm) αi−1 (◦) Kθ (N·m/rad) Joint
Limits (◦)

1 θ1 1050 0 0 1.1676 × 106 −180, 180
2 θ2 + 90 0 500 90 1.2731 × 108 −55, 90
3 θ3 0 1300 0 1.7187 × 106 −160, 70
4 θ4 1200 150 90 7.3227 × 105 −360, 360
5 θ5 0 0 −90 1.1011 × 106 −120, 120
6 θ6 0 0 90 8.8932 × 105 −360, 360
t 0 1110 0 0 - -

The homogeneous transformation matrix for adjacent link coordinate systems in the
MDH model is defined in Equation (1) [30]:

i−1
i T = Rx(αi−1)Tx(ai−1)Rz(θi)Tz(di) =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 (1)

where Rx is the coordinate system rotating around the x-axis, Tx is the coordinate system
translating along the x-axis, Rz is the coordinate system rotating around the z-axis, Tz is the
coordinate system translating along the z-axis, c represents cos, and s represents sin.
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Homogeneous transformation matrices between links, defined accordingly, can be
successively multiplied to yield the transformation matrix from the robot’s base coordinate
system to its end-effector as Equation (2):

0
t T = 0

1T(θ1)
1
2T(θ2)

2
3T(θ3)

3
4T(θ4)

4
5T(θ5)

5
6T(θ6)

6
t T =

[
Rt Pt
0 1

]
(2)

where Rt is the rotation matrix of the robot’s end effector and Pt is the translation vector of
the robot’s end effector.

Based on the robot homogeneous transformation matrix, the kinematic model of the
robot can be performed. The Jacobian matrix of the robot’s end was further derived based
on its kinematic model, as given in Equation (3):

J =
[

J1 J2 . . . J6
]
=

[
Jl1 Jl2 . . . Jl6
Ja1 Ja2 . . . Ja6

]
(3)

where Jli is the Jacobian vector for the movement of the i-th joint and Jai is the rotation
Jacobian vector of the i-th joint.

During robotic operation, external forces induced displacements in the end effector,
which was attributable to deformations in both joints and links. Given the significantly
higher stiffness of the links compared to the joints, link deformations are frequently over-
looked in stiffness-related robotic analyses [31].

In robotic joint analyses, the complex composition of motors and reducers is often
simplified in the overall stiffness model. Typically, it is represented by a linear torsion spring
to approximate the mechanical structure of the joints. Therefore, the joint stiffness model of a
six-axis robot can be represented by the diagonal matrix shown in Equation (4) [28].

Kθ = diag([K1, K2, K3, K4, K5, K6]) (4)

From the statics of the robot, the relationship between the joint torque of the robot and
the forces at the end effector can be derived from Equation (5):

τ = JT F (5)

where τ is the joint torque of the robot, JT is the transpose of the Jacobian matrix, and F is
the generalized force exerted on the robot end effector.

When subjected to a torque, the deflection of the robot joints is written as Equation (6):

dq = K−1
θ · τ (6)

The formula for calculating the displacement at the robot end effector due to external
forces, as a function of joint deflection and end effector displacement, is presented in
Equation (7).

∆X =

[
∆d
∆φ

]
= J · dq = JK−1

θ JTF (7)

3.2. Robot End Directional Stiffness Index

The influence of the position deviation of the FSW robot’s end displacement is much
more significant than that of the end effector’s pose deviation. Therefore, ignoring the
impact of the torque on the end effector’s attitude [28], Equation (7) was simplified to
Equation (8):

∆d = JPK−1
θ JT

P f (8)

where JP is the Jacobian matrix of the robot position, representing the first three rows of the
Jacobian matrix, JP =

[
Jl1 Jl2 Jl3 Jl4 Jl5 Jl6

]
.
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We assumed that the robot’s end displacement is in units of displacement, as shown
in Equation (9):

∥∆d∥2
2 = ∆dT∆d = f TCT

e Ce f = 1 (9)

where Ce is the robot end displacement flexibility matrix Ce = JPK−1
θ JT

P .
CT

e Ce is a third-order positive definite real symmetric matrix, which can be obtained
by performing eigenvalue decomposition on it, as shown in Equation (10):

CT
e Ce = RE

λ1 0 0
0 λ2 0
0 0 λ3

RT
E (10)

where RE is the eigenvector of the matrices and λ1, λ2, and λ3 are the eigenvalues of
the matrices.

