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Abstract: Particle swarm optimization (PSO) has been extensively used to solve practical engineering
problems, due to its efficient performance. Although PSO is simple and efficient, it still has the
problem of premature convergence. In order to address this shortcoming, an adaptive particle
swarm optimization with state-based learning strategy (APSO-SL) is put forward. In APSO-SL, the
population distribution evaluation mechanism (PDEM) is used to evaluate the state of the whole
population. In contrast to using iterations to just the population state, using the population spatial
distribution is more intuitive and accurate. In PDEM, the population center position and best position
for calculation are used for calculation, greatly reducing the algorithm’s computational complexity.
In addition, an adaptive learning strategy (ALS) has been proposed to avoid the whole population’s
premature convergence. In ALS, different learning strategies are adopted according to the population
state to ensure the population diversity. The performance of APSO-SL is evaluated on the CEC2013
and CEC2017 test suites, and one engineering problem. Experimental results show that APSO-SL has
the best performance compared with other competitive PSO variants.

Keywords: particle swarm optimization (PSO); adaptive; state-based; complex optimization

1. Introduction

Optimization problems occur frequently in various practical engineering problems [1].
Thus, it is crucial to solve optimization problems efficiently [2]. Optimization problems
have gradually become an important issue in the industrial field [3]. With the progress of
science and technology, optimization problems in the industrial field are becoming more
and more complex [4]. They are often accompanied by a large number of discontinuous,
non-microscopic, computationally complex, local optimums [5,6]. Finding solutions to
optimization problems in complex situations is crucial [7]. Traditional optimization al-
gorithms such as quasi-Newton methods, the steepest descent method and the gradient
descent method, etc., require the objective function to meet strict conditions [8]. Therefore,
the above methods are difficult to apply in practice [9] and some new methods should be
proposed to solve complex optimization problems [10].

At present, evolutionary algorithms have been proposed to address complex opti-
mization problems and have achieved satisfactory results [11,12]. Evolutionary algorithms
simulate the evolution of natural species with self-organizing and adaptive characteristics,
and do not require the objective function to meet strict conditions. Therefore, evolutionary
algorithms are adopted to address complex optimization problems. As a type of evo-
lutionary algorithm, swarm intelligence algorithms have received widespread attention.
Examples include PSO [13], differential evolution (DE) [10], artificial bee colony optimiza-
tion (ABC) [14], ant colony optimization (ACO) [15], etc. In swarm intelligence algorithms,
a population can be seen as being composed of independent individuals, each of whom
interacts to jointly search for the global optimum. Therefore, use of swarm intelligence
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methods to solve complex optimization problems is feasible [16] and they have received
widespread attention in recent times [17].

As a popular evolutionary algorithm, PSO has been extensively adopted in different
engineering optimization problems since it was proposed in 1995. PSO simulates the
foraging behavior of natural animals, and has the advantages of robustness, efficiency and
precision. In PSO, a population is composed of some particles, and each particle has two
learning samples, namely its own historical best solution (pbest) and a global best solution
(gbest). In the process of evolution, particles in the whole population work together to
seek gbest. Although PSO has advantages, it still has the problem of poor balance between
global and local search. Recently, a large number of PSO variants have been proposed
to address the above issue. These can be divided into three classes: adaptive learning
parameter, novel updating strategy and new topology mechanism.

Adaptive learning parameter: Parameter setting is an important part of PSO. A fitness-
based PSO algorithm (FMPSO) is developed in reference [18], in which different categories
of particles have different parameters. In reference [19], the authors use sine and cosine
parameters to increase algorithm diversity. In the literature [20], during the process of
evolution, the authors use sigmoid function to realize dynamic parameters to make the
algorithm search efficiently. Extensive experiments have proved the robustness of the
algorithm. In the literature [21], the nonlinear attenuation acceleration coefficient is put
forward. The robustness of an algorithm is enhanced by using different acceleration
coefficients at different evolutionary stages of the population. In reference [22], inertial
weight with chaotic mechanism is put forward. This is used to increase the diversity
of the population. Similarly, in reference [23], the dynamic nonlinear inertia weight is
adopted to enhance the anti-jamming capacity of the algorithm. Rosso et al. [24]. propose
an enhanced multi-strategy particle swarm optimization for constrained problems with an
evolutionary-strategies-based unfeasible local search operator. This method determines
the parameters’ values that govern the evolutionary strategy simultaneously during the
optimization process. Rosso et al. [25]. propose a new constraint-handling approach for
PSO, adopting a supervised classification machine learning method: the support vector
machine (SVM).

Novel updating strategy: Updating the strategy is the most important part of PSO,
as this determines the whole population’s evolution direction. E et al. [26] introduce
human social learning intelligence into the PSO algorithm to enhance its performance.
In the literature [27], five different algorithms are integrated to form a new algorithm
in which the algorithm with the best performance is selected to work through a rating
function. In order to increase the diversity of learning samples, a comprehensive learning
particle swarm optimization algorithm (CLPSO) is put forward [28] in which the entire
population is updated based on excellent information. In reference [29], a novel dual
population algorithm is proposed. In this approach, two sub-populations are devoted to
conduct global and local searches, respectively. Extensive experiments have proved the
effectiveness of the algorithm. Xia et al. [30] proposed a multi-learning sample algorithm
in which different learning samples and update mechanisms collaborate to work. Li
et al. [31] proposed an adaptive cooperative particle swarm optimization with difference
learning. In this, performance accuracy can be enhanced by using different learning
strategies. In reference [32], according to the spatial distribution, the population state
can be obtained. Different learning mechanisms are used in various evolutionary states.
Recently, researchers have incorporated other technologies into the PSO algorithm to
enhance its performance [33,34].

