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Abstract: As additive manufacturing advances, it offers a cost-effective avenue for structurally
repairing components. However, a challenge arises in the additive repair of suspended damaged
surfaces, primarily due to gravitational forces. This can result in excessive deformation during the
repair process, rendering the formation of proper repair impractical and leading to potential failure.
In light of this rationale, conventional repair techniques are impractical for extensively damaged
surfaces. Thus, this article proposes a novel repair methodology that is tailored to address large-
area damage. Moreover, and departing from conventional practices involving the addition and
subsequent subtraction of materials for precision machining, the proposed process endeavors to
achieve more precise repair outcomes in a single operation. This paper introduces an innovative
repair approach employing fused deposition modeling (FDM) to address the complexities associated
with the repair of damaged polymer material parts. To mitigate geometric errors in the repaired
structural components, beams with minimal deformation are printed using a compensation method.
These beams then serve as supports for overlay printing. The paper outlines a methodology by
which to determine the distribution of these supporting beams based on the shape of the damaged
surface. A beam deformation model is established, and the printing trajectory of the compensated
beam is calculated according to this model. Using the deformation model, the calculated deformation
trajectories exhibit excellent fitting with the experimentally collected data, with an average difference
between the two of less than 0.3 mm, validating the accuracy of the suspended beam deformation
model. Based on the statistical findings, the maximum average deformation of the uncompensated
sample is approximately 5.20 mm, whereas the maximum deformation of the sampled point after
compensation measures around 0.15 mm. Consequently, the maximum deformation of the printed
sample post-compensation is mitigated to roughly 3% of its pre-compensation magnitude. The
proposed method in this paper was applied to the repair experiment of damaged curved surface
components. A comparison was made between the point cloud data of the repaired surface and
the ideal model of the component, with the average distance between them serving as the repair
error metric. The mean distance between the point clouds of the repaired parts using the proposed
repair strategy is 0.197 mm and the intact model surface is noticeably less than the mean distance
corresponding to direct repair, at 0.830 mm. The repair error with compensatory support beams
was found to be 76% lower than that without compensatory support beams. The surface without
compensatory support beams exhibited gaps, while the surface with compensatory support beams
appeared dense and complete. Experimental results demonstrate the effectiveness of the proposed
method in significantly reducing the geometric errors in the repaired structural parts. The outcomes
of the FDM repair method are validated through these experiments, affirming its practical efficacy.
It is noteworthy that, although only PLA material was used in this study, the proposed method is
general and effective for other polymer materials. This holds the potential to significantly reduce
costs for the remanufacturing of widely used polymers.
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1. Introduction

In recent years, the application of additive manufacturing in the field of repair has
garnered increasing attention from researchers, owing to its notable advantages of rapidity,
convenience, efficiency, and facile automatic control [1–3]. Additive repair techniques have
found widespread utilization in diverse areas, including, but not limited, to aero-engine
blade restoration [4], the repair of damaged ships [5], and cranial reconstruction [6].

However, a recurrent challenge encountered in additive repair processes is the phe-
nomenon known as “hanging printing,” wherein the influence of gravity results in material
sinking, the prevention of optimal adhesion or, in cases of extended hanging distances,
impedance of material formation [7–9]. To address this issue, a conventional approach to
additive manufacturing has been developed that involves the incorporation of support
structures. Specifically, on sections of the print with significant overhangs, researchers ad-
vocate the preliminary printing of sparse support materials. This strategic measure serves
to diminish overhang distances, thereby ensuring a seamless and successful printing pro-
cess. Researchers have employed multi-degree-of-freedom printing devices to manipulate
the orientation of the printed object, ensuring that the printing position remains consis-
tently non-suspended [10–12]. This approach mitigates the influence of gravity during the
printing process.

While these methods have proved to be effective in conventional additive manufac-
turing scenarios, they present limitations when applied to the additive repair of damaged
thin-walled surfaces. The interference of printing equipment with compromised surfaces
often complicates the insertion of supporting materials within the damaged areas. Fur-
thermore, due to this interference, even with adjustments to the posture of the damaged
surface, selecting an optimal angle to overcome the influence of gravity and successfully
print and repair the damaged portions becomes a formidable challenge.