Equation (11) can be obtained by inserting it into Equation (9).

f TRE

λ1 0 0
0 λ2 0
0 0 λ3

RT
E f = 1 (11)

Equation (11) describes a three-dimensional ellipsoid, as shown in Figure 7a, whose
shape will change with the variation in the robot’s pose. Supposing f TRE =

[
x′ y′ z′

]
,

Equation (11) can be written in the standard form of an ellipsoidal equation, as given in
Equation (12):

x′2

a2 +
y′2

b2 +
z′2

c2 = 1 (12)

where a = 1√
λ1

, b = 1√
λ2

, and c = 1√
λ3

.

Processes 2024, 12, 536 11 of 22 
 

 

𝐶𝑒
T𝐶𝑒 = 𝑅𝐸 [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] 𝑅𝐸
T (10) 

where 𝑅𝐸 is the eigenvector of the matrices and 𝜆1, 𝜆2, and 𝜆3 are the eigenvalues of the 

matrices. 

Equation (11) can be obtained by inserting it into Equation (9). 

𝑓T𝑅𝐸 [

λ1 0 0
0 λ2 0
0 0 λ3

] 𝑅𝐸
T𝑓 = 1 (11) 

Equation (11) describes a three-dimensional ellipsoid, as shown in Figure 7a, whose 

shape will change with the variation in the robot’s pose. Supposing 𝑓T𝑅𝐸 = [𝑥′ 𝑦′ 𝑧′], 

Equation (11) can be written in the standard form of an ellipsoidal equation, as given in 

Equation (12): 

𝑥′2

𝑎2
+

𝑦′2

𝑏2
+

𝑧′2

𝑐2
= 1 (12) 

where 𝑎 =
1

√𝜆1
, 𝑏 =

1

√𝜆2
, and 𝑐 =

1

√𝜆3
. 

c b

a

a. b.

Ft

Le

 

Figure 7. FSW robot end stiffness ellipsoid. (a) The ellipsoid of Equation (12). (b) Stiffness of the 

robot end effector in the welding force direction. 

The half-axis length of an ellipsoid is the reciprocal square root of the eigenvalues of 

the flexibility matrix, which can reflect the characteristics of the end stiffness of a robot. It 

is commonly referred to as the Cartesian stiffness ellipsoid of a robot. The shortest half-

axis represents the direction of the minimum stiffness at the end of the current robot, and 

the longest half-axis represents the direction of the maximum stiffness currently. The dis-

tance from the center of the ellipsoid to the surface can reflect the stiffness characteristics 

of the robot end in this direction. 

Assuming that during the welding process, the welding force acting on the end of 

the robot is 𝐹𝑡 = [𝐹𝑥 𝐹𝑦 𝐹𝑧]T, we converted it to the robot base coordinate system, as 

represented in Equation (13): 

𝐹𝑏 = 𝑅𝑡 ⋅ 𝐹𝑡 (13) 

where 𝑅𝑡 is the rotation matrix from the robot base coordinates to the end effector. 

Thus, in the current pose of the robot, the distance from the center of the Cartesian 

stiffness ellipsoid along the welding force direction to the surface of the ellipsoid can be 

expressed as Equation (14): 

𝐿𝑒 =
1

√�̂�𝑏
T𝐶𝑒

T𝐶𝑒�̂�𝑏

 
(14) 

where �̂�𝑏 is the unit vector of 𝐹𝑏, �̂�𝑏 =
𝐹𝑏

‖𝐹𝑏‖
. 

Figure 7. FSW robot end stiffness ellipsoid. (a) The ellipsoid of Equation (12). (b) Stiffness of the
robot end effector in the welding force direction.

The half-axis length of an ellipsoid is the reciprocal square root of the eigenvalues of
the flexibility matrix, which can reflect the characteristics of the end stiffness of a robot. It
is commonly referred to as the Cartesian stiffness ellipsoid of a robot. The shortest half-axis
represents the direction of the minimum stiffness at the end of the current robot, and the
longest half-axis represents the direction of the maximum stiffness currently. The distance
from the center of the ellipsoid to the surface can reflect the stiffness characteristics of the
robot end in this direction.

