
Citation: Khan, A.R. Dynamic Load

Balancing in Cloud Computing:

Optimized RL-Based Clustering with

Multi-Objective Optimized Task

Scheduling. Processes 2024, 12, 519.

https://doi.org/10.3390/pr12030519

Academic Editors: Jiaqiang E and

Wei Sun

Received: 21 January 2024

Revised: 19 February 2024

Accepted: 24 February 2024

Published: 4 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Dynamic Load Balancing in Cloud Computing: Optimized
RL-Based Clustering with Multi-Objective Optimized
Task Scheduling
Ahmad Raza Khan

Department of Information Technology, College of Computer and Information Sciences, Majmaah University,
Majmaah 11952, Saudi Arabia; ar.khan@mu.edu.sa

Abstract: Dynamic load balancing in cloud computing is crucial for efficiently distributing workloads
across available resources, ensuring optimal performance. This research introduces a novel dynamic
load-balancing approach that leverages a deep learning model combining Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) to calculate load values for each virtual
machine (VM). The methodology aims to enhance cloud performance by optimizing task scheduling
and stress distribution. The proposed model employs a dynamic clustering mechanism based on
computed loads to categorize VMs into overloaded and underloaded clusters. To improve clustering
efficiency, the approach integrates Reinforcement Learning (RL) with a sophisticated Hybrid Lyrebird
Falcon Optimization (HLFO) algorithm. HLFO merges the Lyrebird Optimization Algorithm (LOA)
and Falcon Optimization Algorithm (FOA), enhancing the effectiveness of load balancing. A Multi-
Objective Hybrid Optimization model is introduced to optimize task scheduling while considering
Quality of Service (QoS) parameters, including makespan minimization, energy consumption reduc-
tion, balanced CPU utilization, efficient memory usage, and task prioritization. The implementation,
conducted in Python and CloudSim, demonstrates the model’s ability to effectively allocate work
between virtual machines (VMs) and physical machines (PMs), resulting in improved resource utiliza-
tion, shortened makespan, enhanced CPU usage, and rigorous assessments affirming its efficacy. This
research addresses the complexity of dynamic load balancing in cloud environments by combining
deep learning, reinforcement learning, and hybrid optimization techniques, offering a comprehensive
solution to optimize cloud performance under varying workloads and resource conditions.

Keywords: cloud computing; dynamic load balancing; task scheduling; hybrid lyrebird falcon
optimization; multi-objective hybrid optimization

1. Introduction

Load balancing is a crucial task in cloud computing that ensures optimal performance
and efficient use of resources. A crucial element of cloud computing, load balancing, divides
computational tasks and network traffic among several servers or virtual machines (VMs)
to preserve optimal resource utilization and efficiency [1,2]. Cloud computing has grown
quickly as a result of modern technology and widespread internet usage; it is currently the
basis for a wide range of apps and services used by various user types [3,4]. Effective load-
balancing solutions are necessary to meet the vast and diversified demand for cloud-based
services while managing variable workloads and ensuring perfect user experiences [5].
A substantial pool of virtualized resources, such as processing power, storage capacity,
and networking capabilities, is made available by cloud computing over the internet [6].
As the use of cloud-based apps and services increases, efficient load balancing becomes
essential to overcoming problems with scalability and adaptability [7,8]. Cloud users can
access internet-based resources such as software and hardware applications by connecting
to servers and virtual machines (VMs) over internet networks [9]. Enhanced flexibility,

Processes 2024, 12, 519. https://doi.org/10.3390/pr12030519 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12030519
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-5365-9189
https://doi.org/10.3390/pr12030519
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12030519?type=check_update&version=1

Processes 2024, 12, 519 2 of 23

cost effectiveness, higher-quality on-demand services, and online backup capabilities to
avoid database overload are just a few of the many benefits of cloud computing. A few of
the several companies that make up the cloud computing infrastructure include brokers,
data centers, and Cloud Information Services (CiS). Data and virtual computers are stored
physically on servers housed in data centers [10]. Optimizing resource usage is crucial for
attaining appropriate load balancing in cloud environments.

The dynamic and complex nature of cloud workloads means that traditional load-
balancing algorithms might not be able to handle them, which is why education is looking
at new approaches like hybrid metaheuristics [11,12]. Hybrid metaheuristics combine
elements of several different algorithms to create a powerful problem-solving tool. By
integrating the benefits of several methodologies, they aim to give almost optimal out-
comes in resolving complex load-balancing problems in cloud systems [13]. Due to their
robustness and ability to adjust to varying workloads, these metaheuristics strike a balance
between exploration and exploitation of the search space. Hybrid metaheuristics have
several advantages for load balancing in cloud computing [14]. Large user volumes and
dynamic workloads are two things that cloud infrastructures have to handle. Hybrid
metaheuristics ensure maximum efficiency and efficient resource allocation even during
high-use periods by promptly adapting to demand variations. Efficient use of resources is
another essential element of cloud load balancing [15].

This research focuses on dynamic load balancing in cloud computing, proposing a
novel approach that utilizes a deep learning model incorporating CNNs and RNNs. The
main goal is to enhance cloud performance by optimizing task scheduling and stress dis-
tribution among VMs. The model employs a dynamic clustering mechanism based on
computed loads, categorizing VMs into overloaded and underloaded clusters. To improve
clustering efficiency, the approach integrates RL with a sophisticated HLFO algorithm,
combining the LOA and FOA. The overarching objective is to achieve effective load balanc-
ing, considering QoS parameters such as makespan minimization, energy consumption
reduction, balanced CPU utilization, efficient memory usage, and task prioritization. Imple-
mented in Python and CloudSim, the suggested model aims to allocate work between VMs
and PMs effectively, leading to improved resource usage, shortened makespan, enhanced
CPU usage, and thorough assessments affirming its efficacy.

(1) The following challenges are addressed in this research:

■ The complexity of dynamic load balancing in cloud environments;
■ A need to address conflicting goals such as makespan minimization, energy

consumption reduction, and balanced resource utilization;
■ Implementation challenges associated with deep learning, reinforcement learn-

ing, and hybrid optimization algorithms;
■ Ensuring adaptability to dynamic workloads and scalability to handle larger

cloud environments.

(2) The research aims to achieve the following goals:

■ Optimize task scheduling and stress distribution in cloud computing;
■ Improve cloud performance under varying workloads and resource conditions;
■ Achieve effective load balancing considering conflicting QoS parameters;
■ Enhance clustering efficiency through the integration of RL and Hybrid Lyre-

bird Falcon Optimization;
■ Validate the proposed model’s efficacy through thorough assessments and

practical implementation in Python and CloudSim.

(3) The main contributions of the paper are as follows:

■ The proposed model incorporates a sophisticated deep learning approach by
combining CNNs and RNNs to compute the VM load value. This integration
enhances the accuracy and efficiency of workload computations, contributing
to improved decision-making in load balancing;

Processes 2024, 12, 519 3 of 23

■ To address the challenges of clustering in load balancing, the research proposes
a clustering approach that combines RL with advanced hybrid optimization
algorithms, specifically HLFO. This innovative method enhances clustering
efficiency and accelerates the convergence to optimal solutions;

■ The research contributes a Multi-Objective Hybrid Optimization model for
task scheduling, considering QoS parameters such as makespan minimization,
energy consumption reduction, balanced CPU utilization, efficient memory
usage, and task prioritizing. This comprehensive approach ensures a holistic
optimization of task allocation in the cloud environment.

The remaining parts of the document are organized as follows. A summary of relevant
work on load-balancing algorithms is given in Section 2. In Section 3, the cloud computing
dynamic load-balancing approach is introduced, and Section 4 contains the experiment
and results analysis. A brief summary and future works are provided at the conclusion in
Section 5.

2. Literature Review

Autonomous Load Balancing, developed in 2021 by Ebadifard and Babamir [16], offers
a mechanism for efficiently assigning requests in a cloud context, assuring system stability,
slashing response times, and boosting resource productivity. It specifically addresses the
issue of inter-VM communication overheads, which is frequently disregarded in other load-
balancing methods. Evaluations utilizing the CloudSim tool and comparisons with existing
approaches show that it improves workload distribution and allocation by classifying
requests into CPU-bound and I/O-bound kinds.

Shafiq et al. [17] concentrated on workload balancing in the Infrastructure as a Service
(IaaS) architecture of cloud computing in 2021. The suggested load-balancing algorithm
prioritizes VMs based on Quality of Service (QoS) task characteristics, optimizes resource
allocation, and complies with Service-Level Agreement (SLA) criteria. Results show that,
compared to the existing dynamic LBA, the algorithm greatly improves resource utilization,
decreases execution time, and increases makespan, addressing current research gaps and
issues in cloud-based systems.

A three-tier architecture made up of cloud, fog, and consumer layers was suggested
by Yu et al. [18] for cloud computing load balancing in 2022. In order to balance the fog
load, it introduces a real-time VM movement method that optimizes resource utilization,
throughput, and reaction time. The algorithm outperforms the closest data center technique,
with an 11% improvement over the dynamic reconfigure with load (DRL) method and
18% better cost outcomes and optimized response time.

A brand-new load-balancing method dubbed FIMPSO, which combines the Firefly
and Improved Multi-Objective Particle Swarm Optimization (IMPSO) techniques, was
presented in 2020 by Devaraj et al. [19]. FIMPSO distributes workloads in cloud computing
systems effectively in order to improve resource utilization and response times. The
simulation outcomes show that it performs better than previous approaches, achieving an
effective average load and better task execution.

A unique Quasi-Oppositional Dragonfly Algorithm for Load Balancing (QODA-LB)
was created in 2022 by Latchoumi and Parthiban [20] to effectively handle the load-
balancing issue in cloud computing. The QODA-LB algorithm, which outperforms other
leading algorithms in terms of load-balancing effectiveness, delivers optimal resource
scheduling by utilizing three variables and the Quasi-Oppositional-Based Learning (QOBL)
concept. Numerous tests show that it is more effective and has a higher rate of convergence
than the traditional Dragonfly Algorithm (DA).

A brand-new load-balancing approach for cloud computing, dubbed CMODLB, was
introduced in 2021 by Negi et al. [21]. It combines supervised (artificial neural network), un-
supervised (clustering), and soft computing (interval type 2 fuzzy logic system) techniques.
The system uses artificial neural networks to cluster virtual machines (VMs) and uses multi-
objective techniques with particle swarm optimization to schedule jobs for overloaded VMs.

Processes 2024, 12, 519 4 of 23

To achieve load balancing among physical machines (PMs), VM migration decisions are
made utilizing an interval type 2 fuzzy logic system. In comparison to previous algorithms,
experimental results show enhanced performance with a notably shorter completion time
and better resource utilization.