Currently, prevalent additive manufacturing methods for repair encompass powder bed
fusion, directed energy deposition, and cold spray additive manufacturing. B. Merz et al. [13]
conducted the repair of gas turbine blades utilizing laser powder bed melting technology. With
the aim of overcoming the technical challenge of the irrecoverable loss of mechanical properties
caused by the high heat input of traditional fusion welding, Hamilton et al. [14] determined
different parameters for directed energy deposition (DED), maximizing the strength and
fatigue life of repaired cast iron, while A. Saboori et al. [15] explored the application of
directed energy deposition in the repair process. Lang et al. [16] investigated the cold gas
spraying repair process for high-temperature alloy Inconel 718 components. Metallographic
examinations revealed a well-bonded interface between the repair filler and the base material.
L.P. Martin et al. [17] repaired an aluminum 6061 plate using additive friction stir deposition.

Another potential way to overcome the deformation of the suspended printing area
caused by gravity is to utilize the shape memory effect of the printing material. Rah-
matabadi et al. [18] printed PLA–TPU blends with different component ratios using melt
mixing and melt deposition modeling (FDM), studied the shape memory effect of the poly-
mer, and conducted a detailed material performance analysis of the PLA–TPU mixture [19].
Moreover, in terms of enhancing repair strength, material modification emerges as a promis-
ing strategy. Rahmatabadi et al. [20] enhanced the thermal stability and tensile strength of
PVC through modification techniques. This advancement enabled the 3D printing of pure,
food-grade PVC, which holds the potential for use in biomedical applications. Considering
its advantageous attributes of affordability and robust mechanical properties, modified
PVC material emerges as a suitable candidate for additive repair.

Notably, the focus of these repair studies predominantly revolves around metallic com-
ponents, with limited exploration into non-metal parts. Given the widespread utilization
of polymer materials, addressing the repair of polymer components could yield substan-
tial cost and time savings compared with reproducing corresponding items. In addition,
traditional support printing processes are not suitable for repair scenarios where internal
support cannot be added. Therefore, for large-area, damaged, thin-walled polymer parts,
new processes and methods must be proposed for their repair. Of particular significance is
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the unresolved challenge of “hanging printing” in the additive repair of damaged curved
surfaces, an issue not yet adequately addressed in current research.

To overcome the challenge of repairing large-area damaged curved surfaces in additive
manufacturing processes, a novel additive repair method using compensatory beams is
proposed for the first time. This method not only achieves the unsupported repair of large,
damaged areas but also strives to maintain the original appearance of the component as
much as possible. This paper introduces a research initiative focusing on the restoration of
complex, damaged curved surfaces composed of polymer materials. In contrast with alter-
native additive manufacturing methods, fused deposition modeling (FDM) offers distinct
advantages, such as cost-effectiveness and straightforward manufacturing apparatus and
processes, and minimal environmental requirements [21]. Its suitability for the in-situ or
ex-situ repair of damaged polymer components makes it a compelling choice. Taking these
considerations into account, this paper proposes an FDM-based repair strategy. Initially,
a support beam with minimal deformation is produced using a compensation method.
Subsequently, the covering layer is applied to the support beam, effectively managing the
deformation of the repair surface and ensuring a secure adhesion between the covering
lines. The paper will focus on modeling and compensation methods for the deformation
patterns of support beams, as well as detailed discussions on layer trajectory planning.

2. Methods

An inherent challenge encountered during the fused deposition modeling (FDM)
process for polymer repair is the pronounced influence of gravity on the extruded filament,
leading to evident deformation of the repair surface, as depicted in Figure 1a, or inadequate
bonding between filament lines, as illustrated in Figure 1b. Figure 1c highlights the
proposed solution, involving the printing of precise support beams followed by overlay
printing, effectively mitigating the impact of gravity and ensuring optimal bonding for
successful polymer repair.
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Figure 1. (a) The deformation observed in fused deposition modeling (FDM) repaired components
affected by gravity. (b) A lack of effective bonding between the printed lines is evident. (c) The FDM
repair strategy, involving the initial printing of support beams followed by overlay printing on the
beams.