Assuming that during the welding process, the welding force acting on the end of
the robot is Ft =

[
Fx Fy Fz

]T, we converted it to the robot base coordinate system, as
represented in Equation (13):

Fb = Rt · Ft (13)

where Rt is the rotation matrix from the robot base coordinates to the end effector.
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Thus, in the current pose of the robot, the distance from the center of the Cartesian
stiffness ellipsoid along the welding force direction to the surface of the ellipsoid can be
expressed as Equation (14):

Le =
1√

F̂T
b CT

e Ce F̂b

(14)

where F̂b is the unit vector of Fb, F̂b = Fb
∥Fb∥

.
Le can be used as an evaluation index for the stiffness of the robot’s end in the current

pose and welding direction, as shown in Figure 7b.

3.3. Robot Vibration Stability Index

The index of robot end stiffness can determine the ability of the robot end to resist
deformation in the current pose and force direction. It is generally believed that the larger
the value of the robot end to resist deformation, the smaller the deformation at the end
of the robot, which is more conducive to improving the machining accuracy of the robot.
Therefore, it is often used as an index for robot pose optimization. However, according
to the welding experiment along the +y and −y directions shown in Figure 4a, the two
opposite-direction welds have similar lateral displacements, indicating that their directional
stiffness is not significantly different. At the same time, their vibration stability is quite
different. RFSW can reduce the impact of end displacement through offline programming
pre-compensation, real-time online compensation, and other methods. The decrease in
welding stability caused by vibration is difficult to intervene in through compensation.
Therefore, it is necessary to optimize the vibration stability of FSW robots.

Research on robot vibration generally focuses on the dynamic response characteristics
of robots and the vibration situation of robots by establishing a dynamic model. However,
this method involves complex robot modeling, computation, and parameter identification,
and the accuracy of the results is limited. Herein, the static method analyzes the combined
force acting on the robot’s joints during welding [16]. Previous welding stability exper-
iments showed that the force in the −y direction significantly impacts welding stability.
Therefore, the force situation in the y–z plane will be mainly analyzed in the following part.

Figure 8 shows that the analysis of the torque was exerted on different joints of the
FSW robot by the combined force acting on the robot end in the y-z plane during the
welding process along the +y and −y directions. Among them, Fv is the combined force of
the axial force Fd and the forward resistance force Fr in the y-z plane. O2, O3, and O5 are the
rotation centers of the robot’s joints 2, 3, and 5, respectively. La2, La3, and La5 represent the
lengths of perpendicular lines drawn from O2, O3, and O5 perpendicular to the Fv direction.
Comparing Figure 8a with Figure 8b, when the feed direction was +y, the length of the
force arm (La2, La3) that applied torque to O2 and O3 by the combined force Fv increased
significantly compared to when the feed direction was −y. When the Fv value was the
same, during the feed process along the +y direction, joints 2 and 3 bore greater torque
than those along the −y direction. When the robot’s end vibrated, the fluctuation of the
end effector force during the feed process had a more significant impact on joints 2 and 3
along the +y direction than along the −y direction. As the direction of the welding force
was fixed relative to the position of joint 5, the influence of welding direction on joint 5 was
relatively small.

According to geometric relationships, it can be inferred that in any pose, the length
of the robot’s force arm of the combined welding force on the torque of joints 2 and 3 is
shown in Equation (15):

Lai =

∣∣(i
tP × i

tF
)

z

∣∣
∥i

tFxy∥
, (i = 2, 3) (15)

where i
tP is the translation vector from joint i to the end of the robot, i

tF is the representation
of welding force Ft in the joint i coordinate system i

tF = i
tR · Ft, i

tR is the rotation matrix from
joint i to the end of the robot, and i

tFxy is i
tF in the x–y plane of the joint i coordinate system.
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Figure 8. Analysis of joint torque in different welding directions. (a) The torque experienced by the 

robot joint when feeding in the +y direction. (b) The torque experienced by the robot joint when 

feeding in the −y direction. 

Figure 8. Analysis of joint torque in different welding directions. (a) The torque experienced by the
robot joint when feeding in the +y direction. (b) The torque experienced by the robot joint when
feeding in the −y direction.