New topology mechanism: Multiple swarm collaboration methods have been widely
adopted recently. In the literature [35], a new multi-swarm interaction mechanism has
been put forward (ADPSO). In ADPSO, the proposed strategies can be used to enhance
the performance of traditional PSO. Yang and Li [36] combine evolutionary states with
the collaborative mechanisms of the whole population for the first time. The experimental
results have received praise from peers. In the literature [37], three learning features
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are used to enhance the performance of the traditional method. As a famous variant of
PSO, dynamic multi-swarm PSO variants achieve excellent results [38] and have gained
widespread attention from peers. In the literature [39], a fully informed PSO is proposed
(FIPS). In FIPS, each individual can be influenced not only by the global best solution, but
also by the particles in its neighborhood. Lu et al. [40] let four sub-swarms work together
to find global optimization. Xia et al. [9] put forward an adaptive multi-swarm particle
swarm optimization algorithm (MSPSO). In MSPSO, the number of sub-populations can be
changed according to population stage.

Although the existing research has made significant improvements to the PSO al-
gorithm, there are still some problems that have not been effectively addressed. The
evolutionary state of the whole population is an important indicator. Specifically, in the
early stage the whole population should learn more diversity information to increase the
global ability. In the later stage, the whole population should learn more accuracy infor-
mation to increase the local ability. Although a large number of methods have emerged to
calculate population spatial distribution to evaluate population evolutionary state, calculat-
ing population spatial distribution consumes lots of computing resources. The additional
calculations far exceed the complexity of PSO and it is difficult to achieve efficient and fast
work. Therefore, how to design a lightweight complexity evaluating population evolution-
ary state method while obtaining satisfactory results is of great significance. In addition,
using different evolutionary strategies in various evolutionary states is worthy. Therefore,
it is crucial to adjust the learning strategy adaptively.

Inspired by above discussions, an adaptive PSO with state-based learning strategy
(APSO-SL) is put forward. In APSO-SL, two new features are proposed in PSO. The
first strategy is the population distribution evaluation mechanism (PDEM), in which the
population center position and best position are used for calculating the whole population
state. In this way, the whole population state can be evaluated more intuitively and
accurately without excessive computation. The second strategy is the adaptive learning
strategy (ALS). In ALS, different learning strategies are adopted based on the population
state, to ensure the whole population diversity. Specifically, if the population diversity is
high, the method conducts a global search to increase the population diversity. Instead,
if the population diversity is low, the method carries out local search to increase the
population’s local search ability. Lots of experiments have been conducted to confirm the
effectiveness of APSO-SL, and the main contributions of APSO-SL are as follows:

(1) Population distribution evaluation mechanism (PDEM) is put forward. In PDEM,
instead of using iterations to just population state, APSO-SL only uses the popula-
tion center position and best position for calculation. Thus, the whole population
diversity can be improved without significantly increasing the calculation complex-
ity. Our method can evaluate the population state accurately without increasing
computational complexity.

(2) Adaptive learning strategy (ALS) is put forward in this paper. In ALS, different
learning strategies are used according to the population state, to ensure the whole
population diversity. In this way, the whole population can achieve a balance between
exploration and exploitation.

(3) An efficient PSO variant, APSO-SL, is proposed, which combines PDEM and ALS,
and outperforms 6 competitive optimization approaches. Therefore, APSO-SL is an
efficient optimization algorithm.

The organizational framework of this study is as follows: In Section 2, we describe
traditional PSO. Section 3 introduces our method: APSO-SL. In Section 4, we conduct
ample experiments and discussions. Finally, the study is concluded and some future works
are proposed in Section 5.

2. Particle Swarm Optimization (PSO)

PSO is an optimization algorithm with a certain degree of randomness; each par-
ticle stands for a result in the D-dimensional feasible domain space. N particles form
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a population, and each particle in the population has position [X1
i (t), X2

i (t), . . . , XD
i (t)]

and velocity [V1
i (t), V2

i (t), . . . , VD
i (t)]. In each iteration, the learning sample of each par-

ticle consists of two parts: pbest and gbest. The update guidelines for PSO are shown in
Equations (1) and (2):

Vd
i (t + 1) = w × Vd

i (t) + c1 × r1 × (pbestd
i (t)− Xd

i (t)) + c2 × r2 × (gbestd(t)− Xd
i (t)) (1)

Xd
i (t + 1) = Xd

i (t) + Vd
i (t + 1) (2)

where w is the inertia weight, d is the current dimension and r1 and r2 are two random
numbers in the interval [0, 1], c1 and c2 stand for the two acceleration constants.

Generally, PSO can be divided into two types: global version and local version. The
aforementioned formulas are global PSO. In order to increase the diversity of particles,
local optimum is used instead of global optimum. lbest stands for the best position in the
particle’s neighborhood. The velocity update strategy is described as follows:

Vd
i (t + 1) = ω × Vd

i (t) + c1 × r1 × (pbestd
i (t)− xd

i (t)) + c2 × r2 × (lbestd(t)− xd
i (t)) (3)

3. APSO-SL

In this part, the proposed APSO-SL is described in detail. Firstly, the population
distribution evaluation mechanism (PDEM) is adopted to evaluate the population state.
Secondly, the adaptive learning strategy (ALS) is used to achieve a balance between ex-
ploration and exploitation. Finally, APSO-SL is described in detail in Algorithm 1. The
APSO-SL proposed in this paper includes these two improvements, and we also conduct a
detailed analysis of APSO-SL in Section 4.