Figure 2 illustrates the comprehensive fused deposition modeling (FDM) repair process
in detail. Initially, the damaged parts’ surfaces undergo scanning with a structured light
scanner, followed by a fitting of the surface based on the acquired point cloud. The point
cloud of the damaged component as a whole is obtained through multiple scans using a
3D scanner, followed by filtering and registration. The scanner resolution is set at 0.01 mm,
ensuring the accuracy of scanning for the damaged components. The disparity between
the fitted surface and the complete 3D model is registered and computed to determine the
damaged area surface of the parts slated for repair. The damaged area surface is projected
onto an optimal plane to derive the plane contour. For this contour, the distribution of
support beams is ascertained on the plane. Subsequently, the distribution of support beams
on the plane is re-projected onto the surface to establish the support beam distribution at
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the damaged part. Employing the compensation method, support beams are printed onto
the damaged surface. The scanning direction is defined, and the covering layer for the
damaged parts is printed on the support beam. To enhance the bonding strength between
the repaired and damaged parts, the covering layer is positioned to maximize contact with
the boundary. The scanning direction of the covering layer aligns with the vertical direction
of the principal component of the projected contour of the damaged surface.
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Figure 2. Repairing damaged components: a procedural analysis. (a) Utilize a 3D scanner to capture
a point cloud representation of the damaged components. (b) Employ surface fitting techniques to
model the damaged area based on its surrounding morphology. (c) Project the fitted damaged contour
onto a specified plane. (d) Execute optimal segmentation techniques on the projected plane area.
(e) Transfer the segmentation information from the plane onto the damaged surface. (f) Generate
support beams derived from segmented contours. (g) Determine the printing orientation for overlay
application. (h) Implement overlay printing onto the damaged component.

The repair scheme faces two challenges: determining the distribution of beams in the
damaged area and achieving the printing of support beams with minimal deformation.
This article will concentrate on addressing these two pivotal issues.

2.1. The Distribution of Support Beams

The support beam plays a crucial role in managing line deformation during the hang-
ing printing process, ensuring it remains within an acceptable range. This paper introduces
the concept of the effective suspension distance, denoting the maximum distance a line
can suspend with acceptable deformation. The effective suspension distance is contingent
on factors such as printing material, nozzle size, cooling rate, and acceptable deformation
range. To adapt to specific printing tasks, experimental testing is necessary to ascertain the
effective suspension distance, emphasizing the need to maintain a support beam spacing
that is less than this critical distance. This principle underscores the importance of minimiz-
ing support beams while guaranteeing that the printing of the covering layer falls within
the effective hanging distance.

Given the complexity and diversity of surfaces, describing them in a unified mathe-
matical language proves challenging, making support beam determination difficult. This
paper employs a method of projecting the surface onto a plane for processing. The selection
of the plane is critical, aiming to minimize changes in line distribution after their projection
onto the surface. The optimal projection plane is identified as that with the largest surface
projection contour area, as determined by the principles of projection geometry [22]. The
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finite difference [23] and Adagrad gradient descent algorithm [24] are employed in this
study to maximize the projected surface area and determine the optimal projection plane.

The projection vector n of the surface can be defined by two parameters, denoted as α
and β and illustrated in Figure 3. The objective is to find optimal values for α and β that
maximize the projected area. The algorithm is outlined as follows (Algorithm 1):
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Algorithm 1: Optimal proJection plane search algorithm

Initialize α, β randomly within the search range
Given learning rate e and maximum search times n
Given finite difference wave momentum ∆θ

While the maximum number of searches was not reached
Calculate the projected area S0 of the surface according to (α, β)
Calculate the projected area Sα1 of the surface according to (α + ∆θ, β)
Calculate the projected area Sβ1 of the surface according to (α, β + ∆θ)
Estimate the gradient Grad = [ Sα1 − S0/∆θ, Sβ1 − S0/∆θ]
R = R + Grad2

Update α, β:
α = α + e × Grad[1]/(∆θ + sqrt(R))
β = β + e × Grad[1]/(∆θ + sqrt(R))

end

Following the identification of the optimal projection plane, it becomes imperative
to ascertain the positioning of the support beam on this plane. Initially, the endpoints of
support beam segments are uniformly distributed along the surface projection contour.
Subsequently, endpoints are selected based on the optimization of the objective function,
defined as follows:

F = k1Lm + k2Lσ + k3Sm + k4Sσ (1)

where Lm represents the mean average value of the support beam length, Lσ indicates the
variance of the support beam length, Sm is the average value of the small area divided
by the support beam, Sσ represents the variance of the small area divided by the support
beam, and k1, k2, k3, and k4 are weight coefficients. Minimization of the objective function
is undertaken with the aim of minimizing the length of the support beams and ensure
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small, uniform divided areas. When discretizing m points and designing n support lines,
the computation is initially O(nm2), demanding significant computational resources. To
address this, an accelerated algorithm is devised to streamline the calculation complexity
to O(n m). When m = 20, n = 10, employing the acceleration algorithm, the computation
time is 240 s on a computer equipped with an i7-11700k CPU and 8 GB of RAM.