Based on the above conclusions, it can be inferred that the length of the force arm of
the combined welding force on the torque of joints 2 and 3 can be used as an evaluation
index for the vibration stability of the robot under the current pose and force conditions.
To comprehensively consider the weights of the two joint force arms, the average value
was calculated, and the vibration stability index of the robot was obtained, as given by
Equation (16).

La =
La2 + La3

2
(16)

Next, a new comprehensive stability index for FSW robots was established (Equation (17))
by combining the stiffness index of the robot’s end direction with the vibration stability index.
To prioritize ensuring the stability of robot vibration, the comprehensive stability index utilized
the properties of inverse proportional functions. The directional stiffness index of the robot has
a greater weight only when the vibration stability is optimal, as shown in Equation (17).

S =
Le

1 + La
(17)

The comprehensive stability index was used to score the four feed directions in the welding
stability experiment. Experimental results showed that the axial force Fd = 4842.58 N, forward
resistance force Fr = 899.80 N, and lateral force Fl = 1350.87 N. By inputting the welding force
into the comprehensive stability index calculation formula corresponding to the feed direction,
S+x = 0.1886, S−x = 0.4832, S+y = 0.1908, and S−y = 0.3124 were obtained. By comparing the
calculated results with the experimental results, the welding process was the most stable along
the −x direction, with the highest comprehensive stability coefficient. The welding stability
was the worst along the +x direction, with the lowest comprehensive stability coefficient. The
welding stability along the +y and –y directions was intermediate, and the welding stability
along the −y direction was better than along the +y direction. The comprehensive stability
coefficient can also reflect this. Therefore, the comprehensive stability coefficient can reflect the
welding stability in different feed directions.

4. Optimization of Installation Position for Complex Space Curve Weldments
4.1. Comprehensive Stability Function of Complex Space Curve Weldments

The end performance of robots varied in different poses, and the performance in
different feed directions also varied in the same pose. This added complexity to the pose
and trajectory optimization of FSW robots. Especially when welding large and complex
space curve welds, it is of great significance to study how to ensure the stability of robots
during the welding process. When performing short-distance straight welding, the pose
changes of the robot can often be ignored. Based on the robot pose at the starting point of
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the weld, a stable welding direction can be calculated and selected. The characteristic of
complex space curve welds is that the welding distance is long, and the welding direction
is variable, resulting in significant changes in the robot’s posture and end force.

The thin plate weldment shown in Figure 9a is a typical complex space curve weldment
consisting of two thin aluminum alloy plates approximately 790 mm in length, 400 mm in
width, and with a curved radius of 1550 mm. The workpiece was fixed using the fixture
shown in Figure 9b. This fixture can be fixed on a flat, sturdy surface for performing FSW.
The dimensions of the fixture are shown in Figure 9c. To achieve better welding quality,
the robot was kept relatively stable when performing FSW tasks to optimize the stiffness
and vibration stability. Furthermore, the robot end effector must have a fixed inclination
angle with the weld and move uniformly along the weld trajectory. Once the position of the
weld is determined, the end trajectory and pose of the robot cannot be changed. Therefore,
optimizing the stability of robots is equivalent to optimizing the installation position of
the weldments.
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The workpiece coordinate system was established (Figure 9c), and offline program-
ming software (PQArt 2023) was used to extract the weld trajectory (Figure 9d). The weld
trajectory was discretized into n trajectory points at fixed intervals P = [P1, P2, . . . , Pn].
The relative position vector between the workpiece coordinate system and the robot base
coordinate system is Pw =

[
x y z A B C

]T, where x, y, and z are the workpiece
coordinate system origin in the robot base coordinates (m). A, B, and C are the angles of
rotation around the z, y, and x axes, respectively (◦). Based on the relative position vector
Pw, the homogeneous transformation matrix of the workpiece coordinate system can be
calculated relative to the robot base coordinate system 0

wT , as shown in Equation (18):

0
wT = Rz(A)Ry(B)Rx(C)Tp(x, y, z) (18)

where Rz is the matrix rotating around the z-axis, Ry is the matrix rotating around the
y-axis, Rx is the matrix rotating around the x-axis, and Tp is the translation matrix.