To effectively distribute work across VMs in cloud computing, Pradhan and Bisoy [22]
offer LBMPSO, a load-balancing technique using modified PSO task scheduling. The algo-
rithm uses job and resource information from the data center to reduce makespan and in-
crease resource utilization. The performance of the system is greatly improved by LBMPSO
compared to conventional approaches according to simulation results with CloudSim.

In 2022, Sefati et al. [23] published a work that focuses on employing the Grey Wolf
Optimization (GWO) algorithm for load balancing in cloud computing. The GWO al-
gorithm effectively distributes work among idle or busy nodes, optimizing the system’s
performance by taking resource reliability capability into account. The proposed method
surpasses other techniques, according to simulation findings with CloudSim, providing
lower costs, faster reaction times, and optimal solutions.

The challenges of minimizing energy consumption, SLA violations, and VM migra-
tions in quickly expanding cloud data centers were addressed by Mapetu et al. [24] in
2021. The suggested dynamic VM-consolidation-approach-based load balancing makes
use of four techniques, including VM selection based on imbalance degree for VM mi-
gration, BPSO metaheuristics for energy consumption and host shutdowns, and the Pear-
son correlation coefficient for SLA. The method shows promising results in effectively
solving the NP-hard optimization problem through extensive simulations using real and
random workloads.

The MOABCQ method, a multi-objective task-scheduling optimization strategy, was
proposed by Kruekaew and Kimpan [25] for load balancing in cloud computing in 2022.
Enhanced scalability is a significant benefit [26]. Conventional load-balancing strategies
may not be as effective in cloud workloads due to their dynamic nature. Still, hybrid
metaheuristics are designed to adjust to shifting circumstances and may respond quickly to
workload variations [27,28]. The method seeks to optimize scheduling, resource utilization,
and VM throughput by fusing the Artificial Bee Colony Algorithm (ABC) with the Q-
learning algorithm. MOABCQ beats previous algorithms, according to experimental
findings using CloudSim, in terms of lowering makespan, cost, and degree of imbalance
and enhancing throughput and resource utilization. The literature review papers are given
in Table 1.

Table 1. Comparative analysis of load-balancing methods in cloud computing.

Author Name
and Citation Method Key Features Performance Metrics

Ebadifard and
Babamir [16]

Autonomous Load
Balancing

Efficiently assigns requests,
addresses inter-VM

communication overheads

Improved workload distribution,
reduced response times, boosted

resource productivity

Shafiq et al. [17] Dynamic LBA
Prioritizes VMs based on QoS

task characteristics and complies
with SLA criteria

Improved resource utilization,
decreased execution time,

increased makespan

Yu et al. [18] Three-tier architecture
Utilizes cloud, fog, and consumer
layers, introduces real-time VM

movement method

11% improvement over DRL with
load method, 18% greater cost

outcomes, optimized response time

Devaraj et al. [19] FIMPSO
Combines Firefly and IMPSO

techniques, distributes
workloads effectively

Better than previous approaches,
effective average load, improved

task execution

Latchoumi and
Parthiban [20] QODA-LB

Utilizes Quasi-Oppositional
Dragonfly Algorithm, delivers
optimal resource scheduling

More effective, higher rate of
convergence than traditional DA

Processes 2024, 12, 519 5 of 23

Table 1. Cont.

Author Name
and Citation Method Key Features Performance Metrics

Negi et al. [21] CMODLB

Combines supervised,
unsupervised, and soft

computing techniques, uses
artificial neural networks and

interval type 2 fuzzy logic system

Enhanced performance, notably
shorter completion time, better

resource utilization

Pradhan and
Bisoy [22] LBMPSO

Uses modified PSO task
scheduling, reduces makespan,

and increases resource utilization

Greatly improved performance
compared to conventional approaches

Sefati et al. [23] GWO Algorithm

Utilizes Grey Wolf Optimization
algorithm, optimizes system
performance by considering
resource reliability capability

Lower costs, faster reaction times,
optimal solutions according to

CloudSim simulations

Mapetu et al. [24] Dynamic VM
Consolidation

Uses dynamic VM-consolidation-
approach-based load balancing,

employs VM selection, BPSO
metaheuristics, Pearson
correlation coefficient

Promising results in minimizing
energy consumption, SLA violations,

and VM migrations through
extensive simulations

Kruekaew and
Kimpan [25] MOABCQ

Multi-objective task-scheduling
optimization strategy fuses ABC
with Q-learning algorithm, seeks
to optimize scheduling, resource
utilization, and VM throughput

Beats previous algorithms in terms of
lowering makespan, cost, degree of
imbalance, enhancing throughput,

and resource utilization according to
CloudSim simulations

2.1. Problem Statement

To maintain optimal system performance and resource utilization in cloud computing,
various challenges need to be addressed. One of the key issues is dealing with the diverse
nature of cloud data centers, where resources possess different capacities and capabilities.
Effectively allocating jobs among these varied resources is imperative to prevent over-
loading some and underutilizing others. Managing fluctuating workloads in the cloud
environment presents a significant problem [1,7]. Workload requirements can change over
time, necessitating load-balancing techniques capable of dynamically adapting resource
allocation to meet shifting demands. This adaptability is crucial to avoiding performance
bottlenecks during peak usage. Scalability is another challenge as cloud computing services
must handle a growing number of customers and applications. Scalable load-balancing
solutions are necessary to accommodate increasing demand and ensure effective job dis-
tribution across expanding infrastructure. Additionally, the adherence to Service-Level
Agreements (SLAs) is crucial. Load-balancing strategies must consider SLAs between cloud
providers and users to ensure that performance goals are achieved and user expectations are
met. To reduce resource usage and computational complexity, load-balancing algorithms
are designed with minimal overhead. Achieving efficient load balancing with minimal
overhead is essential for realizing high-performance cloud computing environments. To
enhance the clarity of the problem statement, it is crucial to mention the addressed problem
with Quality of Service (QoS) parameters, such as those found in the energy-aware stochas-
tic scheduler for batches of precedence-constrained jobs on a heterogeneous computing
system and energy-efficient scheduling algorithms for batch-of-tasks (BoT) applications on
heterogeneous computing systems. This inclusion will provide a more focused and specific
understanding of the challenges at hand.

This work contributes to the topic of dynamic load balancing in cloud computing by
presenting novel ideas that have not been explored before. In contrast to other methods, our
model makes use of a deep learning framework to improve the load calculations’ precision
and flexibility. This research is unique in that it uses a dynamic clustering approach to

Processes 2024, 12, 519 6 of 23

improve clustering efficiency and responsiveness to changing workloads. Furthermore,
the use of the hybrid algorithm provides a special remedy for optimization problems. By
presenting a Multi-Objective Hybrid Optimization model that optimizes task scheduling
while taking into account an extensive collection of Quality of Service (QoS) characteristics,
the study sets itself apart even more.

2.2. Objective Function

The objective function of the work is formulated using QoS metrics like response time,
throughput, and availability.

(1) Response time

Response time is the amount of time it takes for a service to respond to a specific type
of request. Response time is determined by the load intensity, which can be measured by
the number of requests at once or the arrival rates (requests per second). QoS takes into
account not just the average response time but also the response time percentile.

AvgRT =
TRT
N

(1)

where AvgRT is the average response time, TRT denotes the total response time, and N is
the total number of requests;

(2) Throughput

The throughput of a service is the maximum speed at which requests may be processed.
QoS metrics include functions that describe how throughput varies with load intensity and
the maximum throughput.

Throughput =
N
T

(2)

where T is the total time interval;

(3) Availability

A system’s or service’s availability is the percentage of time it is operational and
accessible to users. It is commonly expressed as an uptime percentage. High availability
is crucial for mission-critical services as it minimizes downtime and service interruptions
while ensuring a faultless user experience.

Availability =
TUt

TUt + TDt
× 100 (3)

where TUt is the total uptime, and TDt is the total downtime. Tasks are assigned to the
chosen underloaded VMs in each cluster using the Multi-Objective Hybrid Optimization
model. The best solution found by the model should serve as the basis for allocation.

The overall objective of the work is given by the following:

Objective Function = max(AvgRT , Throughput, Availability) (4)

The system aims to meet a performance threshold that is set by the maximum value of
its average response time, throughput, and availability. This could be a way to ensure that
the system is well balanced and does not have a single performance metric falling below a
certain acceptable level.

3. Proposed Methodology

Distributing a workload over one or more servers, network ports, hard drives, or other
computer resources is known as load balancing. The network infrastructure and large,
powerful (and costly) computing hardware used in typical data center implementations are
vulnerable to the same risks as any other physical device, such as hardware failure, outages
of power or other networks, and resource constraints during periods of high demand.

Processes 2024, 12, 519 7 of 23

By employing commodity servers to handle load balancing, cloud-based load balancing
deviates from traditional theories about load-balancing design and implementation. Em-
bracing economies of scale and new prospects presents unique problems of its own. To
guarantee that no resource is idle and that all of the resources are being used effectively,
load balancing is used. The load can be moved from the source nodes with more work
to the destination nodes, which are comparatively less busy, to provide a balanced task
distribution. Dynamic load balancing describes load balancing that is applied in real time.
Depending on the manner in which the execution nodes are chosen, direct or iterative
methods can be used to achieve this dynamic load distribution. Figure 1 shows the block
diagram of the proposed load-balancing model.

Processes 2024, 12, x FOR PEER REVIEW 8 of 25

DC
Task

assignment

PMs

VMs

User tasks

DCResource

under

utilized

PMs

VMs

User tasks

Overloaded

PM

Figure 1. Block diagram for the overloaded and underloaded VMs.

3.1. Collect Virtual Machine Load Data

The proposed work focuses on load balancing among PMs and VMs in a cloud en-

vironment through hybrid supervised (with target attribute, i.e., ANN) and unsuper-

vised (without target attribute, i.e., BOK-means clustering) machine learning techniques

for efficient load calculation and VM clustering. The proposed cloud environment con-

sists of M number of PMs as 𝑃 = { 𝑃𝑀1, 𝑃𝑀2, … , 𝑃𝑀𝑀 }. In each PM, L number of VMs

is included as 𝑉𝑀 = { 𝑉𝑀1, 𝑉𝑀2, … . , 𝑉𝑀𝐿 }. The cloud environment is involved with S

number of user tasks, represented as 𝑇 = { 𝑇1, 𝑇2, … , 𝑇𝑆 } . To balance load among

𝑀 PMs and 𝐿 VMs, two entities, the VM manager and cloud balancer, are involved.

Load Computation Using CNN and RNN

To compute the loads of each VM, we utilize a hybrid deep learning approach by

combining CNNs and RNNs.

▪ CNNs are used for feature extraction from sensor data. In the context of WSN, this

might involve processing spatial information. For example, if your WSN consists of

sensor nodes distributed in a physical area, CNNs can be used to capture spatial

patterns and relationships among nodes;

▪ RNNs are well suited for processing sequential data, which is often the case in

WSNs. You can use RNNs to capture temporal dependencies and relationships

among sensor readings over time. This is important for load computation in dy-

namic environments.