2.2. Deformation Compensation of Support Beam

In addressing the challenge of support beam deformation induced by gravity, this
paper proposes a methodology by which to construct a deformation model for extruded
wire under gravitational influence. Subsequently, the compensation track is computed
based on the designed trajectory. Illustrated in Figure 4, the anticipated trajectory is denoted
as S0; however, due to the impact of gravity, the printed trajectory deviates to S1 from the
intended S0. To rectify this deformation, the compensation track S2 is calculated, aiming to
achieve a post-printing trajectory as closely aligned with S0 as possible.
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The deformation process of a suspended extrusion wire is analyzed to establish a
comprehensive deformation model. The deformation characteristics of the extruded wire
are delineated as follows: upon initial extrusion, the wire exhibits the lowest degree of
solidification, resulting in the maximum falling deformation. Subsequently, as the wire
gradually solidifies, the deformation diminishes. Even fully cured wire is subject to the
residual deformation of the freshly extruded wire from the print head, with the initial
fixed end resisting deformation. In the paper, the impact of various printing materials,
extrusion temperatures, and extrusion speeds on the printing process is abstracted into
model coefficients. The modeling conditions for the deformation model assume constant
printing materials, extrusion temperatures, and extrusion speeds. Different printing materi-
als, extrusion temperatures, and extrusion speeds result in distinct coefficients within the
deformation model; however, the deformation patterns of all cases can be described using
the deformation model. In cases where the extrusion speed of the wire is lower than the
scanning speed, the wire experiences viscoelastic forces, induced by the nozzle. Conversely,
if the wire’s extrusion speed exceeds the scanning speed, it accumulates at the nozzle’s
extrusion point. During printing, the wire’s extrusion speed is adjusted to align with
the scanning speed. Consequently, the modeling process neglects the wire deformation
resulting from mismatches between the extrusion and scanning speeds. The mathematical
representation of the wire deformation law is detailed as follows:

∆
→
S =

(
k ×→

g × e(
−||i−t||2

σ1
)

)
×
(

1 − e(
−||i−t||2

σ2
)

)
(2)

where, k represents the gravitational coefficient,
→
g denotes the gravitational vector, i

signifies the discrete current point on the printing trajectory, t corresponds to the point on
the printing trajectory associated with the discrete position of the nozzle, σ1 represents the
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influence coefficient of the freshly extruded material on the current point, and σ2 denotes
the influence coefficient of the fixed end on the current point.

In the above formula, the first bracket characterizes the impact of the freshly extruded
wire on the current point, while the final bracket delineates the influence of the fixed
end on the current point. As illustrated in Figure 5, all points ranging from point i to
point t contribute to the downward deformation of point i. The fixed point serves to
resist the deformation influence on point i. Proximity to point i amplifies the impact on
the deformation, with the greatest effect occurring when i is close to t, due to the newly
extruded wire. Conversely, when i is in proximity to the fixed point, the deformation
approaches zero.
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Figure 5. The deformation characteristics of printed wire. The wire experiences the greatest deforma-
tion immediately after extrusion from the nozzle, with the deformation decreasing as it approaches
the fixed end. The process from (a–c) demonstrates the generation of deformation on printed lines.

The parameters to be derived in the formula include k, σ1, and σ2. These values
are determined through the measurement of the actual deformation of the printed wire
during experimentation. Once obtained, these parameters are input into the model, and
the simulated print track should closely align with the experimental track. This constitutes
the underlying principle behind the construction of the objective function in the parameter-
solving process. It is important to emphasize that the deformation measured at point i
during the experiment is denoted as ∆SRi, the deformation in the model simulation is ∆Si,
and the deformation from point j to point i is ∆Sij. Therefore:

Si = ∑t
i Sij (3)

The formulated objective function is presented as follows:

F(k, σ1, σ2) = ∑n
1 (∆Si − ∆SRi)

2 (4)

The motion accuracy of the printing device used in this study is approximately 0.5 mm.
Given this, 0.5 mm is considered the acceptable error standard when the abovementioned
objective function converges. Observing the aforementioned formula, it becomes evident
that the objective function is highly intricate and exhibits robust nonlinearity. In this study,
the differential evolution algorithm [25] is employed for the optimization of the objective
function and resolution of the model parameters. The differential evolution algorithm is
characterized by robust global convergence and stability.
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(1) Population Initialization:

M individuals are randomly generated within the solution space, with each individual
representing a potential solution to the problem. These individuals are recorded as:

Xi(0) = (xi,1(0), xi,2(0), xi,3(0), . . . , xi,n(0))
i = 1, 2, 3, . . . M

(5)

The j-dimensional value of the i-th individual is defined as follows:

Xi,j(0) = Lj_min + rand(0, 1)(Lj_max − Lj_min)
i = 1, 2, 3, . . . , M
j = 1, 2, 3, . . . , n

(6)

where Lj_min and Lj_max are the minimum and maximum values of the individual’s j-
dimensional value, respectively.

(2) Variation:

During the g-th iteration, three individuals were randomly chosen from the population,
as follows:

Xp1(g), Xp2(g), Xp3(g), p1 ̸= p2 ̸= p3 ̸= i. The generated variation vector is:

Hi(g) = Xp1(g) + f · (Xp2(g)− Xp3(g)) (7)

where f is the scaling factor.

(3) Cross:

vi,j =

{
hi,j(g), rand(0, 1) ≤ cr

xi,j(g), else
(8)

where cr∈[0,1] is the crossover probability.

(4) Selection:

Xi(g + 1) =
{

Vi(g), f (Vi(g)) < f (Xi(g))
Xi(g), else

(9)

For each individual, Xi(g + 1) is either better or equal to Xi(g), and all optima are
realized through mutation, crossover, and selection. In the context of the problem addressed
in this paper, each individual in the population is represented as (k, σ1, σ2). Figure 6 depicts
the convergence process involved in solving model parameters using the differential
evolution algorithm, with a population size of 50. After 460 generations of solutions, the
model parameters essentially converge.

With the established deformation model and the anticipated trajectory, the deformation
at each point along the wire can be computed. Compensation is then applied to each point
to align the compensated trajectory as closely as possible with the anticipated trajectory.
As illustrated in Figure 7, to ensure synchronization between the extrusion speed of the
print compensation track and the scanning speed, the angle formed every two points
after trajectory discretization with the x-axis selected as the compensation parameter.
Initially, the model calculates the angle change of the wire after printing based on the
uncompensated track. Subsequently, this angle change is multiplied by a scaling factor to
derive the compensation, denoted as ∆θ. Finally, the optimal scaling factor is determined
through a dichotomy process.
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2.3. Experimental Equipment

Most repaired objects involve spatial surfaces, and conventional commercial printers
often fail to meet the printing demands associated with spatial trajectory and nozzle rotation
attitude. In this study, a developed 6-axis parallel printer [26], depicted in Figure 8, offers
the flexibility to adjust the spatial pose of the nozzle, enabling effective surface repair.
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model of the device. (b) Physical representation of the device.

3. Results and Discussion

The distribution of support beams is determined by an objective function that compre-
hensively considers the mean and variance of support beam length, as well as the mean and
variance of the areas divided by the support beams. The various coefficients in the objective
function correspond to different distributions of the support beams. Figure 9a illustrates
the distribution of support beams obtained by solely considering the mean and variance
of support beam length in the objective function. In this scenario, the support beams
are arranged in proximity to the projected contour. Figure 9b displays the results aimed
at achieving the smallest average area and the shortest average length of segmentation
lines. This results in the program favoring the use of intersecting lines to segment the
area as much as possible, disregarding the uniformity of the segmented area. Figure 9c
illustrates the outcomes achieved by comprehensively considering the minimization of
both the average area and variance of segmentation, as well as the minimization of the
average length of segmentation lines. This approach successfully achieves our goal of
evenly segmenting the given area as much as possible. For different contours in practical
repair scenarios, the objective function coefficients can be adjusted accordingly to achieve
the desired distribution of support beams. In Figure 9, segmentation lines are mapped
from the plane to the curved surface, segmenting the curved surface. The uniformity of
segmented areas on the curved surface may potentially decrease. However, in practice,
this phenomenon can be mitigated by adjusting the relative positions of the plane and the
curved surface as much as possible.