Thus, the end pose of the robot at the weld trajectory point can be found using
Equation (19):

Ti =
0
wTPi, (i = 1, 2, . . . , n) (19)

According to Ti, the robot joint angle and Jacobian matrix at the current point can be
obtained through the robot inverse solution operation. Assuming the welding force acting
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on the end of the robot during the welding process is Ft =
[
Fx Fy Fz

]T and is relatively
stable, then based on Equation (17), the comprehensive stability coefficient of the robot at
each point of the weld trajectory can be obtained, as shown in Equation (20).

Si =
Le(Ti, Ft)

1 + La(Ti, Ft)
, (i = 1, 2, . . . , n) (20)

Thus, the comprehensive stability coefficient of the robot for the entire weld trajectory
point can be obtained as in Equation (21).

SP =
n

∑
i=0

Si =
n

∑
i=0

Le(Ti, Ft)

1 + La(Ti, Ft)
(21)

SP represents the comprehensive stability evaluation index of the robot for the current
welding position and welding parameters of the weldment. The larger the SP, the higher
the stability of the robot during the current welding task. Optimizing the welding process
with SP as the objective function can simplify the optimization process into finding the
maximum value of the objective function.

4.2. Optimization of Weldments’ Installation Position Using the PSO Algorithm

When optimizing the position of weldments using the robot’s comprehensive stability
function SP as the objective function, it is necessary to consider the range of values of the
independent variables, the robot’s reachable space, and the limitations of the robot’s joint
angles. This is a typical constrained optimization problem. Using metaheuristic algorithms
to solve constrained optimization problems is an effective and efficient choice [32]. The
commonly used metaheuristic algorithms include the genetic algorithm (GA), particle
swarm optimization (PSO), simulated annealing (SA), and so on. They all solve complex
optimization problems by simulating specific phenomena or biological behaviors in na-
ture. Among them, the GA has robust searchability and is suitable for multi-objective
optimization problems, but its convergence speed is slow. The PSO algorithm has a fast
convergence speed and performs well in a continuous space search but is prone to falling
into local optima. The SA algorithm can be used for a discontinuous space search, with a
probability of jumping out of local optima, and is suitable for solving large-scale complex
problems. Still, it has a significant computational load and slow convergence speed [33]. To
select the appropriate optimization algorithm, further analysis of the objective function SP
is required.

From Equation (21), the input parameter of SP is the pose matrix of the robot at weld
trajectory point Ti and welding force vector Ft. If the robot’s end pose is kept relatively fixed
with the welding direction while the weld trajectory remains unchanged, as shown in the
coordinate system ot in Figure 5a, then the welding force during the welding process can
be regarded as a constant in the robot end coordinate system. At this point, the objective
function SP is only related to the relative position vector Pw =

[
x y z A B C

]T of
the weldment relative to the base coordinate. Equation (21) can be written as Equation (22):

SP = f (Pw) = f (x1, x2, x3, x4, x5, x6) (22)

The multivariate function shown in Equation (22) cannot visually determine the
continuity of the function, like unary and binary functions. However, it is possible to
infer the continuity of the function by fixing a portion of the independent variables and
using dimensionality reduction visualization methods. Figure 10a shows the image of
SP when Pw =

[
x y 0.8 0 −20 −5

]T, the value range of x is [0, 3], the value range
of y is [−2, 2], and the value interval is 0.05. Figure 10b shows the image of SP when
Pw =

[
1.8 0.3 z A −20 −5

]T, the value range of z is [0, 2], the value range of A
is [−180, 180], and the value interval is 2. The image of SP is shown in Figure 10c when



Processes 2024, 12, 536 16 of 22

Pw =
[
1.8 0.3 0.8 0 B C

]T, the value range of B is [−90, 90], the value range of C is
[−90, 90], and the value interval is 2. The image in the figure has been adjusted in scale
and display range.
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From the dimensionality reduction visualization of the objective function SP
(Figure 10), the distribution of data can be intuitively observed. The function value shows
continuous variation within the effective range of the independent variable. The PSO
algorithm has high applicability and fast convergence speed in a continuous space search,
and it was chosen as the optimization algorithm for the objective function.