Algorithm 1. APSO-SL

01. Objective function: f(x)
02. Input: xd

min, xd
max, vd

min, vd
max, pbest, gbest, D, d, t, Tmax, r1, r2, U, L, w, c1, c2;

03. Output: Optimal solution;
04. Initialization: xd

i = xd
min + rand×(xd

max − xd
min), vd

i = xd
min + rand×(vd

max−vd
min);

05. while (t <= Tmax)
06. for i = 1:N do
07. Calculate the center position of the population based on Equation (4);
08. Judging the Euclidean distance in space using Equation (5);
09. Determine the evolutionary state of the population based on Equation (6);
10. Case 1:
11. Update particles in the population using Equations (1) and (2);
12. Case 2:
13. Update particles in the population using Equations (7) and (2);
14. Case 3:
15. Keep the population updating method unchanged.
16. t = t + 1;
17. end for
18. end while

3.1. Population Distribution Evaluation Mechanism (PDEM)

The evolutionary state of a population is an important indicator. Inspired by the
diversity of natural species, different individuals possess different characteristics. As a
result, use of different evolutionary strategies in various evolutionary states is worthy. In
the initial stage, the whole population is suitable for conducting global search. In contrast,
at the end stage the whole population is suitable for small-scale local search. Therefore, this
is crucial to judge the population state.

In general, researchers use iterations to judge the evolutionary state. However, there
are some problems when using this approach. In the initial iteration, the diversity may be
low and suitable for exploitation. In the final iteration, the diversity of the population may
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be high and suitable for global search. Recently, researchers have used the spatial distri-
bution of a population to judge its evolutionary state. The population spatial distribution
is the most intuitive indicator to evaluate its state. However, calculating the population
spatial distribution requires a lot of calculation. The additional calculations far exceed
the complexity of PSO, and it is difficult to achieve efficient and fast work. Therefore, the
question of how to design a lightweight method of evaluating the population state while
obtain satisfying result is of great significance. The calculation process of the algorithm is
shown in Equations (4)–(6).

Xd
M =

1
N
(

N

∑
i=1

xd
i ), d = 1, . . . , D (4)

distB =

√√√√ D

∑
j=1

(
X j

B − X j
M

)
(5)

fB =
distB√

D
∑

j=1
(Uj − Lj)

2
(6)

In this section, the population distribution evaluation mechanism (PDEM) is proposed
to evaluate the whole population state. Firstly, we calculate the center position of the
whole population according to Equation (4). Secondly, the spatial Euclidean distance
between the center and best positions is calculated, according to Equation (5). Finally,
the population state can be determined based on the above spatial Euclidean distance,
based on Equation (6). The whole population evolutionary state can be evaluated without
significantly increasing the calculation complexity. Our method can evaluate the population
state accurately without increasing computational complexity.

3.2. Adaptive Learning Strategy (ALS)

Based on the above discussion, APSO-SL can evaluate the evolutionary state of the
population. We classify fB into three states: case 1, case 2 and case 3. These represent the
states of exploration, exploitation and balance, respectively, and we define the following
three cases.

Case (1)—Exploration: In this condition, fB is a relatively large value (e.g., larger than
the threshold 0.4). Specifically, the best individual of the population is far from the center of
the population, indicating that the population is currently relatively dispersed and suitable
for global search. The proposed method defines this state as exploration state. In this case,
exploring as many regions as possible and increasing the population diversity are beneficial
to the population evolution. We use traditional PSO algorithms for a large-scale search,
based on Equations (1) and (2).

Case (2)—Exploitation: In contrast, a small value of fB (e.g., smaller than the threshold
0.3) signifies that the current population is in the same region, most of the individuals are
around the best individual, and only a few individuals are distributed in other areas. The
population distribution is relatively dense, and suitable for small-scale local search. This
case is therefore likely to represent the exploitation state. The formula for the population in
this case is as follows. Equation (7) consists of three parts, with the first two parts being the
same as the basic PSO algorithm, representing the weights learned from inertial learning
and the weights learned from one’s own historical optimal values. The third item is the
weight learned from sample e, where e is a randomly selected sample from the historical
optimal values of all particles in the population.

Vd
i (t + 1) = w × Vd

i (t) + c1 × r1 × (pbestd
i (t)− Xd

i (t)) + c2 × r2 × (ed(t)− Xd
i (t)) (7)
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In formula, e is the new learning sample which is randomly selected from the historical
optimum values of all particles in the whole population. In this way, the population can
learn high-quality diversity information.

Case (3)—Balance: When fB is a relatively middle value (e.g., smaller than the thresh-
old 0.4 and larger than the threshold 0.3), we maintain the learning strategy of the whole
population unchanged to achieve a balance between exploration and exploitation. When
the evolutionary state has been estimated, we can control the mutation strategy adaptively.
Different learning strategies are used according to the population state, to ensure the whole
population diversity. In this way, the whole population can achieve a balance between
exploration and exploitation. The flowchart of the algorithm is shown in Figure 1. All input
and output parameters have been explained in the corresponding sections of the text, and
detailed explanations will not be provided here.
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4. Experiments
4.1. Experimental Fundamentals

The APSO-SL is tested on CEC2013 [41,42] test suite, and one practical engineering
problem. CEC2013 is a famous test suite with extensive applications, which are listed
in Supplementary Materials. CEC2013 is an authoritative dataset in the field of single
objective evolutionary computing which includes 28 benchmark functions. Therefore, in
the field of evolutionary computing, the CEC2013 dataset is widely used as the platform
for evaluating algorithm performance.

The proposed APSO-SL is compared with six competitive PSO variants. The first
comparison method is traditional PSO [13]; we can compare APSO-SL and PSO visually.
The second peer algorithm is HCLPSO [29], in which two populations collaborate to find
the optimum solution. TAPSO [30] is the third peer method, which uses three different
strategies to update the population. The fourth method is CLPSO [28], which uses a novel
comprehensive learning manner to work. The fifth peer algorithm is DMS-PSO [38], in
which multiple populations are used to work together. EPSO [27] is the sixth comparison
algorithm, in which five classic algorithms are integrated together, and the best method is
selected based on scores during each iteration. The parameter settings of all comparison
algorithms are shown in Table 1.

Table 1. Parameters for six peer methods and APSO-SL.