3.1.1. CNN

One of the most popular machine learning (ML) methods is the CNN, especially for

applications requiring vision. Grid-like data may be utilized to train CNN representa-

tions, and recent ML applications have shown considerable performance gains when us-

ing it. Convolution and pooling layers are frequently alternated with many fully con-

nected layers in a conventional CNN configuration. This section provides a quick expla-

nation of how various components fit into the CNN architecture; the basic CNN is

shown in Figure 2.

Figure 1. Block diagram for the overloaded and underloaded VMs.

3.1. Collect Virtual Machine Load Data

The proposed work focuses on load balancing among PMs and VMs in a cloud
environment through hybrid supervised (with target attribute, i.e., ANN) and unsupervised
(without target attribute, i.e., BOK-means clustering) machine learning techniques for
efficient load calculation and VM clustering. The proposed cloud environment consists
of M number of PMs as P = { PM1, PM2, . . . , PMM }. In each PM, L number of VMs is
included as VM = { VM1, VM2, . . . , VML }. The cloud environment is involved with S
number of user tasks, represented as T = { T1, T2, . . . , TS }. To balance load among M
PMs and L VMs, two entities, the VM manager and cloud balancer, are involved.

Load Computation Using CNN and RNN

To compute the loads of each VM, we utilize a hybrid deep learning approach by
combining CNNs and RNNs.

■ CNNs are used for feature extraction from sensor data. In the context of WSN, this
might involve processing spatial information. For example, if your WSN consists
of sensor nodes distributed in a physical area, CNNs can be used to capture spatial
patterns and relationships among nodes;

■ RNNs are well suited for processing sequential data, which is often the case in WSNs.
You can use RNNs to capture temporal dependencies and relationships among sensor
readings over time. This is important for load computation in dynamic environments.

3.1.1. CNN

One of the most popular machine learning (ML) methods is the CNN, especially for
applications requiring vision. Grid-like data may be utilized to train CNN representations,

Processes 2024, 12, 519 8 of 23

and recent ML applications have shown considerable performance gains when using it.
Convolution and pooling layers are frequently alternated with many fully connected layers
in a conventional CNN configuration. This section provides a quick explanation of how
various components fit into the CNN architecture; the basic CNN is shown in Figure 2.

Processes 2024, 12, x FOR PEER REVIEW 9 of 25

Convolution

1

Max

pooling 1

Convolution

2
Max pooling 2

Activation

function Fully

connected

layer

Figure 2. The basic structure of the CNN.

(1) Convolutional layer

It is composed of these kernels and uses each neuron as a convolutional kernel.

Conversely, if the kernel is symmetric, convolution becomes a correlation operation. Cut-

ting the image into distinct sections, known as receptive fields, is how the convolutional

kernel works. Extracting feature motifs is made easier by dividing an image into tiny

chunks. This is one way to express a convolution operation.

𝑓𝑙
𝑘(𝑝, 𝑞) = ∑ ∑ 𝑖𝑐(𝑥, 𝑦). 𝑒𝑙

𝑘(𝑢, 𝑣)
𝑥,𝑦𝑐

 (5)

where 𝑖𝑐(𝑥, 𝑦) is the input data component 𝐼𝑐, which has been multiplied elementally by

the 𝑒𝑙
𝑘(𝑢, 𝑣) index of the 𝑘𝑡ℎ convolutional kernel 𝑘1 of the 𝑙𝑡ℎ layer. Despite the possibil-

ity of representation, the resultant feature map of the 𝑘𝑡ℎ convolutional procedure is giv-

en in Equation (6).

𝐹𝑙
𝑘 = [𝑓𝑙

𝑘(1,1), … . , 𝑓𝑙
𝑘(𝑝, 𝑞), … , 𝑓𝑙

𝑘(𝑃, 𝑄)] (6)

(2) Pooling layer

Convolution operations generate feature motifs, which can appear anywhere in the

picture. As long as a feature’s estimated position in relation to other features is kept after

extraction, the location of the feature itself is less significant. An intriguing local proce-

dure is pooling or downsampling. It accumulates relevant data from the receptive field

and creates the dominant reaction in this specific, constrained space.

𝑍𝑙
𝑘 = 𝑔𝑝(𝐹𝑙

𝑘) (7)

Equation (7) illustrates the pooling procedure, where 𝑍𝑙
𝑘 stands for the pooling fea-

ture map of the 𝑙𝑡ℎ layer for the 𝑘𝑡ℎ input feature map, 𝐹𝑙
𝑘, and 𝑔𝑝(.) specifies the kind of

pooling process. With the help of the pooling approach, a combination of traits that are

resilient to translational shifts and mild distortions may be retrieved. The size of the fea-

ture map is decreased to an invariant feature set, which reduces overfitting and limits

the network’s complexity while boosting generalization. The CNN uses several different

pooling formulations, including maximal, average, overlapping, spatial pyramid, and

other formulations;

(3) Activation function

The identification of complicated patterns is aided by the activation function, which

also serves as a decision-making function. By selecting the right activation function,

learning may be accelerated. A compressed feature map’s activation mechanism is speci-

fied by Equation (8).

Figure 2. The basic structure of the CNN.

(1) Convolutional layer

It is composed of these kernels and uses each neuron as a convolutional kernel.
Conversely, if the kernel is symmetric, convolution becomes a correlation operation. Cutting
the image into distinct sections, known as receptive fields, is how the convolutional kernel
works. Extracting feature motifs is made easier by dividing an image into tiny chunks. This
is one way to express a convolution operation.

f k
l (p, q) = ∑c ∑x,y ic(x, y).ek

l (u, v) (5)

where ic(x, y) is the input data component Ic, which has been multiplied elementally by
the ek

l (u, v) index of the kth convolutional kernel k1 of the lth layer. Despite the possibility
of representation, the resultant feature map of the kth convolutional procedure is given in
Equation (6).

Fk
l =

[
f k
l (1, 1), . . . , f k

l (p, q), . . . , f k
l (P, Q)

]
(6)

(2) Pooling layer

Convolution operations generate feature motifs, which can appear anywhere in the
picture. As long as a feature’s estimated position in relation to other features is kept after
extraction, the location of the feature itself is less significant. An intriguing local procedure
is pooling or downsampling. It accumulates relevant data from the receptive field and
creates the dominant reaction in this specific, constrained space.

Zk
l = gp

(
Fk

l

)
(7)

Equation (7) illustrates the pooling procedure, where Zk
l stands for the pooling feature

map of the lth layer for the kth input feature map, Fk
l , and gp(.) specifies the kind of

pooling process. With the help of the pooling approach, a combination of traits that are
resilient to translational shifts and mild distortions may be retrieved. The size of the
feature map is decreased to an invariant feature set, which reduces overfitting and limits
the network’s complexity while boosting generalization. The CNN uses several different
pooling formulations, including maximal, average, overlapping, spatial pyramid, and
other formulations;

Processes 2024, 12, 519 9 of 23

(3) Activation function

The identification of complicated patterns is aided by the activation function, which
also serves as a decision-making function. By selecting the right activation function,
learning may be accelerated. A compressed feature map’s activation mechanism is specified
by Equation (8).

Tk
l = ga

(
Fk

l

)
(8)

The result of the convolution, denoted by Fk
l in the equation above, is given to the

activation function ga (.), which adds nonlinearity and produces a modified output, denoted
by Tk

l for the lth layer;

(4) Fully connected layer

The fully connected layer performs feature aggregation and combines the learned
features from different parts of the input image. This aggregation allows the network to
capture higher-level patterns and relationships between features, leading to more complex
representations. In this task, the fully connected layer’s output is often used to make final
predictions, and the burst assembly is performed.

3.1.2. RNN

A dynamic neural network called an RNN is used to solve time series issues. In
contrast to MLP, RNNs have connections between neighboring hidden neurons. Temporal
correlations between distant occurrences in the time dimension can be taken into considera-
tion through these connections, which allows the time-dependent input data in the sliding
window to be successively conveyed through the hidden unit structure of a typical RNN.
The fundamental formulas pertaining to the typical RNN’s structure are shown here. The
output of the conventional RNN’s hidden unit at time t is shown in Equation (9). The loss
function at time t is represented by Equation (10) and is defined as the mean squared error
(MSE). The derivative of the loss Lt with respect to the weights is shown in Equation (11).

ht = tanh(Wxxt + Whht−1 + b) (9)

Lt =
1
2

(
ut − pt)

2 (10)

∂Lt

∂Wx
=

t

∑
k=0

∂Lt

∂pt

∂pt

∂ht

∂ht

∂hk

∂hk
∂Wx

(11)

∂ht

∂hk
=

t

∏
j=k+1

∂hj

∂hj−1
=

t

∏
j=k+1

diag
(
tanh′

(
hj
))

Wh (12)

where the output vectors of hidden units at times t, j, and k are, respectively, ht, hk, and xt,
and the input vector is at time t. The hidden layer’s input and connected weight matrices
for the output are denoted by the letters Wx and Wh. The term with bias is b. The hyperbolic
tangent activation function is represented by tanh(), which is tanh(x) = 1−e2x

1+e2x . On the
main diagonal, diag() yields a diagonal matrix containing the vector elements. The outputs
of the CNN and RNN are combined to produce the load value of each VM. Then, the VMs
are grouped according to their weights.

3.2. Grouping Virtual Machines Using Reinforcement-Learning-Based Hybrid Lyrebird
Falcon Optimization

The VMs are divided into overloaded and unloaded clusters based on the computed loads.
A threshold-based strategy is used to separate virtual machines (VMs) into clusters

that are overloaded and unloaded according to calculated loads. A load threshold value
is established. Virtual machines (VMs) that have loads over this threshold are deemed
overloaded, while those that have loads below it are deemed unloaded. The threshold can

Processes 2024, 12, 519 10 of 23

be changed in accordance with the particular needs and features of the cloud computing
environment. Let us indicate that Li is VMi’s calculated load.

The threshold points out whether identifying clusters are overcrowded or not. This is
an expression for the equation that separates virtual machines (VMs) into overloaded and
unloaded clusters.

Overload VMs = {i|Li > Load Threshold} (13)

Underload VMs = {i|Li ≤ Load Threshold} (14)

This basic logic classifies virtual machines (VMs) according to whether their computed
load exceeds or falls below the given threshold. One can define what constitutes an
overloaded or unloaded condition more freely by varying the value of the load threshold.
To prevent any PM from being overworked and others from being underutilized, the
objective is to strike a balance in the allocation of VMs among PMs.