The experimental printing material utilized in this study is PLA, with an extrusion
temperature set at 210 ◦C. The filamentous material exhibits a diameter of 1.75 mm, while
the printing nozzle diameter is 0.8 mm. The extruder operates at a speed of 2 rad/s, while
the nozzle movement speed is maintained at 3 mm/s. Notably, due to a marginally higher
material intake rate into the nozzle per unit time compared with the extrusion speed, the
resultant actual extrusion line width average diameter surpasses that of the nozzle diameter.

The printing experiment aimed at investigating the deformation model of the sup-
porting beam was conducted as follows: initially, a 10 mm straight line was printed on
the printer base plate to serve as the fixed end for subsequent suspended printing. Subse-
quently, printing proceeded according to the suspended trajectory. Upon completion of
printing, the nozzle remained stationary for a 10 s interval to facilitate cooling and shaping
of the printed wire. To ensure data reliability and experiment repeatability, 30 sets of sam-
ples were printed following a 1/4 arc trajectory with a radius of 30 mm. The deformation of
each set of samples relative ideal trajectory was measured using a parallel light monocular
camera. From these, 24 sets of sample deformation values were randomly selected as
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calculation data for the deformation model coefficients discussed in the article, while the
remaining 6 sets were designated as test data.
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Figure 10 presents the outcomes when resolving the deformation model coefficients
using experimental data and the differential evolution algorithm. In the paper, printing was
conducted following a designed quarter-circle trajectory with a radius of 30 mm. A parallel
light camera was employed to measure the actual deformation of the printed filament,
obtaining discrete coordinate values as fitting data for the coefficients of the deformation
model and serving as test data. The figure illustrates the average and standard deviation
of both the training and testing data. Inspection of the graph reveals a close alignment
between the trajectory derived from the deformation model and the distribution of data
employed when solving the model coefficients. This alignment indicates the convergence
of the solution results for the model coefficients. Furthermore, the trajectory derived from
the deformation model demonstrates a strong concordance with the testing data, thereby
providing additional validation of the model’s generalization capacity. The simulation
trajectory exhibits notable agreement with the experimental data, with a calculated average
error of less than 0.3 mm, indicating that the deformation model can accurately describe
the deformation process.

The process of formulating a deformation model suggests that its applicability is not
contingent upon the specific shape of the trajectory. With varying ideal trajectories, these
deformation models possess the capability to prognosticate the corresponding deforma-
tion magnitudes. To ascertain the generalization prowess of the trajectory-independent
deformation model, printing experiments were conducted employing diverse trajectories.
Subsequently, the deformation amounts of the samples were compared with those calcu-
lated by the model. To uphold data reliability and experiment reproducibility, 10 samples
were iteratively printed for each trajectory, and the resultant average value was adopted as
the experimental data. Figure 11 illustrates the simulation and compensation outcomes
for arcs, straight lines, and splines with varying diameters using the deformation model.
The deformation model coefficients are derived from the experimental data of straight-line
printing for an R30 arc but are applied to other printing trajectories. As depicted in the fig-
ure, the simulation track remains in good agreement with the experimental data. Utilizing
the aforementioned compensation method, the wire printed according to the compensation
track closely aligns with the expected trajectory.
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Figure 11. The simulation and compensation of deformation for circular arcs, straight lines, and
spline curves are conducted and subsequently compared with experimental data. Respectively,
(a–d) present the fitting results of the calculated model for trajectories with a radius of 30 mm arc, a
radius of 35 mm arc, a straight line, and a spline curve. Respectively, (e–h) illustrate the deformation
of sampling points for trajectories with a radius of 30 mm arc, a radius of 35 mm arc, a straight line,
and a spline curve after employing the compensation strategy.