4.2.1. Standard PSO Algorithm

The PSO algorithm is an optimization technique based on swarm intelligence in-
spired by the collective behavior of the shoals of birds and fish. In this algorithm, each
“particle” represents a potential solution that moves in the solution space, updating its
position and velocity by tracking the historical best positions of individuals and popula-
tions. This method enables particle swarms to explore and find the optimal or near-optimal
solution [34]. The optimization process of the PSO algorithm is as follows:

First, we initialized the particle swarm, set the population size N and the population
dimension D according to the problem being solved, and obtained the initial position
Xi and initial velocity Vi of the population. In PSO, the objective function is called the
fitness function. After initializing the population, the current fitness of each particle
was calculated using a fitness function; the optimal fitness Pbest for each particle and the
population optimal fitness Gbest were obtained with their corresponding positions XPbest
and XGbest. Subsequently, we iterated and updated the speed and position of the current
population according to the update rules, as shown in Equations (23) and (24) [34]:

Vi+1 = w · Vi + c1 · r1 · (XPbest − Xi) + c2 · r2 · (XGbest − Xi) (23)

Xi+1 = Xi + Vi+1 (24)

where Vi+1 is the updated particle velocity, Xi+1 is the updated particle position, Vi is
the current particle velocity, Xi is the current particle position, XPbest is the optimal
fitness position for the current particle, XGbest is the optimal fitness position for the current
population, w is the inertia coefficient, c1 is the self-learning factor, c2 is the population
learning factor, and r1 and r2 are random numbers between (0, 1).

The PSO algorithm can remember the historical best fitness positions of individual par-
ticles and the entire population and share the current global optimal information with the
whole population. When the calculation started, the population was randomly distributed
throughout the entire search space, and after iteration and updating, the population gath-
ered near the extremum of the fitness function. When the number of iterations reached the
maximum number of iterations Gk, we calculated termination and output the best fitness
Gbest of the current population and its corresponding position XGbest.
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Assuming that during the welding process, the force at the robot’s end effector, con-
sistent with the welding stability experiment, was Ft =

[
−899.80 1350.87 −4842.58

]T, a
constrained optimization problem model was established, as shown in Equation (25):

Maximize SP = f (x1, x2, x3, x4, x5, x6)
s.t. Θi = IK(Pi), (i = 1, 2, . . . , n)

Θmin < Θi < Θmax
Xmin < Xi < Xmax

(25)

where Pi represents the weld trajectory points; IK is the inverse kinematics solution of the
robot at the current trajectory point; θi is the joint angle of the robot at the current trajectory
point, where Θ =

[
θ1 θ2 θ3 θ4 θ5 θ6

]
; Xi is the independent variable value at the cur-

rent trajectory point, where X =
[
x1 x2 x3 x4 x5 x6

]
; Θmin and Θmax are the range

of values for robot joint angles (their values are shown in Table 1); and Xmin and Xmax are
the range of independent variables values, where Xmin =

[
0 0 0 −180 −90 −90

]
and Xmax =

[
3 0 2 180 90 90

]
.

Herein, by adjusting the independent variable x2, the value range was limited to (0,0),
so that the origin position of the weld was limited to the x-z plane of the base coordinate
system to reduce redundant solutions. For the population size N = 50, inertia coefficient
w = 0.5, learning factor c1 = c2 = 0.5, number of iterations Gk = 500, and repeated calculation
of 20 times, the results are shown in Figure 11. Figure 11a shows the convergence curve of
the optimization process. From the graph, the entire process reached or approached the
optimal value before 100 steps, and most processes reached or approached the optimal
value before 50 steps.
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Figure 11. The standard PSO optimization results. (a) The convergence curve obtained from
20 optimization calculations. (b–f) The scatter plots and box plots of the optimization results.