3.2.1. Optimized Reinforcement-Learning-Based Clustering

The modeling of the relationship between the general agent and atmosphere (in both
the classic and modern RILs) is composed of an element, a set of accessible measurements
A, and rewarding functions, S× A → R , as shown in Figure 3. The handler is the one
who makes decisions. As it functions, the communication process ought to be conditioned.
The environment or the world outside the system is the medium through which the
agent communicates.

Processes 2024, 12, x FOR PEER REVIEW 11 of 25

can be changed in accordance with the particular needs and features of the cloud com-

puting environment. Let us indicate that 𝐿𝑖 is 𝑉𝑀𝑖’s calculated load.

The threshold points out whether identifying clusters are overcrowded or not. This

is an expression for the equation that separates virtual machines (VMs) into overloaded

and unloaded clusters.

𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑 𝑉𝑀𝑠 = {𝑖|𝐿𝑖 > 𝐿𝑜𝑎𝑑 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} (13)

𝑈𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑 𝑉𝑀𝑠 = {𝑖|𝐿𝑖 ≤ 𝐿𝑜𝑎𝑑 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} (14)

This basic logic classifies virtual machines (VMs) according to whether their com-

puted load exceeds or falls below the given threshold. One can define what constitutes

an overloaded or unloaded condition more freely by varying the value of the load

threshold. To prevent any PM from being overworked and others from being underuti-

lized, the objective is to strike a balance in the allocation of VMs among PMs.

3.2.1. Optimized Reinforcement-Learning-Based Clustering

The modeling of the relationship between the general agent and atmosphere (in

both the classic and modern RILs) is composed of an element, a set of accessible meas-

urements 𝐴, and rewarding functions, 𝑆 × 𝐴 → 𝑅, as shown in Figure 3. The handler is

the one who makes decisions. As it functions, the communication process ought to be

conditioned. The environment or the world outside the system is the medium through

which the agent communicates.

AgentEnvironment

Action Ak

Reward rk

State Sk

Figure 3. Basic diagram of the RL.

The interaction of the agent with the environment is called a continuous phase.

Throughout the whole judgment process, the agent bases its decisions (𝑎𝑘) on the cur-

rent condition (𝑠𝑘) of the surroundings. A newly updated state (𝑠𝑘 + 1) environment is

given to the agent for future decisions once the decision has been made. The system

must then accept the decision and make the necessary modifications. The agent attempts

throughout time to maximize cumulative rewards, while the environment also provides

the agent with reward 𝑟𝑘 according to choice 𝑎𝑘. There must be a clear input system for

the agent to comprehend its optimal behaviors and regulations. When the system starts

with state s and follows action a (and specific policy accordingly), it is predicted that the

𝑄(𝑠, 𝑎) value function would accrue (with discounts). This is what the agent attempts to

maximize via Q-learning. It is the typical RIL method in this instance. For continuous-

time systems, 𝑄(𝑠, 𝑎) is defined as follows:

𝑄(𝑠, 𝑎) = 𝐸 [∫ 𝑒−𝛽(𝑡−𝑡0)𝑟(𝑡)𝑑𝑡|𝑠0

∞

𝑡0

= 𝑠, 𝑎0 = 𝑎] (15)

Figure 3. Basic diagram of the RL.

The interaction of the agent with the environment is called a continuous phase.
Throughout the whole judgment process, the agent bases its decisions (ak) on the cur-
rent condition (sk) of the surroundings. A newly updated state (sk + 1) environment is
given to the agent for future decisions once the decision has been made. The system
must then accept the decision and make the necessary modifications. The agent attempts
throughout time to maximize cumulative rewards, while the environment also provides
the agent with reward rk according to choice ak. There must be a clear input system for the
agent to comprehend its optimal behaviors and regulations. When the system starts with
state s and follows action a (and specific policy accordingly), it is predicted that the Q(s, a)
value function would accrue (with discounts). This is what the agent attempts to maximize
via Q-learning. It is the typical RIL method in this instance. For continuous-time systems,
Q(s, a) is defined as follows:

Q(s, a) = E

 ∞∫
t0

e−β(t−t0)r(t)dt
∣∣∣s0 = s, a0 = a

 (15)

The reward rate function is denoted by r(t), whereas the discount rate is represented
by β. Using an event-driven approach across time, Q-learning is an online reinforcement

Processes 2024, 12, 519 11 of 23

learning adaptive strategy that lowers overhead associated with periodic updating of
the RL discrete time value. Q-learning uses a continuous-time formulation of the value
function Q(s, a), which is provided in Equation (16). An equivalent approach to discrete
RIL methods is used by the RL firm, which consistently adopts avaricious practices. This
is where the updating rule is provided; caused by state transition, decision epoch tt+1 is
defined as follows:

eQ(k+1)(sk, ak)

← Q(k)(sk, ak) + α. [1−e−βτk
β .r(sk, ak)

+max
a′

e−βτk Q(k)(sk+1, a′)−Q(k)(sk, ak)]

(16)

where r(sk, ak) is the reward function; τk is the sojourn time where the RL is said to lie in a
state sk prior to the occurrence of the transition; and α ≤ 1 is the learning rate. Q(k)(sk, ak)
is the estimation decision value at each iteration τk. In contrast to earlier research, this
section offers a generalized RL strategy that may be used for resource allocation and other
issues. The HLFO offline phase and the Q-learning phase online make up the RIL approach.
The connection between the regulated action pair (s, a) and its Q(s, a) value function is
assessed using HLFO during the offline procedure. To develop a sufficiently accurate RIL
using measurement data, enough Q(s, a) value estimations and associated (s, a) samples
must be gathered during the offline RL creation phase. Pre-processing the status transi-
tional profile, the game playback profiles, and Q(s, a), the estimated value for the gaming
applications, are all part of this process. In order to obtain sufficient system transfer profiles
and Q(s, a) cost estimates—which can be a composite of latency, power consumption, and
durability metrics for building the HLFO —the study leverages real-world task arrival
points for the cloud resource allocation request. A randomly chosen policy and a pro-
gressively improved policy might come after this procedure. The conversion profiles are
stored in storage D and placed in capacity ND. By using memory, parameter divergence is
avoided and training is encouraged. The estimations of Q(s, a) values and the stored state
transformation profiles are used to train the HLFO. Every task’s scheduling is estimated as
O(mn), meaning that each iteration’s task scheduling requires O

(
m2n

)
to estimate.

3.2.2. Clustering Based on Hybrid Lyrebird Falcon Optimization Algorithm

Falcons have unique and complex hunting behaviors, using both clear, clearly iden-
tifiable techniques and more elaborate, convoluted tactics while chasing and capturing
their prey.

• Step 1

During the initial phase, the FOA factors and the governing limits are initialized;

• Step 2

Following this, the motion and location of falcons are altered according to the supplied
values, which is represented as follows:

y =

y1,1 · · · y1,V
...

...
...

yA,1 · · · yA,D

 (17)

where y is the falcon location regarding the total applicants A for every dimension V. The
speed is generated randomly within the vMax and vMin limits.

vMax = 0.1Upli (18)

vMin = −vMax (19)

where Upli is the upper limit in every measurement;

Processes 2024, 12, 519 12 of 23

• Step 3

Evaluation and identification of the global and personal optimal conditions for each
falcon are carried out. The health value associated with the problem is obtained, generating
the vector. Determination of the fitness value at each iteration uses Equation (20).

OF =

o f 1
...

o f n

 (20)

where the objective fitness is denoted by OF. At that point, each falcon’s best individual
location is represented by xbest, and the individual best is fixed as gbest;

• Step 4

During that period, the optimal individual is designated as Ib, and the optimal position
for each falcon is denoted as yb. Two random elements (QB, QC) are created with a
normal distribution on every bird of attack to study the association between awareness and
leap probability. The main probability considered where QB is smaller than the falcon is
as follows:

yt = yt−1 + vt−1 + Mtr (yb, t−1 − yt−1) + Otr(Ib, t−1 − yt−1) (21)

yt−1 and vt−1 are present location and the falcon’s motion. Mtr and Otr are cognitive
rate and social.

If QB exceeds B (adaptive prob), the jump is compared to QC. If QC exceeds C
(dive prob), the falcon selects one prey (y ch) and performs its hunting evolution using
logarithmic twisting expressed as follows:

yt = yt−1 + |(y ch − yt−1|exp(ze)cos(2πe) (22)

where yt is a new position, z is accurate observation logarithmic twisting that equates to 1,
and e is an irregular value in the range [−1, 1], which indicates how close the falcon is to its
actual target;

• Step 5

Since the lyrebird is supposed to randomly escape to one of these safe zones, this is
hybridized with the FOA to include the hunting behavior. The randomness of the lyrebird’s
escape makes it harder for predators to anticipate its movements, increasing its chances
of survival. By incorporating elements of the falcon’s hunting, which relies on surprise
and agility, the lyrebird could further confuse and outmaneuver its pursuers. Common
aspects of a falcon’s hunting are spotting and taking advantage of weaknesses in its target.
By combining this with its escape plan, the lyrebird may be able to draw predators into
situations where they are vulnerable and increase the likelihood of escape.

Using Equation (22), a new location is determined for each LOA member based on
the lyrebird displacement modeling conducted in this phase. Subsequently, Equation (23)
states that this new location takes the place of the corresponding member’s prior position
if the value of the goal function is enhanced.

yt = yt−1 + rand·(SSAt − It.yt−1) (23)

In this instance, SSAt represents the safe area that has been chosen; yt+1 signifies the
new position that has been based on the escaping strategy of the proposed LOA; rand is
the random numbers from the interval [0, 1]; and It is the number that has been randomly
selected as 1 or 2. When QB is lower than QC, the fitness of the picked prey is compared to
the falcon’s fitness, and this condition is expressed as follows:

yn = yt−1 + vt−1 + fcr(ych − yt−1) (24)

Processes 2024, 12, 519 13 of 23

3.3. Task Scheduling Using a Multi-Objective Hybrid Optimization Model

After forming the VM clusters, analysis of each cluster is performed to identify the
underloaded VMs. Underloaded VMs are VMs with spare capacity that can handle addi-
tional tasks. A Multi-Objective Hybrid Optimization model that takes into account each
of the specified objectives by HLFO is constructed. Finding the optimal VMs to assign
work to while concurrently considering numerous objectives should be the goal of the
model. To improve user experience and adhere to Service-Level Agreements (SLAs), QoS
measurements including response time, throughput, and availability are used.

4. Result and Discussion

The experimental assessment of the proposed load-balancing technique in a cloud
system environment is described in this part. There are several subsections in this section.
The suggested cloud environment’s specifics are given in the simulated environment, and
each important matrix is discussed in the performance matrices. The comparative analysis
section compares the proposed approach with current scheduling and load-balancing
techniques. The experimental setup is given in Table 2.

Table 2. Experimental setup.