Algorithm Year Parameters Settings

PSO [13] 1995 w = 0.729, c1 = c2 = 1.49445
HCLPSO [29] 2015 w = 0.729, c = 3–1.5, c1 = 2.5–0.5, c2 = 0.5–2.5, a = 0, b = 0.25
TAPSO [30] 2020 w = 0.7298, pc = 0.5, pm = 0.01, sg = 7
CLPSO [28] 2006 w = 0.9–0.2, c = 1.49445, G = 5

DMS-PSO [38] 2006 w = 0.729, c1 = c2 = 1.49445
EPSO [27] 2017 ensemble wPSO, CLPSO, FDRPSO, HPSO-TVAC and LIPS
APSO-SL 2023 w = 0.729, c1 = c2 = 1.49445

4.2. Experimental Analysis on CEC2013

To test the effect of APSO-SL, extensive experiments are conducted on CEC2013 and
CEC2017 test suites, and the solutions are shown in Tables 2 and 3, where the best results
are expressed in bold.

4.2.1. Accuracy Analysis

For the five unimodal functions, the solutions in Tables 2 and 3 show that APSO-
SL obtains excellent results in both 30-D and 50-D conditions, followed by TAPSO and
HCLPSO. Although HCLPSO does not achieve the best results on a certain function, its
overall performance is excellent. For the 15 multimodal functions, APSO-SL gets the best
solutions in 30-D conditions, because it gets best solutions on 11 of 15 conditions. In
50-D condition, APSO-SL also obtains excellent performance, which obtains best solutions
on 8 of 15 multimodal functions. In addition, TAPSO and HCLPSO have also achieved
preferable results in solving multimodal functions. For the eight composition functions,
we can see from Tables 2 and 3 that APSO-SL achieves remarkable results in 30-D and
50-D conditions. In conclusion, population distribution evaluation mechanism (PDEM)
and adaptive learning strategy (ALS) are effective. In addition, we use box-plot charts
to evaluate the capabilities of all comparison methods. Due to the page limit, only some
typical test functions are selected for comparison. The performances of APSO-SL and some
excellent peer algorithms are shown in Figure 2. According to observation, the box-plot
charts show that APSO-SL exhibited a more stable search performance in all conditions.
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Table 2. The result of all methods on CEC2013 (D = 30).