It can be seen that the PSO algorithm can achieve a fast convergence speed under the
current fitness function. After optimization, the final value of the fitness function SP was
between 150 and 220, and the results were relatively scattered, indicating the existence of
multiple local extreme points in the current fitness function. The maximum fitness value
calculated was Spmax = 216.31, with an average µSP = 194.44 and a standard deviation σSP
= 18.45. The physical quantity corresponding to the independent variable of the fitness
function was defined as the horizontal axis, and the fitness value was the vertical axis. The
scatter plots and box plots of the optimized solution set are shown in Figure 11b–f. The
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distribution of the solution set was relatively scattered within the defined domain and did
not exhibit prominent clustering characteristics. The means and standard deviations of
each independent variable solution set were calculated as follows: µx = 1.70, σx = 0.14;
µz = 1.20, σz = 0.27; µA = 9.51, σA = 35.42; µB = −38.66, σB = 13.59; and µC = −9.58,
σC = 26.12.

From the results, the standard PSO algorithm performed poorly during the optimiza-
tion process of the fitness function SP. From the convergence curve, the particle swarm had
a fast convergence speed and a slight change after 100 steps. Therefore, it is impossible
to improve the optimization results by increasing the number of iteration steps. From
the scatter plot, the local extremum points were often far apart in specific dimensions.
Meanwhile, the multidimensional nature of the fitness function made it more difficult
for the overall population to search for distant extreme points. Experiments found that
modifying the inertia and learning factors can improve convergence speed and increase the
probability of jumping out of local optima, but the effect is limited. Population size can
improve the optimization results but will increase the computational burden. However,
the search efficiency can be improved by reducing the number of iterations in a single
optimization and increasing the number of calculations. According to the convergence
curve, after 100 steps, most optimization processes still yielded better results, and reducing
the number of iteration steps will lower the accuracy of exploitation.

4.2.2. Dynamic Dual PSO Algorithm

In response to the above situation, this study introduces a dynamic dual PSO (DDPSO)
method. This method uses two sets of particle swarms referred to as P1 and P2 that do
not affect each other but have a constant population size (N). Firstly, P1 is in charge of
exploitation, P2 is responsible for exploration, NP1 = N, and NP2 = 0. Activating P2 after
P1 results in an extreme point for a certain number of steps. The population size of P2 is
NP2 = NP2 + ∆N, and the population size of P1 is reduced by NP1 = NP1 − ∆N. After both
groups of particle swarms reach their extreme points and continue for a certain number
of steps, if the fitness of P2 is smaller than P1, then P2 should be reinitialized, the initial
population size ∆N should be increased, and the population size of P1 should be reduced
by ∆N. If the fitness of P2 is consistently less than P1, the population size of P2 should
be further increased, and the population size of P1 should be further reduced until the
defined minimum value Nmin. If the fitness of P2 surpasses that of P1, the exploitation and
exploration status of P1 and P2 should be transferred. The population size of P2 should be
adjusted as NP2 = N, and then P1 should be initialized and its population size adjusted
as NP1 = 0. Until P2 falls to the extreme point for a certain number of steps, P1 should
be activated and the above steps repeated. After reaching the set maximum number of
iterations, the maximum fitness of the population and its corresponding independent
variables should be output as the optimization result. The flowchart is shown in Figure 12.

The DDPSO algorithm improves global search efficiency by dynamically adjusting
the number of two populations without increasing computational burden while also con-
sidering the exploitation near existing extreme points, balancing the relationship between
exploitation and exploration. Using the same population size as the standard PSO algo-
rithm for optimization, N = 50, inertia coefficient w = 0.5, learning factor c1 = c2 = 0.5,
number of iterations Gk = 500, and 20 optimization calculations were repeated. The opti-
mization results obtained are shown in Figure 13. Figure 13a shows the convergence curve
of a specific optimization process. The solid blue line represents the maximum fitness curve
for P1; the solid green line indicates the maximum fitness curve for P2; and the red dashed
line represents the overall maximum fitness curve, and its value is the larger value of the
fitness of two populations.
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Figure 13. The DDPSO optimization results. (a) The convergence curve of an optimization calculation.
(b–f) The scatter plots and box plots of the optimization results.