Experimental Setup Description

Software Python 3.11.1

Simulation Toolkit CloudSim 4.0

Cloud Environment Type Simulated

VMs 10 to 50

PMs 1

Number of Tasks 100 to 500

4.1. Performance Metrics

(1) Makespan

Makespan is the amount of time required to complete each task or activity in a system.
It is highly important in job management and scheduling when the goal is to minimize the
total amount of time needed to complete all tasks. Minimize makespan to ensure efficient
resource allocation and Service-Level Agreements;

(2) Energy Consumption

The fundamental objective of energy consumption is to reduce the overall power
utilization of a cloud infrastructure. Sustainability and cost effectiveness rely on it. There are
several tactics to optimize energy consumption, including server consolidation, workload
distribution, and dynamic resource scaling;

(3) CPU Utilization

CPU utilization measures how well CPUs are used in cloud computing environments.
CPU utilization balancing ensures that no PMs or VMs are overworked while others remain
idle. Performance bottlenecks may be avoided and hardware resource efficiency can be
maximized with appropriate CPU use;

(4) Memory Utilization

Memory utilization assesses how efficiently PMs and VMs use their memory resources.
Reducing memory usage imbalances helps avoid memory bottlenecks, which can lead to
system slowdowns. An effective utilization of RAM improves overall performance and
system responsiveness;

Processes 2024, 12, 519 14 of 23

(5) Task Prioritization

The process of prioritizing tasks involves determining which jobs or activities inside
the system are most vital or significant. High-priority activities are certain to receive the
necessary resources and to be completed on schedule, even during periods of extreme
workload. When it comes to managing important business operations or customer requests,
for example, setting priorities is essential to meeting needs and maintaining service quality.

4.2. Overall Performance of the Proposed Model by Varying the Task Count

Table 3 presents a comparative analysis of four models—Reinforcement Learning
(RL), LOA, FOA, and HLFO (proposed)—across different task counts, highlighting key
performance metrics. The makespan column indicates the time taken to complete tasks,
with RL showing a makespan of 482 units for 100 tasks. Energy consumption is depicted in
the RL model as 51.62 units for the same task count. Balanced CPU utilization, measuring
evenness in CPU usage, is exemplified by RL with a value of 0.0168. Optimized memory
usage, indicating memory efficiency, is shown as 5313.61 units for RL with 100 tasks. Task
prioritization, denoted by numerical values, is presented as 5930 for RL with 100 tasks.
The table facilitates a comprehensive understanding of each model’s performance under
varying task counts, encompassing factors such as time efficiency, energy consumption,
CPU utilization balance, memory optimization, and task prioritization strategies.

Table 3. Comparison of the performance for various task counts.

Task

Model Task Makespan Energy
Consumption

Balanced CPU
Utilization

Optimized
Memory Usage

Task
Prioritization

RL 100 482 51.61574154 0.0168 5313.6104 5930

200 1091 66.6182419 0.020866 5404.4675 29,800

300 1788 81.97394104 0.021016 5473.8971 44,850

400 2902 84.13317268 0.0935 5619.417494 49,800

500 2457 96.9864314 0.01256 5721.105324 52,750

LOA 100 506 66.15810703 0.02424 6029.2364 5950

200 1097 69.63142331 0.01474 6380.0291 30,900

300 1769 74.86529995 0.02096 6573.920833 45,850

400 2154 75.98325648 0.04096 6879.920833 50,697

500 2365 78.73125647 0.06096 6943.920833 53,954

FOA 100 601 79.85247 0.03542 6125.3697 6025

200 1165 80.36542 0.056487 6596.32 42,238

300 1874 82.95423 0.02465 6685.68 63,375

400 2187 84.74295 0.025463 6896.74 64,481

500 2396 86.98452 0.036214 7098.32 66,598

HLFO (proposed) 100 299 42.72476182 0.003376 4893.0531 6950

200 1013 45.17180384 0.004606 4915.504375 50,900

300 1546 48.27371066 0.001246222 5085.768622 70,850

400 1972 55.41229177 0.012035 5241.274244 80,800

500 2015 61.9782497 0.009344 5383.952204 81,750

Processes 2024, 12, 519 15 of 23

(1) Makespan

The provided table compares the performance of different models (RL, LOA, FOA,
and HLFO) across various task counts based on several metrics. The “Makespan” values
represent the total time taken to complete tasks in each scenario, shown in Figure 4. In the
RL model, makespan increases from 482 (for 100 tasks) to 2457 (for 500 tasks), indicating a
proportional rise in completion time with an increasing task load. The LOA and FOA follow
similar trends, with makespan values escalating as the number of tasks grows. Notably,
the proposed HLFO model stands out with significantly lower makespan values across all
task counts (e.g., 299 for 100 tasks), showcasing its superior efficiency in task completion
compared to the other models. The HLFO model’s consistently lower makespan suggests
its potential for optimizing task scheduling and resource allocation, resulting in faster task
completion times and improved overall system efficiency;

Processes 2024, 12, x FOR PEER REVIEW 16 of 25

(1) Makespan

The provided table compares the performance of different models (RL, LOA, FOA,

and HLFO) across various task counts based on several metrics. The “Makespan” values

represent the total time taken to complete tasks in each scenario, shown in Figure 4. In

the RL model, makespan increases from 482 (for 100 tasks) to 2457 (for 500 tasks), indi-

cating a proportional rise in completion time with an increasing task load. The LOA and

FOA follow similar trends, with makespan values escalating as the number of tasks

grows. Notably, the proposed HLFO model stands out with significantly lower

makespan values across all task counts (e.g., 299 for 100 tasks), showcasing its superior

efficiency in task completion compared to the other models. The HLFO model’s consist-

ently lower makespan suggests its potential for optimizing task scheduling and resource

allocation, resulting in faster task completion times and improved overall system effi-

ciency;

Figure 4. Comparison of the makespan by varying task.

(2) Energy consumption

The “Energy Consumption” values in the table depict the amount of energy con-

sumed by various models (RL, LOA, FOA, and HLFO) in executing tasks across differ-

ent counts. For RL, the LOA, and the FOA, there is a discernible upward trend in energy

consumption as the task count increases, indicating an increased energy demand for

handling larger workload scenarios, shown in Figure 5. Specifically, RL’s energy con-

sumption rises from 51.62 for 100 tasks to 96.99 for 500 tasks. In contrast, the proposed

HLFO model consistently exhibits lower energy consumption values across all task

counts, underscoring its potential for energy-efficient task execution. For instance, HLFO

achieves a notably lower energy consumption of 42.72 for 100 tasks, positioning it as a

promising model for scenarios prioritizing energy conservation in task scheduling and

optimization;

Figure 4. Comparison of the makespan by varying task.

(2) Energy consumption

The “Energy Consumption” values in the table depict the amount of energy consumed
by various models (RL, LOA, FOA, and HLFO) in executing tasks across different counts.
For RL, the LOA, and the FOA, there is a discernible upward trend in energy consumption
as the task count increases, indicating an increased energy demand for handling larger
workload scenarios, shown in Figure 5. Specifically, RL’s energy consumption rises from
51.62 for 100 tasks to 96.99 for 500 tasks. In contrast, the proposed HLFO model consistently
exhibits lower energy consumption values across all task counts, underscoring its potential
for energy-efficient task execution. For instance, HLFO achieves a notably lower energy
consumption of 42.72 for 100 tasks, positioning it as a promising model for scenarios
prioritizing energy conservation in task scheduling and optimization;

(3) Balanced CPU utilization

The “Balanced CPU Utilization” values in the table gauge the efficiency of compu-
tational resource allocation among different models (RL, LOA, FOA, and HLFO) across
varying task counts. For RL, there is a noticeable increase in balanced CPU utilization as the
task count rises, implying a more efficient distribution of computational load with larger
workload scenarios, shown in Figure 6. The LOA exhibits a fluctuating trend in balanced
CPU utilization, while the FOA maintains relatively consistent values. Remarkably, the
proposed HLFO model consistently achieves remarkably low balanced CPU utilization
values, such as 0.003376 for 100 tasks, suggesting an exceptionally balanced distribution of
CPU workload;

Processes 2024, 12, 519 16 of 23
Processes 2024, 12, x FOR PEER REVIEW 17 of 25

Figure 5. Comparison of the energy consumption by varying task.

(3) Balanced CPU utilization

The “Balanced CPU Utilization” values in the table gauge the efficiency of compu-

tational resource allocation among different models (RL, LOA, FOA, and HLFO) across

varying task counts. For RL, there is a noticeable increase in balanced CPU utilization as

the task count rises, implying a more efficient distribution of computational load with

larger workload scenarios, shown in Figure 6. The LOA exhibits a fluctuating trend in

balanced CPU utilization, while the FOA maintains relatively consistent values. Re-

markably, the proposed HLFO model consistently achieves remarkably low balanced

CPU utilization values, such as 0.003376 for 100 tasks, suggesting an exceptionally bal-

anced distribution of CPU workload;

Figure 6. Comparison of the balanced CPU utilization by varying task.

(4) Optimized memory usage

The “Optimized Memory Usage” values in the table signify the efficiency of

memory allocation among different models (RL, LOA, FOA, and HLFO) across varying

task counts. In the cases of RL, the LOA, and the FOA, there is a consistent increase in

Figure 5. Comparison of the energy consumption by varying task.

Processes 2024, 12, x FOR PEER REVIEW 17 of 25

Figure 5. Comparison of the energy consumption by varying task.

(3) Balanced CPU utilization

The “Balanced CPU Utilization” values in the table gauge the efficiency of compu-

tational resource allocation among different models (RL, LOA, FOA, and HLFO) across

varying task counts. For RL, there is a noticeable increase in balanced CPU utilization as

the task count rises, implying a more efficient distribution of computational load with

larger workload scenarios, shown in Figure 6. The LOA exhibits a fluctuating trend in

balanced CPU utilization, while the FOA maintains relatively consistent values. Re-

markably, the proposed HLFO model consistently achieves remarkably low balanced

CPU utilization values, such as 0.003376 for 100 tasks, suggesting an exceptionally bal-

anced distribution of CPU workload;

Figure 6. Comparison of the balanced CPU utilization by varying task.

(4) Optimized memory usage

The “Optimized Memory Usage” values in the table signify the efficiency of

memory allocation among different models (RL, LOA, FOA, and HLFO) across varying

task counts. In the cases of RL, the LOA, and the FOA, there is a consistent increase in

Figure 6. Comparison of the balanced CPU utilization by varying task.