PSO CLPSO EPSO HCLPSO DMS-PSO TAPSO APSO-SL

F1 1.20 × 102

1.88 × 102
2.20 × 10−13

4.21 × 10−13
2.24 × 10−13

4.33 × 10−13
2.69 × 10−13

1.20 × 10−13
1.72 × 10−13

1.09 × 10−13
3.77 × 10−15

1.62 × 10−13
0.00 × 100

0.00 × 100

F2 1.32 × 107

1.28 × 107
1.30 × 106

7.26 × 105
2.38 × 105

1.35 × 105
8.69 × 105

3.79 × 105
1.31 × 106

6.20 × 105
1.40 × 106

2.88 × 106
1.25 × 105

7.85 × 104

F3 2.44 × 108

2.11 × 108
4.51 × 107

4.22 × 107
1.16 × 108

1.39 × 108
2.90 × 107

2.80 × 107
2.38 × 107

3.92 × 107
1.99 × 106

1.85 × 106
7.95 × 106

1.21 × 106

F4 2.41 × 102

2.22 × 102
5.45 × 103

2.52 × 103
3.49 × 102

2.44 × 102
1.75 × 103

1.31 × 103
4.40 × 103

1.54 × 103
1.71 × 102

1.18 × 102
1.10 × 102

1.02 × 102

F5 7.11 × 10−13

2.45 × 10−12
3.20 × 10−13

8.68 × 10−13
2.50 × 10−13

5.69 × 10−13
3.99 × 10−13

8.44 × 10−13
1.31 × 10−13

2.09 × 10−13
4.19 × 10−13

1.21 × 10−13
3.79 × 10−13

1.02 × 10−13

F6 4.49 × 101

2.69 × 101
2.55 × 101

2.29 × 101
1.51 × 101

5.63 × 100
1.70 × 101

2.41 × 100
2.11 × 101

2.10 × 101
2.66 × 101

2.45 × 101
7.88 × 10−1

2.23 × 100

F7 6.11 × 101

2.22 × 101
3.77 × 101

1.66 × 101
3.72 × 101

1.77 × 101
2.21 × 101

7.66 × 100
1.11 × 101

5.92 × 100
3.84 × 100

2.81 × 100
1.86 × 101

4.72 × 100

F8 2.09 × 101

5.78 × 10−2
2.09 × 101

5.61 × 10−2
2.09 × 101

6.44 × 10−2
2.09 × 101

2.62 × 10−2
2.09 × 101

4.50 × 10−2
2.09 × 101

2.38 × 10−2
2.09 × 101

0.00 × 100

F9 2.49 × 101

4.11 × 100
2.20 × 101

4.55 × 100
2.51 × 101

3.40 × 100
1.81 × 101

3.62 × 100
2.41 × 101

3.20 × 100
1.77 × 101

2.32 × 101
1.44 × 101

4.26 × 100

F10 3.77 × 10−1

3.44 × 10−1
1.82 × 10−1

8.43 × 10−2
2.11 × 10−1

1.20 × 10−1
2.45 × 10−1

1.23 × 10−1
2.62 × 10−1

1.45 × 10−1
1.20 × 10−1

4.88 × 10−2
6.17 × 10−2

3.77 × 10−2

F11 3.31 × 101

1.44 × 101
2.53 × 101

6.34 × 100
3.29 × 10−2

1.82 × 10−1
3.95 × 10−2

1.86 × 10−1
3.33 × 101

1.34 × 101
1.16 × 101

3.66 × 100
1.34 × 101

5.35 × 100

F12 8.20 × 101

2.49 × 101
7.32 × 101

2.22 × 101
7.31 × 101

2.35 × 101
6.33 × 101

1.87 × 101
3.41 × 101

9.76 × 100
3.92 × 101

1.90 × 101
3.13 × 101

1.23 × 101

F13 1.70 × 102

3.15 × 101
1.31 × 102

3.11 × 101
1.21 × 102

3.79 × 101
1.29 × 102

2.99 × 101
5.48 × 101

1.67 × 101
1.22 × 102

5.11 × 101
7.08 × 101

2.58 × 101

F14 1.61 × 103

3.33 × 102
1.19 × 103

2.38 × 102
1.66 × 101

2.84 × 101
1.75 × 101

4.25 × 101
2.42 × 103

4.35 × 102
1.31 × 103

4.66 × 102
1.49 × 101

9.94 × 100

F15 3.70 × 103

6.22 × 102
3.81 × 103

9.71 × 102
3.62 × 103

4.55 × 102
3.58 × 103

5.71 × 102
3.38 × 103

2.59 × 102
3.23 × 103

1.78 × 103
2.99 × 103

5.02 × 102

F16 1.70 × 100

3.40 × 10−1
1.24 × 100

4.75 × 10−1
1.51 × 100

2.81 × 10−1
1.42 × 100

2.51 × 10−1
1.31 × 100

1.77 × 10−1
1.29 × 100

2.62 × 10−1
1.18 × 100

1.18 × 10−1

F17 7.24 × 101

1.66 × 101
6.81 × 101

1.33 × 101
3.51 × 101

1.78 × 100
3.18 × 101

1.90 × 101
6.31 × 101

9.96 × 100
6.16 × 101

4.55 × 101
2.55 × 101

1.33 × 100

F18 9.29 × 101

2.15 × 101
7.66 × 101

1.51 × 101
1.34 × 102

5.59 × 101
8.45 × 101

1.75 × 101
9.11 × 101

7.49 × 100
1.96 × 102

8.66 × 100
7.35 × 101

2.71 × 100

F19 3.95 × 100

1.67 × 100
3.29 × 100

7.41 × 10−1
1.96 × 100

3.51 × 10−1
1.71 × 100

2.66 × 10−1
3.19 × 100

7.60 × 10−1
2.45 × 100

5.11 × 10−1
2.13 × 100

3.00 × 10−1

F20 1.37 × 101

7.55 × 10−1
1.40 × 101

1.22 × 100
1.21 × 101

1.76 × 100
1.12 × 101

8.85 × 10−1
1.19 × 101

5.77 × 10−1
1.51 × 101

1.30 × 100
8.99 × 100

4.77 × 10−1

F21 8.24 × 102

4.62 × 102
2.95 × 102

9.38 × 101
2.31 × 102

3.72 × 101
2.42 × 102

4.67 × 101
2.91 × 102

7.77 × 101
2.18 × 102

8.22 × 101
2.09 × 102

7.22 × 101

F22 1.52 × 103

4.90 × 102
8.45 × 102

2.19 × 102
1.21 × 102

5.61 × 101
1.08 × 102

2.55 × 101
1.90 × 103

5.42 × 102
9.11 × 101

2.88 × 101
8.98 × 101

7.44 × 100

F23 4.62 × 103

8.51 × 102
4.11 × 103

6.71 × 102
4.24 × 103

5.59 × 102
4.23 × 103

5.66 × 102
3.56 × 103

2.58 × 102
4.11 × 103

2.20 × 103
3.32 × 103

2.51 × 102

F24 2.79 × 102

1.11 × 101
2.49 × 102

1.42 × 101
2.56 × 102

1.22 × 101
2.51 × 102

9.77 × 100
2.19 × 102

8.22 × 100
2.20 × 102

1.69 × 101
2.28 × 102

8.72 × 100

F25 3.23 × 102

1.20 × 101
2.78 × 102

1.30 × 101
2.88 × 102

7.51 × 100
2.83 × 102

1.52 × 101
2.71 × 102

1.17 × 101
2.59 × 102

7.22 × 100
2.44 × 102

6.11 × 100

F26 2.50 × 102

7.41 × 101
2.31 × 102

4.90 × 101
2.34 × 102

2.80 × 101
2.20 × 102

2.55 × 10−2
2.33 × 102

4.55 × 101
2.11 × 102

4.91 × 101
2.00 × 102

2.11 × 10−3

F27 8.51 × 102

9.22 × 101
8.15 × 102

1.19 × 102
8.09 × 102

1.50 × 102
5.44 × 102

8.99 × 101
5.43 × 102

8.85 × 101
4.72 × 102

1.35 × 102
4.95 × 102

9.22 × 101

F28 4.41 × 102

5.23 × 102
3.45 × 102

4.52 × 102
2.96 × 102

3.55 × 101
3.11 × 102

2.22 × 10−13
3.00 × 102

2.79 × 10−13
2.97 × 102

4.61 × 101
3.00 × 102

1.55 × 10−13
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Table 3. The result of all methods on CEC2013 (D = 50).