In the optimization calculation process, P1 and P2 underwent several transitions
between exploration and exploitation. The optimization process effectively escaped from
local optima through continuous exploitation and constant exploration. The maximum
fitness value calculated was Spmax = 225.36, with an average µSP = 219.21, and standard
deviation σSP = 4.21. Figure 13b–f shows the scatter plot and box plot of the relationship
between the optimization results of the solution set and fitness. Figure 13 also shows that
there was a significant clustering of solution sets in the results of x, A, and C, while in
the results of z and B, the solution sets were evenly distributed within a specific region.
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Therefore, it can be speculated that the optimal solutions for x, A, and C are located near the
aggregation point of the solution set, while z and B have corresponding optimal solutions
within a specific range. Further observation of the distribution of z and B revealed that
their solution sets are approximately symmetrically distributed, indicating that z and B
are two related variables. When calculating the optimal solution, one can be determined
based on the actual situation to calculate the value of the other. The means and standard
deviations of each independent variable solution were calculated as µx = 1.55, σx = 0.04;
µz = 0.91, σz = 0.17; µA = 0.62, σA = 7.67; µB = −36.28, σB = 8.90; and µC = −10.10,
σC = 8.11.

The solution set of the optimization result was concentrated near a specific value,
indicating a better solution for the current optimization process near this value. The higher
the concentration, the higher the stability of the optimization method. The comparison and
analysis between the optimization results of DDPSO and standard PSO are as follows. The
maximum fitness value obtained by the DDPSO algorithm increased by 4.2% compared to
the standard PSO, and the average value grew by 12.74%. Using the standard deviation
as the concentration index, the fitness concentration of the DDPSO improved by 77.18%.
The concentration of optimization results increased by 71.43% for x, 37.04% for z, 78.35%
for A, 34.51% for B, and 68.95% for C. Due to the unique distribution characteristics of z
and B, when they were not considered, the optimization results of DDPSO increased the
average concentration level by 72.91% compared to standard PSO. Therefore, the DDPSO
algorithm has a better and more stable search capability for the fitness function SP, and the
optimization results are closer to the optimal solution.

The red dashed line in the optimization result set shown in Figure 13b–f represents the
median of the current solution set, which can be used as the final optimization result. The op-
timized position vector was arranged as P∗

w =
[
1.55 0 0.90 −0.78 −36.27 −8.29

]T

for the optimized weldment relative to the robot base coordinate system. The position of
the weld trajectory in the robot base coordinates and the robot pose during the welding
process were obtained by using P∗

w as the input, as shown in Figure 14a. Adding P∗
w by

inputting the parameters into the 3D software (SOLIDWORKS 2020), the relative position
model between the welding fixture and the robot was obtained (Figure 14b). According to
this model, the position and angle of the heavy-duty positioner was adjusted (Figure 14c),
providing a reference for offline programming and process optimization of RFSW.
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5. Conclusions

This study aimed to improve the stability of robots during the FSW process, focusing
on the optimization of the installation position for complex space curve weldments. Initially,
the directional stability of the robot during welding was analyzed through experiments.
Subsequently, a dynamic dual particle swarm optimization algorithm was proposed, uti-
lizing a comprehensive stability index for robots to optimize the installation position of
complex space curve weldments. The conclusions are as follows:



Processes 2024, 12, 536 21 of 22

• The stability of the FSW robot varies when welding in different directions. It is most
stable in the −x direction, followed by the −y direction, with poorer stability in the
+y direction, and the worst in the +x direction. The stabilities of each welding direc-
tion, represented by a comprehensive stability index, are S+x = 0.1886, S−x = 0.4832,
S+y = 0.1908, and S−y = 0.3124. The higher the value, the better the stability, which is
consistent with experimental results.

• When using the DDPSO method to optimize the position of weldments, it has better
searchability and more stable optimization results than the standard PSO algorithm.
The maximum fitness value obtained increased by 4.2%, the average value increased
by 12.74%, and the concentration of optimization results increased by 72.91%.

There are still some limitations in this study. Although the optimized installation
position of the weldment improved the overall stability of the weld trajectory, there were
still a few parts of the trajectory that remained in poorer stability. Moreover, due to the
inherent limitations of the FSW robot itself, significant deviations can still occur at the
robot’s end even in a pose with better stiffness. Additionally, the robot’s natural frequency
often falls within the common speed range of FSW, making it difficult to avoid resonance
during welding. To address these issues, developing a robot positioner linkage control
method, researching trajectory planning and error compensation methods under redundant
degrees of freedom for RFSW, and studying methods for vibration avoidance/suppression
for the robot could lead to better welding stability, thereby fully leveraging the advantages
of RFSW.
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