(4) Optimized memory usage

The “Optimized Memory Usage” values in the table signify the efficiency of memory
allocation among different models (RL, LOA, FOA, and HLFO) across varying task counts.
In the cases of RL, the LOA, and the FOA, there is a consistent increase in optimized
memory usage as the task count rises, reflecting a proportional allocation of memory
resources to accommodate larger workload scenarios, shown in Figure 7. Conversely,
the proposed HLFO model consistently demonstrates lower optimized memory usage
values across all task counts, such as 4893.05 for 100 tasks, indicating a more resource-
efficient approach to memory utilization. These findings suggest that the HLFO model
may excel in optimizing memory resources even in scenarios with fewer tasks, potentially
contributing to enhanced system efficiency and responsiveness by avoiding unnecessary
memory allocation compared to other models;

Processes 2024, 12, 519 17 of 23

Processes 2024, 12, x FOR PEER REVIEW 18 of 25

optimized memory usage as the task count rises, reflecting a proportional allocation of

memory resources to accommodate larger workload scenarios, shown in Figure 7. Con-

versely, the proposed HLFO model consistently demonstrates lower optimized memory

usage values across all task counts, such as 4893.05 for 100 tasks, indicating a more re-

source-efficient approach to memory utilization. These findings suggest that the HLFO

model may excel in optimizing memory resources even in scenarios with fewer tasks,

potentially contributing to enhanced system efficiency and responsiveness by avoiding

unnecessary memory allocation compared to other models;

Figure 7. Comparison of the optimized memory usage by various tasks.

(5) Task prioritization

The combined examination of “Optimized Memory Usage” and “Task Prioritiza-

tion” values in the table offers a holistic perspective on how different models (RL, LOA,

FOA, and HLFO) manage memory resources and prioritize tasks across various work-

load scenarios, shown in Figure 8. For RL, the LOA, and the FOA, there is an observable

increase in optimized memory usage as the task count rises, indicative of proportional

memory allocation. While explicit “Task Prioritization” values are not provided, they

would complement insights into how effectively these models prioritize tasks for opti-

mal memory utilization. In contrast, the proposed HLFO model consistently demon-

strates lower optimized memory usage values across task counts, suggesting a more effi-

cient approach to memory management. The missing “Task Prioritization” values for

HLFO, if available, would provide further understanding of how task prioritization

strategies contribute to its optimized memory usage.

Figure 7. Comparison of the optimized memory usage by various tasks.

(5) Task prioritization

The combined examination of “Optimized Memory Usage” and “Task Prioritization”
values in the table offers a holistic perspective on how different models (RL, LOA, FOA,
and HLFO) manage memory resources and prioritize tasks across various workload sce-
narios, shown in Figure 8. For RL, the LOA, and the FOA, there is an observable increase
in optimized memory usage as the task count rises, indicative of proportional memory
allocation. While explicit “Task Prioritization” values are not provided, they would com-
plement insights into how effectively these models prioritize tasks for optimal memory
utilization. In contrast, the proposed HLFO model consistently demonstrates lower opti-
mized memory usage values across task counts, suggesting a more efficient approach to
memory management. The missing “Task Prioritization” values for HLFO, if available,
would provide further understanding of how task prioritization strategies contribute to its
optimized memory usage.

Processes 2024, 12, x FOR PEER REVIEW 19 of 25

Figure 8. Comparison of the task prioritization by varying task.

4.3. Overall Performance of the Proposed Model by Varying the Task Count

The provided table compares the performance of different models (RL, LOA, FOA,

and HLFO) across various virtual machine (VM) counts based on several metrics. Each

row corresponds to a specific model, and the columns represent the VM count,

makespan, energy consumption, balanced CPU utilization, optimized memory usage,

and task prioritization values.

As the number of VMs increases from 10 to 50, RL shows an increase in makespan

(from 65 to 75), energy consumption (from 6.05 to 13.06), and balanced CPU utilization

(with fluctuations). Optimized memory usage increases from 6019.16 to 7025.12. Task

prioritization values also increase, indicating a preference for specific tasks. The LOA

exhibits similar trends with increasing VM count. Makespan rises from 67 to 73, energy

consumption increases from 7.05 to 12.01, and balanced CPU utilization fluctuates. Op-

timized memory usage increases from 6123.24 to 7084.62. Task prioritization values also

show an upward trend. The FOA displays a trend of increasing makespan (from 68 to

75), energy consumption (from 8.37 to 13.87), and balanced CPU utilization. Optimized

memory usage rises from 6236.85 to 7498.36. Task prioritization values also increase, in-

dicating changing task priorities with higher VM counts. HLFO consistently demon-

strates lower makespan values (from 43 to 37) and energy consumption (from 4.39 to

5.60) compared to other models. Balanced CPU utilization and optimized memory usage

vary with VM count. Notably, HLFO exhibits a distinctive decrease in optimized

memory usage from 5012.29 to 1642.64 as VM count increases, and task prioritization

values show variability.

(1) Makespan

The makespan, as indicated in Table 4, serves as a crucial metric for evaluating the

efficiency of various computational models under different VM count scenarios, shown

in Figure 9. It represents the total time required for a given model to complete its tasks.

In the case of the Reinforcement Learning (RL) model, the makespan starts at 65 units for

10 VMs and gradually increases to 75 units for 50 VMs. Similarly, the Learning Automa-

ta Optimization (LOA) and Firefly Optimization Algorithm (FOA) models exhibit in-

creasing makespan values with higher VM counts, reaching 73 units and 75 units, re-

spectively, for 50 VMs. Notably, the proposed HLFO model stands out with significantly

lower makespan values across the board. For instance, it achieves a makespan of 43 units

for 10 VMs and maintains a relatively low value of 37 units even with 50 VMs. This sug-

gests that the HLFO model excels in completing tasks more efficiently compared to the

Figure 8. Comparison of the task prioritization by varying task.

4.3. Overall Performance of the Proposed Model by Varying the Task Count

The provided table compares the performance of different models (RL, LOA, FOA, and
HLFO) across various virtual machine (VM) counts based on several metrics. Each row corre-

Processes 2024, 12, 519 18 of 23

sponds to a specific model, and the columns represent the VM count, makespan, energy con-
sumption, balanced CPU utilization, optimized memory usage, and task prioritization values.

As the number of VMs increases from 10 to 50, RL shows an increase in makespan
(from 65 to 75), energy consumption (from 6.05 to 13.06), and balanced CPU utilization
(with fluctuations). Optimized memory usage increases from 6019.16 to 7025.12. Task
prioritization values also increase, indicating a preference for specific tasks. The LOA
exhibits similar trends with increasing VM count. Makespan rises from 67 to 73, energy
consumption increases from 7.05 to 12.01, and balanced CPU utilization fluctuates. Op-
timized memory usage increases from 6123.24 to 7084.62. Task prioritization values also
show an upward trend. The FOA displays a trend of increasing makespan (from 68 to 75),
energy consumption (from 8.37 to 13.87), and balanced CPU utilization. Optimized memory
usage rises from 6236.85 to 7498.36. Task prioritization values also increase, indicating
changing task priorities with higher VM counts. HLFO consistently demonstrates lower
makespan values (from 43 to 37) and energy consumption (from 4.39 to 5.60) compared to
other models. Balanced CPU utilization and optimized memory usage vary with VM count.
Notably, HLFO exhibits a distinctive decrease in optimized memory usage from 5012.29 to
1642.64 as VM count increases, and task prioritization values show variability.

(1) Makespan

The makespan, as indicated in Table 4, serves as a crucial metric for evaluating the
efficiency of various computational models under different VM count scenarios, shown
in Figure 9. It represents the total time required for a given model to complete its tasks.
In the case of the Reinforcement Learning (RL) model, the makespan starts at 65 units for
10 VMs and gradually increases to 75 units for 50 VMs. Similarly, the Learning Automata
Optimization (LOA) and Firefly Optimization Algorithm (FOA) models exhibit increasing
makespan values with higher VM counts, reaching 73 units and 75 units, respectively, for
50 VMs. Notably, the proposed HLFO model stands out with significantly lower makespan
values across the board. For instance, it achieves a makespan of 43 units for 10 VMs and
maintains a relatively low value of 37 units even with 50 VMs. This suggests that the HLFO
model excels in completing tasks more efficiently compared to the RL, LOA, and FOA
approaches, making it a promising approach for optimizing computational workloads;

Processes 2024, 12, x FOR PEER REVIEW 20 of 25

RL, LOA, and FOA approaches, making it a promising approach for optimizing compu-

tational workloads;

Figure 9. Comparison of the makespan by varying VM count.

Table 4. Comparison of the performance for various VM counts.

Model
VM

Machine
Makespan Energy Consumption

Balanced CPU

Utilization

Optimized

Memory Usage

Task

Prioritization

RL 10 65 6.045057552 0.01 6019.16 45

 20 68 8.516720472 0.06 6570.69 55

 30 70 9.262013472 0.091 6666.24 60

 40 73 12.26201347 0.0125 6854.25 64

 50 75 13.06201347 0.0134 7025.12 65

LOA 10 67 7.045057552 0.0214 6123.24 76

 20 69 8.025057552 0.06475 6663.31 86

 30 70 9.015057552 0.01096 6786.52 89

 40 72 11.00505755 0.02163 6892.34 91

 50 73 12.00505755 0.032564 7084.62 93

FOA 10 68 8.369854127 0.03856 6236.85 77

 20 70 9.65487296 0.079856 6758.36 87

 30 72 10.857463 0.0269 6874.64 90

 40 73 12.9685765 0.03684 7236.98 92

 50 75 13.86954712 0.045489 7498.36 95

HLFO

(proposed)
10 43 4.387614347 0.006 5012.29 80

 20 50 3.843706576 0.04475 4818.76 88

 30 52 5.373256934 0.0141 4619.01 94

 40 49 5.193933356 0.004475 3523.84 96

 50 37 5.598419936 0.0105 1642.64 97

(2) Energy consumption

Energy consumption, as shown in Table 4, quantifies the energy utilized by compu-

tational models across different VM count scenarios, shown in Figure 10. In the RL mod-

el, energy consumption ranges from 6.045057552 units for 10 VMs to 13.06201347 units

for 50 VMs. Similarly, the LOA and FOA models exhibit increasing energy consumption

Figure 9. Comparison of the makespan by varying VM count.

(2) Energy consumption

Energy consumption, as shown in Table 4, quantifies the energy utilized by computa-
tional models across different VM count scenarios, shown in Figure 10. In the RL model,
energy consumption ranges from 6.045057552 units for 10 VMs to 13.06201347 units for
50 VMs. Similarly, the LOA and FOA models exhibit increasing energy consumption with

Processes 2024, 12, 519 19 of 23

higher VM counts, peaking at 12.00505755 and 13.86954712 units, respectively, for 50 VMs.
Notably, the proposed HLFO model demonstrates more favorable energy consumption.
For instance, it consumes 4.387614347 units for 10 VMs and maintains low values, like
5.598419936 units for 50 VMs;

Table 4. Comparison of the performance for various VM counts.