PSO CLPSO EPSO HCLPSO DMS-PSO TAPSO APSO-SL

F1 3.41 × 102

6.32 × 102
5.42 × 10−13

1.42 × 10−13
3.29 × 10−13

1.32 × 10−13
6.51 × 10−13

1.27 × 10−13
2.42 × 10−13

0.00 × 100
2.22 × 10−13

6.23 × 10−13
0.00 × 100

0.00 × 100

F2 2.60 × 107

2.51 × 107
2.61 × 106

8.69 × 105
6.77 × 105

2.66 × 105
1.71 × 106

4.82 × 105
1.51 × 106

5.09 × 105
1.31 × 107

6.70 × 106
3.22 × 105

1.23 × 105

F3 5.32 × 108

4.60 × 108
7.80 × 108

1.35 × 109
4.61 × 108

4.59 × 108
2.69 × 108

2.32 × 108
1.20 × 108

1.40 × 108
3.69 × 107

6.41 × 107
1.86 × 107

1.27 × 106

F4 7.51 × 102

8.66 × 102
1.31 × 104

3.62 × 103
2.11 × 102

8.51 × 101
1.70 × 103

5.91 × 102
7.49 × 103

2.56 × 103
6.55 × 102

1.59 × 102
1.86 × 101

7.77 × 100

F5 1.39 × 10−10

4.41 × 10−10
7.73 × 10−13

2.73 × 10−13
5.37 × 10−13

1.33 × 10−13
7.66 × 10−13

1.42 × 10−13
2.18 × 10−13

4.71 × 10−13
3.21 × 10−13

1.88 × 10−13
1.18 × 10−13

4.30 × 10−13

F6 6.21 × 101

2.51 × 101
4.50 × 101

1.97 × 100
4.41 × 101

1.22 × 100
4.50 × 101

6.34 × 10−1
5.37 × 101

2.33 × 101
4.20 × 101

4.32 × 100
4.42 × 101

8.19 × 10−1

F7 7.48 × 101

1.62 × 101
7.20 × 101

2.51 × 101
6.29 × 101

1.80 × 101
3.92 × 101

9.95 × 100
3.11 × 101

8.37 × 100
2.77 × 101

6.56 × 100
3.20 × 101

5.41 × 100

F8 2.11 × 101

0.00 × 100
2.11 × 101

0.00 × 100
2.11 × 101

0.00 × 100
2.11 × 101

0.00 × 100
2.11 × 101

0.00 × 100
2.11 × 101

0.00 × 100
2.11 × 101

0.00 × 100

F9 5.11 × 101

5.55 × 100
4.52 × 101

5.66 × 100
4.78 × 101

4.56 × 100
4.31 × 101

5.77 × 100
4.43 × 101

4.33 × 100
2.60 × 101

4.33 × 100
2.11 × 101

3.08 × 100

F10 2.20 × 102

3.71 × 102
2.31 × 10−1

1.39 × 10−1
2.30 × 10−1

1.30 × 10−1
2.31 × 10−1

1.46 × 10−1
2.82 × 10−1

1.41 × 10−1
7.70 × 10−2

4.23 × 10−2
4.21 × 10−2

1.91 × 10−2

F11 6.81 × 101

2.31 × 101
7.51 × 101

1.77 × 101
9.82 × 10−2

4.11 × 10−1
2.33 × 10−13

6.61 × 10−13
8.61 × 101

1.86 × 101
6.33 × 101

1.23 × 101
2.36 × 101

6.16 × 100

F12 2.22 × 102

5.51 × 101
1.49 × 102

5.27 × 101
1.64 × 102

4.72 × 101
1.25 × 102

2.88 × 101
7.66 × 101

1.86 × 101
1.34 × 102

4.11 × 101
5.69 × 101

1.24 × 101

F13 3.50 × 102

5.11 × 101
2.92 × 102

4.49 × 101
2.97 × 102

6.51 × 101
2.57 × 102

6.88 × 101
1.66 × 102

2.99 × 101
2.11 × 102

4.76 × 101
1.37 × 102

4.95 × 101

F14 2.70 × 103

6.26 × 102
2.29 × 103

5.11 × 102
3.42 × 101

5.25 × 101
1.88 × 102

1.34 × 102
4.77 × 103

7.60 × 102
2.33 × 103

4.55 × 102
2.05 × 102

1.92 × 101

F15 7.71 × 103

9.66 × 102
7.80 × 103

1.33 × 103
7.58 × 103

6.35 × 102
7.24 × 103

7.11 × 102
7.23 × 103

4.09 × 102
6.64 × 103

2.57 × 103
6.82 × 103

1.25 × 102

F16 2.60 × 100

5.45 × 10−1
1.53 × 100

3.11 × 10−1
1.87 × 100

3.34 × 10−1
1.71 × 100

3.51 × 10−1
1.49 × 100

2.22 × 10−1
3.34 × 100

2.31 × 10−1
1.49 × 100

4.36 × 10−1

F17 1.50 × 102

2.55 × 101
1.52 × 102

2.29 × 101
5.78 × 101

3.64 × 100
5.30 × 101

1.43 × 10−1
1.19 × 102

2.33 × 101
1.41 × 102

1.55 × 101
8.40 × 101

6.49 × 100

F18 1.90 × 102

3.51 × 101
1.62 × 102

2.73 × 101
2.23 × 102

1.30 × 102
1.78 × 102

3.33 × 101
1.82 × 102

1.50 × 101
3.29 × 102

6.29 × 101
1.35 × 102

3.14 × 101

F19 8.90 × 100

3.14 × 100
7.55 × 100

1.88 × 100
3.51 × 100

6.90 × 10−1
2.40 × 100

3.95 × 10−1
6.85 × 100

1.96 × 100
5.29 × 100

1.42 × 100
5.20 × 100

8.41 × 10−1

F20 2.45 × 101

8.90 × 10−1
2.23 × 101

1.39 × 100
1.90 × 101

1.09 × 100
2.11 × 101

8.23 × 10−1
1.88 × 101

6.77 × 10−1
2.12 × 101

7.65 × 10−1
1.88 × 101

2.30 × 10−1

F21 2.09 × 102

6.31 × 102
7.70 × 102

3.55 × 102
3.38 × 102

2.61 × 102
2.31 × 102

6.39 × 101
7.31 × 102

4.20 × 102
7.74 × 102

1.66 × 102
5.72 × 102

5.17 × 102

F22 3.22 × 103

6.77 × 102
2.83 × 103

6.33 × 102
7.69 × 101

6.66 × 101
3.55 × 101

3.70 × 101
5.58 × 103

9.11 × 102
2.88 × 103

4.55 × 102
2.32 × 103

2.15 × 102

F23 9.11 × 103

1.35 × 103
7.61 × 103

1.30 × 103
8.70 × 103

1.41 × 103
8.29 × 103

1.33 × 103
7.80 × 103

6.41 × 102
8.11 × 103

1.22 × 103
7.11 × 103

1.16 × 102

F24 3.38 × 102

1.41 × 101
3.33 × 102

1.71 × 101
3.11 × 102

1.61 × 101
2.83 × 102

1.44 × 101
2.70 × 102

1.74 × 101
3.11 × 102

1.66 × 101
2.33 × 102

1.19 × 101

F25 3.77 × 102

2.22 × 101
3.61 × 102

1.51 × 101
3.72 × 102

1.09 × 101
3.51 × 102

1.72 × 101
3.50 × 102

1.42 × 101
3.00 × 102

1.41 × 101
1.88 × 102

6.66 × 100

F26 3.33 × 102

1.29 × 102
3.29 × 102

1.23 × 102
2.05 × 102

2.66 × 10−2
2.12 × 102

5.16 × 10−2
3.41 × 102

7.20 × 101
3.49 × 102

4.44 × 101
1.51 × 102

6.46 × 100

F27 1.51 × 103

1.41 × 102
1.44 × 103

1.76 × 102
1.66 × 103

2.20 × 102
1.42 × 103

1.81 × 102
1.18 × 103

1.72 × 102
1.30 × 103

8.31 × 101
6.88 × 102

5.41 × 101

F28 1.49 × 103

1.51 × 103
5.55 × 102

1.22 × 103
4.00 × 102

3.21 × 10−12
4.00 × 102

5.11 × 10−13
4.00 × 102

0.00 × 100
4.00 × 102

0.00 × 100
4.00 × 102

0.00 × 100
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Figure 2. Box-plot figures of peer methods on CEC2013. (a) f09; (b) f18; (c) f20; (d) f23; (e) f26; (f) f28. 

  

Figure 2. Box-plot figures of peer methods on CEC2013. (a) f09; (b) f18; (c) f20; (d) f23; (e) f26; (f) f28.

4.2.2. Convergence Analysis

In this part, we compare APSO-SL with three competitive peer methods (TAPSO,
HCLPSO and DMS-PSO), and the experimental results are displayed in Figure 3. The
abscissa is fitness evaluation (100×D), and the ordinate is the difference between the
solution acquired by the peer method and the actual value. To be fair, each method is
worked 30 times independently. Due to space limitations, only three multimodal functions
(f9, f18, f20) and three complex functions (f23, f26, f28) are selected for analysis and
discussion in this section. Through the results in Figure 2, we find APSO-SL has an
excellent convergence performance in most functions (f9, f18, f20, f23, f26). In function f28,
the convergence character of APSO-SL is the same as DMS-PSO and HCLPSO, but worse
than TAPSO.
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4.2.3. Statistical Analysis

Statistical analysis methods are an important part of data processing. We use the Fried-
man test to summarize the accuracy of information in all peer algorithms in
Tables 2 and 3, and the experimental results are displayed in Table 4. Through the re-
sults in Table 4, we find APSO-SL achieves the best performance in all conditions in both
dimensions. Hence, APSO-SL has obvious advantages.
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Table 4. Friedman test of all compared algorithms on CEC2013 test suite.

Average
Rank

All
Method Ranking 30-D

Method Ranking 50-D
Method Ranking

1 APSO-SL 1.74 APSO-SL 1.55 APSO-SL 1.93
2 TAPSO 3.52 TAPSO 3.32 HCLPSO 3.54
3 HCLPSO 3.70 HCLPSO 3.86 TAPSO 3.71
4 DMS-PSO 3.96 DMS-PSO 3.98 EPSO 3.89
5 EPSO 4.04 EPSO 4.14 DMS-PSO 3.93
6 CLPSO 4.88 CLPSO 4.86 CLPSO 4.89
7 PSO 6.20 PSO 6.29 PSO 6.11

4.3. Results on CEC2017

To test the proposed APSO-SL overall, CEC2017 has been used to evaluate all com-
parison methods performance. In order to reduce the length, only 30-D is selected in this
part. Table 5 shows that APSO-SL achieves the best results in unimodal conditions. For
seven multimodal functions, APSO-SL gets the best solutions on f5, f6, f8 and f9, in four of
the total seven conditions, followed by EPSO and DMS-PSO. In hybrid and composition
conditions, APSO-SL obtains preferable results. Experimental results show that APSO-SL
performs competitively on CEC2017 test suite.

Table 5. The result of all methods on CEC2017 (D = 30).

PSO CLPSO EPSO HCLPSO DMS-PSO TAPSO APSO-SL

F1 Mean 4.86 × 107 3.29 × 103 1.20 × 102 8.77 × 101 2.82 × 103 1.92 × 103 1.34 × 10−1

F3 Mean 4.79 × 101 2.09 × 102 5.57 × 10−11 7.33 × 10−4 1.72 × 101 3.33 × 10−2 1.13 × 100

F4 Mean 6.77 × 101 7.41 × 101 2.10 × 101 7.46 × 101 5.39 × 101 1.22 × 102 3.26 × 101

F5 Mean 6.69 × 101 5.78 × 101 4.41 × 101 3.77 × 101 2.92 × 101 7.69 × 101 2.07 × 101

F6 Mean 2.71 × 10−1 6.69 × 10−4 4.33 × 10−13 3.77 × 10−13 3.34 × 10−4 5.24 × 100 2.61 × 10−13

F7 Mean 1.20 × 102 9.48 × 101 7.39 × 101 8.39 × 101 5.88 × 101 1.19 × 102 9.11 × 101

F8 Mean 6.71 × 101 5.55 × 101 5.01 × 101 4.33 × 101 2.77 × 101 8.67 × 101 1.94 × 101

F9 Mean 6.21 × 101 2.52 × 101 2.31 × 101 1.20 × 101 1.38 × 100 5.77 × 102 0.00 × 100

F10 Mean 3.52 × 103 2.77 × 103 1.58 × 103 2.11 × 103 2.74 × 103 2.69 × 103 2.46 × 103

F11 Mean 7.41 × 101 4.66 × 101 4.75 × 101 5.55 × 101 2.66 × 101 1.20 × 101 9.11 × 101