Model VM Machine Makespan Energy
Consumption

Balanced CPU
Utilization

Optimized
Memory Usage

Task
Prioritization

RL 10 65 6.045057552 0.01 6019.16 45

20 68 8.516720472 0.06 6570.69 55

30 70 9.262013472 0.091 6666.24 60

40 73 12.26201347 0.0125 6854.25 64

50 75 13.06201347 0.0134 7025.12 65

LOA 10 67 7.045057552 0.0214 6123.24 76

20 69 8.025057552 0.06475 6663.31 86

30 70 9.015057552 0.01096 6786.52 89

40 72 11.00505755 0.02163 6892.34 91

50 73 12.00505755 0.032564 7084.62 93

FOA 10 68 8.369854127 0.03856 6236.85 77

20 70 9.65487296 0.079856 6758.36 87

30 72 10.857463 0.0269 6874.64 90

40 73 12.9685765 0.03684 7236.98 92

50 75 13.86954712 0.045489 7498.36 95

HLFO (proposed) 10 43 4.387614347 0.006 5012.29 80

20 50 3.843706576 0.04475 4818.76 88

30 52 5.373256934 0.0141 4619.01 94

40 49 5.193933356 0.004475 3523.84 96

50 37 5.598419936 0.0105 1642.64 97

Processes 2024, 12, x FOR PEER REVIEW 21 of 25

with higher VM counts, peaking at 12.00505755 and 13.86954712 units, respectively, for

50 VMs. Notably, the proposed HLFO model demonstrates more favorable energy con-

sumption. For instance, it consumes 4.387614347 units for 10 VMs and maintains low

values, like 5.598419936 units for 50 VMs;

Figure 10. Comparison of the energy consumption by varying VM count.

(3) Balanced CPU utilization

In the case of the RL model, the balanced CPU utilization is denoted by values such

as 0.01 for 10 VMs and 0.0134 for 50 VMs. Both the LOA and FOA models exhibit in-

creasing balanced CPU utilization values with higher VM counts, reaching 0.032564 for

the LOA and 0.045489 for the FOA for the 50 VMs scenario, shown in Figure 11. The

proposed Hierarchical Learning Firefly Optimization (HLFO) model showcases notably

low balanced CPU utilization across VM counts. For instance, it achieves values like

0.006 for 10 VMs and 0.0105 for 50 VMs. This suggests that the HLFO model efficiently

distributes its processing load, maintaining a balance between CPUs and potentially

avoiding overloading specific processors;

Figure 11. Comparison of the balanced CPU utilization by varying VM count.

Figure 10. Comparison of the energy consumption by varying VM count.

Processes 2024, 12, 519 20 of 23

(3) Balanced CPU utilization

In the case of the RL model, the balanced CPU utilization is denoted by values such as
0.01 for 10 VMs and 0.0134 for 50 VMs. Both the LOA and FOA models exhibit increasing
balanced CPU utilization values with higher VM counts, reaching 0.032564 for the LOA
and 0.045489 for the FOA for the 50 VMs scenario, shown in Figure 11. The proposed
Hierarchical Learning Firefly Optimization (HLFO) model showcases notably low balanced
CPU utilization across VM counts. For instance, it achieves values like 0.006 for 10 VMs
and 0.0105 for 50 VMs. This suggests that the HLFO model efficiently distributes its
processing load, maintaining a balance between CPUs and potentially avoiding overloading
specific processors;

Processes 2024, 12, x FOR PEER REVIEW 21 of 25

with higher VM counts, peaking at 12.00505755 and 13.86954712 units, respectively, for

50 VMs. Notably, the proposed HLFO model demonstrates more favorable energy con-

sumption. For instance, it consumes 4.387614347 units for 10 VMs and maintains low

values, like 5.598419936 units for 50 VMs;

Figure 10. Comparison of the energy consumption by varying VM count.

(3) Balanced CPU utilization

In the case of the RL model, the balanced CPU utilization is denoted by values such

as 0.01 for 10 VMs and 0.0134 for 50 VMs. Both the LOA and FOA models exhibit in-

creasing balanced CPU utilization values with higher VM counts, reaching 0.032564 for

the LOA and 0.045489 for the FOA for the 50 VMs scenario, shown in Figure 11. The

proposed Hierarchical Learning Firefly Optimization (HLFO) model showcases notably

low balanced CPU utilization across VM counts. For instance, it achieves values like

0.006 for 10 VMs and 0.0105 for 50 VMs. This suggests that the HLFO model efficiently

distributes its processing load, maintaining a balance between CPUs and potentially

avoiding overloading specific processors;

Figure 11. Comparison of the balanced CPU utilization by varying VM count. Figure 11. Comparison of the balanced CPU utilization by varying VM count.

(4) Optimized memory usage

Outlined in Table 4 is a measure of how efficiently computational models utilize system
memory when performing tasks on different numbers of VMs. In the RL model, for instance,
optimized memory usage is represented by values like 6019.16 for 10 VMs and 7025.12 for
50 VMs. The LOA and FOA models also show increasing optimized memory usage values
as the VM count rises, with the LOA reaching 7084.62 and the FOA reaching 7498.36 for the
50 VMs scenario, shown in Figure 12. The proposed HLFO model demonstrates competitive
optimized memory usage, with values such as 5012.29 for 10 VMs and 1642.64 for 50 VMs.
Lower values of optimized memory usage suggest more efficient utilization of available
memory resources, indicating that the HLFO model manages memory in a way that is
conducive to effective task execution;

(5) Task prioritization

In the RL model, task prioritization is denoted by values like 45 for 10 VMs and 65 for
50 VMs. Similarly, the LOA and FOA models exhibit increasing task prioritization values
with higher VM counts, reaching 93 for the LOA and 95 for the FOA in the 50 VMs scenario,
shown in Figure 13. The proposed HLFO model showcases competitive task prioritization,
with values such as 80 for 10 VMs and 97 for 50 VMs. Higher task prioritization values
indicate a model’s ability to effectively order and execute tasks, potentially leading to
improved overall system performance.

The comparative analysis of four models—RL, LOA, FOA, and the HLFO—reveals
nuanced performance variations across different task counts, shown in Table 3. RL demon-
strates competitive performance in terms of makespan, energy consumption, balanced
CPU utilization, optimized memory usage, and task prioritization for 100 tasks. Table 4

Processes 2024, 12, 519 21 of 23

extends the analysis to the impact of increasing VM counts on the RL, LOA, FOA, and
HLFO models. RL and the LOA exhibit rising makespan, energy consumption, and bal-
anced CPU utilization with higher VM counts, while the FOA displays similar trends
with varying task prioritization values. Notably, HLFO consistently outperforms other
models, showcasing lower makespan and energy consumption. However, HLFO exhibits
distinctive fluctuations in optimized memory usage and task prioritization values with
increasing VM counts. In summary, the comprehensive evaluation of these models provides
valuable insights into their performance under varying task and VM counts. RL stands
out in specific metrics, while HLFO consistently demonstrates superior makespan and
energy consumption. The proposed HLFO model showcases its effectiveness in achieving
optimal system performance, balancing trade-offs across multiple performance metrics in
cloud environments.

Processes 2024, 12, x FOR PEER REVIEW 22 of 25

(4) Optimized memory usage

Outlined in Table 4 is a measure of how efficiently computational models utilize

system memory when performing tasks on different numbers of VMs. In the RL model,

for instance, optimized memory usage is represented by values like 6019.16 for 10 VMs

and 7025.12 for 50 VMs. The LOA and FOA models also show increasing optimized

memory usage values as the VM count rises, with the LOA reaching 7084.62 and the

FOA reaching 7498.36 for the 50 VMs scenario, shown in Figure 12. The proposed HLFO

model demonstrates competitive optimized memory usage, with values such as 5012.29

for 10 VMs and 1642.64 for 50 VMs. Lower values of optimized memory usage suggest

more efficient utilization of available memory resources, indicating that the HLFO mod-

el manages memory in a way that is conducive to effective task execution;

Figure 12. Comparison of the optimized memory usage by varying VM count.

(5) Task prioritization

In the RL model, task prioritization is denoted by values like 45 for 10 VMs and 65

for 50 VMs. Similarly, the LOA and FOA models exhibit increasing task prioritization

values with higher VM counts, reaching 93 for the LOA and 95 for the FOA in the 50

VMs scenario, shown in Figure 13. The proposed HLFO model showcases competitive

task prioritization, with values such as 80 for 10 VMs and 97 for 50 VMs. Higher task

prioritization values indicate a model’s ability to effectively order and execute tasks, po-

tentially leading to improved overall system performance.

Figure 12. Comparison of the optimized memory usage by varying VM count.

Processes 2024, 12, x FOR PEER REVIEW 23 of 25

Figure 13. Comparison of the task prioritization by varying VM count.

The comparative analysis of four models—RL, LOA, FOA, and the HLFO—reveals

nuanced performance variations across different task counts, shown in Table 3. RL

demonstrates competitive performance in terms of makespan, energy consumption, bal-

anced CPU utilization, optimized memory usage, and task prioritization for 100 tasks.

Table 4 extends the analysis to the impact of increasing VM counts on the RL, LOA,

FOA, and HLFO models. RL and the LOA exhibit rising makespan, energy consumption,

and balanced CPU utilization with higher VM counts, while the FOA displays similar

trends with varying task prioritization values. Notably, HLFO consistently outperforms

other models, showcasing lower makespan and energy consumption. However, HLFO

exhibits distinctive fluctuations in optimized memory usage and task prioritization val-

ues with increasing VM counts. In summary, the comprehensive evaluation of these

models provides valuable insights into their performance under varying task and VM

counts. RL stands out in specific metrics, while HLFO consistently demonstrates superi-

or makespan and energy consumption. The proposed HLFO model showcases its effec-

tiveness in achieving optimal system performance, balancing trade-offs across multiple

performance metrics in cloud environments.

5. Conclusions

In conclusion, this research introduces a pioneering dynamic load-balancing ap-

proach that addresses the imperative need for efficient task scheduling and stress distri-

bution in cloud computing. The utilization of a deep learning framework, integrating

CNNs and RNNs, showcases a sophisticated methodology to compute and categorize

VMs based on their loads into overloaded and underloaded clusters. The enhancement

of clustering efficiency is achieved through the integration of RL with advanced hybrid

optimization algorithms, exemplified by the HLFO. The proposed Multi-Objective Hy-

brid Optimization model optimizes task scheduling by considering QoS parameters,

such as makespan minimization, energy consumption reduction, balanced CPU utiliza-

tion, efficient memory usage, and task prioritization. Implemented in Python and

CloudSim, the model demonstrates its capability to effectively allocate workloads be-

tween VMs and PMs, resulting in improved resource utilization, shortened makespan,

enhanced CPU usage, and comprehensive assessments validating its efficacy. This re-

search contributes a significant stride toward the refinement of dynamic load-balancing

techniques, offering a promising avenue for advancing cloud performance in modern

computing environments.

Figure 13. Comparison of the task prioritization by varying VM count.