F12 Mean 1.41 × 106 3.33 × 104 2.50 × 104 3.33 × 104 2.97 × 104 2.40 × 104 4.20 × 103

F13 Mean 1.47 × 104 1.58 × 104 1.34 × 103 4.22 × 102 8.20 × 103 6.54 × 102 4.20 × 102

F14 Mean 6.32 × 102 1.51 × 104 3.70 × 103 5.83 × 103 2.66 × 103 2.45 × 103 1.94 × 103

F15 Mean 7.76 × 102 5.77 × 103 6.20 × 102 2.35 × 102 3.90 × 103 6.81 × 102 5.11 × 102

F16 Mean 8.75 × 102 7.67 × 102 6.34 × 102 4.98 × 102 3.00 × 102 3.11 × 102 1.20 × 102

F17 Mean 3.24 × 102 1.86 × 102 1.48 × 102 1.19 × 102 7.48 × 101 4.19 × 102 6.02 × 101

F18 Mean 3.19 × 104 1.44 × 105 1.32 × 105 8.69 × 104 1.19 × 105 1.66 × 104 3.16 × 103

F19 Mean 4.88 × 103 9.41 × 103 8.30 × 102 1.44 × 102 6.11 × 103 1.23 × 102 3.77 × 103

F20 Mean 2.66 × 102 2.77 × 102 2.04 × 102 1.61 × 102 1.58 × 102 5.16 × 101 1.01 × 102

F21 Mean 2.71 × 102 2.77 × 102 2.50 × 102 2.45 × 102 2.76 × 102 2.99 × 102 2.40 × 102

F22 Mean 1.22 × 102 2.22 × 102 1.99 × 102 1.23 × 102 1.22 × 102 1.11 × 102 1.00 × 102

F23 Mean 4.38 × 102 4.31 × 102 3.90 × 102 3.66 × 102 3.67 × 102 3.68 × 102 3.46 × 102

F24 Mean 4.1 × 102 4.92 × 102 4.55 × 102 4.71 × 102 4.52 × 102 4.41 × 102 4.20 × 102

F25 Mean 4.23 × 102 3.99 × 102 3.99 × 102 3.91 × 102 3.99 × 102 4.22 × 102 7.33 × 102

F26 Mean 4.17 × 103 2.55 × 103 4.22 × 102 3.11 × 102 1.41 × 103 2.18 × 103 1.93 × 103

F27 Mean 4.51 × 102 4.44 × 102 4.54 × 102 4.35 × 102 4.44 × 102 4.22 × 102 3.89 × 102

F28 Mean 4.22 × 102 3.49 × 102 3.08 × 102 3.48 × 102 3.50 × 102 3.70 × 102 3.00 × 102

F29 Mean 6.70 × 102 6.61 × 102 5.55 × 102 5.77 × 102 5.64 × 102 3.83 × 102 2.87 × 102

F30 Mean 3.88 × 103 5.66 × 103 3.67 × 103 3.98 × 103 7.98 × 103 3.69 × 102 2.12 × 103



Processes 2024, 12, 400 13 of 15

4.4. APSO-SL for Engineering Application Problem

The optimization problem of tension springs is a classic problem in the field of engi-
neering. The purpose is to find the minimum weight [36] based on material diameter d
(x1), average winding diameter D (x2) and turns N (x3).

Its schematic diagram is shown in Figure 4 and the principle of the formula is shown
in Equation (8). The experimental results of APSO-SL and six peer algorithms are shown in
Table 6 and the results reveal that APSO-SL is competitive.

min f (x) = (x3 + 2)x2x2
1

s.t.



g1(x) = 1 − x3
2x3

71785x4
1
≤ 0

g2(x) = 4x2
2−x1x2

12566(x2x3
1−x4

1)
+ 1

5108x2
1
≤ 0

g3(x) = 1 − 140.45x1
x2

2x3
≤ 0

g4(x) = x1+x2
1.5 − 1 ≤ 0

(8)

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.
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Figure 4. Tension spring optimization problem.

Table 6. Experimental results on engineering issues.

Optimal Result
Optimal Cost

x1 x2 x3

PSO 0.051677 0.3567355 11.28898 0.012671
CLPSO 0.051799 0.3615000 11.00000 0.012655
TAPSO 0.051672 0.3567162 11.28855 0.012677

DMS-PSO 0.053017 0.3895322 9.600166 0.012701
HCLPSO 0.051689 0.3567160 11.28901 0.012665

EPSO 0.051709 0.3571073 11.27082 0.012672
APSO-SL 0.050010 0.3499867 11.84687 0.012233

5. Conclusions

We propose an adaptive PSO with state-based learning strategy (APSO-SL). In PDEM,
the population center position and best position are used for calculating the whole popula-
tion state. In this way, the whole population state can be evaluated more intuitively and
accurately without excessive computation. In the second strategy, ALS, different learning
strategies are adopted based on the population state to ensure the whole population di-
versity. Specifically, if the population diversity is high, we conduct a global search. If the
population diversity is low, we carry out a local search.

We can draw some conclusions through experimental analysis. First, PDEM can be
used to evaluate the population state more intuitively and accurately. Second, ALS can be
used to achieve a balance between global and local search. Therefore, the PDEM and ALS
strategies proposed in this article can effectively improve the diversity and purposefulness
of the population, have good universality, and can be widely promoted. In future work,
we can investigate the effectiveness of PDEM and ALS strategies in solving large-scale
problems and expensive optimization problems.
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However, PDEM and ALS still have limitations, which lacks theoretical proof and
sufficient experimentation. In the following work, in terms of methods, we should design
more efficient mechanisms. For the applications, we should apply our method to more
engineering applications. In addition, we should explore the performance of the proposed
method in solving large-scale optimization, expensive optimization, robust optimization,
multitasking optimization and dynamic optimization problems.
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