5. Conclusions

In conclusion, this research introduces a pioneering dynamic load-balancing approach
that addresses the imperative need for efficient task scheduling and stress distribution in
cloud computing. The utilization of a deep learning framework, integrating CNNs and

Processes 2024, 12, 519 22 of 23

RNNs, showcases a sophisticated methodology to compute and categorize VMs based
on their loads into overloaded and underloaded clusters. The enhancement of clustering
efficiency is achieved through the integration of RL with advanced hybrid optimization
algorithms, exemplified by the HLFO. The proposed Multi-Objective Hybrid Optimiza-
tion model optimizes task scheduling by considering QoS parameters, such as makespan
minimization, energy consumption reduction, balanced CPU utilization, efficient memory
usage, and task prioritization. Implemented in Python and CloudSim, the model demon-
strates its capability to effectively allocate workloads between VMs and PMs, resulting in
improved resource utilization, shortened makespan, enhanced CPU usage, and compre-
hensive assessments validating its efficacy. This research contributes a significant stride
toward the refinement of dynamic load-balancing techniques, offering a promising avenue
for advancing cloud performance in modern computing environments.

In future work, adaptive techniques for dynamically tuning the parameters of the deep
learning, reinforcement learning, and hybrid optimization components will be developed.
This could involve self-adjusting algorithms that optimize their own performance based on
evolving workload characteristics.

Funding: The author extends the appreciation to the Deanship of Postgraduate Studies and Scien-
tific Research at Majmaah University for funding this research work through the project number
(R-2024-985).

Data Availability Statement: All the data is collected from the simulation reports of the software and
tools used by the authors. Authors are working on implementing the same using real world data
with appropriate permissions.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Dong, Y.; Xu, G.; Ding, Y.; Meng, X.; Zhao, J. A ‘Joint-Me’ Task Deployment Strategy for Load Balancing in Edge Computing.

IEEE Access 2019, 7, 99658–99669. [CrossRef]
2. Maswood, M.M.S.; Rahman, M.R.; Alharbi, A.G.; Medhi, D. A Novel Strategy to Achieve Bandwidth Cost Reduction and Load

Balancing in a Cooperative Three-Layer Fog-Cloud Computing Environment. IEEE Access 2020, 8, 113737–113750. [CrossRef]
3. Dong, Y.; Xu, G.; Zhang, M.; Meng, X. A High-Efficient Joint ’Cloud-Edge’ Aware Strategy for Task Deployment and Load

Balancing. IEEE Access 2021, 9, 12791–12802. [CrossRef]
4. Souravlas, S.; Anastasiadou, S.D.; Tantalaki, N.; Katsavounis, S. A Fair, Dynamic Load Balanced Task Distribution Strategy for

Heterogeneous Cloud Platforms Based on Markov Process Modeling. IEEE Access 2022, 10, 26149–26162. [CrossRef]
5. Mondal, S.; Das, G.; Wong, E. A Game-Theoretic Approach for Non-Cooperative Load Balancing among Competing Cloudlets.

IEEE Open J. Commun. Soc. 2020, 1, 226–241. [CrossRef]
6. Zhang, F.; Wang, M.M. Stochastic Congestion Game for Load Balancing in Mobile-Edge Computing. IEEE Internet Things J. 2021,

8, 778–790. [CrossRef]
7. Shojafar, M.; Canali, C.; Lancellotti, R.; Abawajy, J. Adaptive Computing-Plus-Communication Optimization Framework for

Multimedia Processing in Cloud Systems. IEEE Trans. Cloud Comput. 2020, 8, 1162–1175. [CrossRef]
8. Zhao, D.; Mohamed, M.; Ludwig, H. Locality-Aware Scheduling for Containers in Cloud Computing. IEEE Trans. Cloud Comput.

2020, 8, 635–646. [CrossRef]
9. Zhang, F.; Deng, R.; Zhao, X.; Wang, M.M. Load Balancing for Distributed Intelligent Edge Computing: A State-Based Game

Approach. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 1066–1077. [CrossRef]
10. Liu, C.; Li, K.; Li, K. A Game Approach to Multi-Servers Load Balancing with Load-Dependent Server Availability Consideration.

IEEE Trans. Cloud Comput. 2021, 9, 1–13. [CrossRef]
11. Annie Poornima Princess, G.; Radhamani, A.S. A hybrid meta-heuristic for optimal load balancing in cloud computing. J. Grid

Comput. 2021, 19, 21. [CrossRef]
12. Pang, S.; Li, W.; He, H.; Shan, Z.; Wang, X. An EDA-GA Hybrid Algorithm for Multi-Objective Task Scheduling in Cloud

Computing. IEEE Access 2019, 7, 146379–146389. [CrossRef]
13. Rehman, A.U.; Ahmad, Z.; Jehangiri, A.I.; Ala’Anzy, M.A.; Othman, M.; Umar, A.I.; Ahmad, J. Dynamic Energy Efficient Resource

Allocation Strategy for Load Balancing in Fog Environment. IEEE Access 2020, 8, 199829–199839. [CrossRef]
14. Jena, U.K.; Das, P.K.; Kabat, M.R. Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment.

J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 2332–2342. [CrossRef]
15. Ebadifard, F.; Babamir, S.M. Autonomic task scheduling algorithm for dynamic workloads through a load balancing technique

for the cloud-computing environment. Clust. Comput. 2021, 24, 1075–1101. [CrossRef]

https://doi.org/10.1109/ACCESS.2019.2928582
https://doi.org/10.1109/ACCESS.2020.3003263
https://doi.org/10.1109/ACCESS.2021.3051672
https://doi.org/10.1109/ACCESS.2022.3157435
https://doi.org/10.1109/OJCOMS.2020.2971613
https://doi.org/10.1109/JIOT.2020.3008009
https://doi.org/10.1109/TCC.2016.2617367
https://doi.org/10.1109/TCC.2018.2794344
https://doi.org/10.1109/TCCN.2021.3087178
https://doi.org/10.1109/TCC.2018.2790404
https://doi.org/10.1007/s10723-021-09560-4
https://doi.org/10.1109/ACCESS.2019.2946216
https://doi.org/10.1109/ACCESS.2020.3035181
https://doi.org/10.1016/j.jksuci.2020.01.012
https://doi.org/10.1007/s10586-020-03177-0

Processes 2024, 12, 519 23 of 23

16. Shafiq, D.A.; Jhanjhi, N.Z.; Abdullah, A.; Alzain, M.A. A load balancing algorithm for the data centres to optimize cloud
computing applications. IEEE Access 2021, 9, 41731–41744. [CrossRef]

17. Yu, D.; Ma, Z.; Wang, R. Efficient smart grid load balancing via fog and cloud computing. Math. Probl. Eng. 2022, 2022, 3151249.
[CrossRef]

18. Devaraj, A.F.S.; Elhoseny, M.; Dhanasekaran, S.; Lydia, E.L.; Shankar, K. Hybridization of firefly and improved multi-objective
particle swarm optimization algorithm for energy efficient load balancing in cloud computing environments. J. Parallel Distrib.
Comput. 2020, 142, 36–45. [CrossRef]

19. Latchoumi, T.P.; Parthiban, L. Quasi oppositional dragonfly algorithm for load balancing in cloud computing environment. Wirel.
Pers. Commun. 2022, 122, 2639–2656. [CrossRef]

20. Negi, S.; Rauthan, M.M.S.; Vaisla, K.S.; Panwar, N. CMODLB: An efficient load balancing approach in cloud computing
environment. J. Supercomput. 2021, 77, 8787–8839. [CrossRef]

21. Pradhan, A.; Bisoy, S.K. A novel load balancing technique for cloud computing platform based on PSO. J. King Saud Univ.-Comput.
Inf. Sci. 2022, 34, 3988–3995. [CrossRef]

22. Sefati, S.; Mousavinasab, M.; Zareh Farkhady, R. Load balancing in cloud computing environment using the Grey wolf optimiza-
tion algorithm based on the reliability: Performance evaluation. J. Supercomput. 2022, 78, 18–42. [CrossRef]

23. Mapetu, J.P.B.; Kong, L.; Chen, Z. A dynamic VM consolidation approach based on load balancing using Pearson correlation in
cloud computing. J. Supercomput. 2021, 77, 5840–5881. [CrossRef]

24. Kruekaew, B.; Kimpan, W. Multi-objective task scheduling optimization for load balancing in cloud computing environment
using hybrid artificial bee colony algorithm with reinforcement learning. IEEE Access 2022, 10, 17803–17818. [CrossRef]

25. Zeng, F.; Zhang, K.; Wu, L.; Wu, J. Efficient Caching in Vehicular Edge Computing Based on Edge-Cloud Collaboration. IEEE
Trans. Veh. Technol. 2023, 72, 2468–2481. [CrossRef]

26. Paikrao, P.; Routray, S.; Mukherjee, A.; Khan, A.R.; Vohnout, R. Consumer Personalized Gesture Recognition in UAV Based
Industry 5.0 Applications. IEEE Trans. Consum. Electron. 2023, 69, 842–849. [CrossRef]

27. Khan, A.R. Using virtualized multimedia tools for video conferencing solution integrated in teaching and learning environment.
J. Discret. Math. Sci. Cryptogr. 2022, 25, 801–815. [CrossRef]

28. Khan, A.R. Secure PAAS environment over hybrid cloud using load-balanced Docker containers. Int. J. Adv. Appl. Sci. 2022, 9,
133–141. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2021.3065308
https://doi.org/10.1155/2022/3151249
https://doi.org/10.1016/j.jpdc.2020.03.022
https://doi.org/10.1007/s11277-021-09022-w
https://doi.org/10.1007/s11227-020-03601-7
https://doi.org/10.1016/j.jksuci.2020.10.016
https://doi.org/10.1007/s11227-021-03810-8
https://doi.org/10.1007/s11227-020-03494-6
https://doi.org/10.1109/ACCESS.2022.3149955
https://doi.org/10.1109/TVT.2022.3213130
https://doi.org/10.1109/TCE.2023.3308209
https://doi.org/10.1080/09720529.2021.2014137
https://doi.org/10.21833/ijaas.2022.03.015

	Introduction
	Literature Review
	Problem Statement
	Objective Function

	Proposed Methodology
	Collect Virtual Machine Load Data
	CNN
	RNN

	Grouping Virtual Machines Using Reinforcement-Learning-Based Hybrid Lyrebird Falcon Optimization
	Optimized Reinforcement-Learning-Based Clustering
	Clustering Based on Hybrid Lyrebird Falcon Optimization Algorithm

	Task Scheduling Using a Multi-Objective Hybrid Optimization Model

	Result and Discussion
	Performance Metrics
	Overall Performance of the Proposed Model by Varying the Task Count
	Overall Performance of the Proposed Model by Varying the Task Count

	Conclusions
	References