Utilizing deformation models and compensation strategies, the printing trajectory is
systematically adjusted to mitigate the deformation of printed lines. The study conducts
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compensation experiments on a 1/4 arc trajectory with a radius of 30 mm. To uphold data
reliability and experimental reproducibility, three compensation experiments were executed.
Subsequently, the deformation of the compensated printed samples was measured, and
their average and standard deviation were calculated. These statistical outcomes were then
juxtaposed with the uncompensated experimental data comprising 30 sets for comparative
analysis. Figure 12 presents the statistical outcomes depicting the deviation between the
support beam and the ideal track after printing, according to the compensated track and the
uncompensated track. From the depicted graph, it becomes evident that the deformation
of the printing area in the uncompensated sample amplifies with its progression towards
the rear. This phenomenon arises because the printing area, situated farther away from
the fixed end, experiences diminished resistance to deformation from the fixed end and
becomes increasingly susceptible to gravitational forces. Statistical analysis revealed that
the maximum average deformation of the uncompensated sample approximates 5.20 mm.
This degree of deformation exceeds the width of the printed lines significantly, potentially
resulting in inadequate bonding between adjacent printed materials. Following compensa-
tion, the deformation across the entire trajectory of the printed sample notably diminishes.
According to statistical findings, the maximum deformation of the sampled points post-
compensation measures approximately 0.15 mm. Consequently, the maximum deformation
of the printed sample post-compensation is reduced to about 3% of its pre-compensation
magnitude. The results indicate that the deformation model and compensation method
proposed in this article effectively mitigate the impact of gravity-induced deformation on
the printing lines. Simulation and experimental results collectively affirm the efficacy of
the deformation model and the support beam compensation method.
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Printing on a support beam that compensates for deformation can effectively mitigate
the deformation of the repaired part, thereby ensuring the structural integrity of the
component. To this end, repair experiments were conducted on damaged components
following the process outlined in Figure 2. This process involves initially performing a
3D scan of the damaged parts and subsequently isolating the damaged area. Next, the
trajectory of the support beam and the repair trajectory within the damaged area are
planned. In order to quantitatively evaluate the repair outcomes, the study designed a
hat-shaped component, specifying the shape of the damage. The three-dimensional shapes
of both the damaged model and the ideal model are well-defined, serving as reference
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data for the repair process and subsequent assessment of repair results. Figure 13a,b
display the printed results of the support beam and the covering layer on the support
beam, respectively. The printing results reveal variations in the thickness of certain beams
due to material heterogeneity. However, this does not compromise the effectiveness of
compensatory beams in reducing layer deformation. Another observed phenomenon based
on the printing results is that there is some interaction between the beams. Specifically, the
upper layer support beams exhibit less deformation than the lower layer, implying that
subsequently printed support beams have smaller deformations than those printed earlier.
This insight provides inspiration for support beam distribution and printing sequences.
Overall, the role of support beams significantly reduces the difficulty of repairs, verifying
the feasibility of the FDM repair strategy.
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During the experiment, a structured light scanner was employed to capture the point
cloud of the repaired parts. Figure 14 compares the repair outcomes of damaged samples
using the strategy proposed in this paper against direct repair. Point clouds of the repaired
parts were obtained, and the distance between these point clouds and the surface of the
undamaged part model was calculated. As illustrated in Figure 14c,d, the mean distance be-
tween the point clouds of the repaired parts using the proposed repair strategy is 0.197 mm
and the intact model surface is noticeably less than the mean distance corresponding to
direct repair, at 0.830 mm. The repair error with compensatory support beams was found to
be 76% lower than that without compensatory support beams. In essence, the deformation
of the parts repaired by the proposed strategy is significantly smaller than that of the
original model. Moreover, the comparison results indicate that the printed lines in direct
repair, prone to deformation, struggle to adhere tightly, resulting in numerous holes in the
repair area and ultimately leading to repair failure. One point to note is that the repair
layer covers the damaged area, leading to noticeable repair traces. This can be mitigated by
grinding the area around the damaged contours of the part before the repair.

The experimental results indicate that the proposed repair method using compensatory
beams provides an effective approach for the restoration of extensively damaged curved
surface components. This differs from previous additive repair studies primarily in two
aspects. Firstly, conventional studies often focus on repairing components with small-scale
damage features such as pits and cracks, which can be directly addressed by adding material
to the damaged part. However, the studied damage features in this paper involve large-
scale perforations in curved surface shells, making it impractical to repair by simply adding
material to the damaged area. Secondly, the paper presents, for the first time, a precise
modeling of the deformation patterns of unsupported beams, significantly enhancing
accuracy when repairing part dimensions. Previous research has primarily emphasized
repair strength, often resorting to subtractive processing for dimension adjustment after
repair. The compensatory repair method proposed in this paper demonstrates the potential
for one-time, precision repair of damaged parts without the need for subsequent processing.

Through experiments and simulations, it has been confirmed that the FDM repair
strategy for damaged surfaces can effectively restore the surface with minimal deformation.
However, it is important to note that the exploration of bonding strength between the
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repaired area and the damaged part is not the primary focus of this article. This intriguing
topic will be the subject of our next comprehensive investigation.
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The experimental results indicate that the proposed repair method using compensa-
tory beams provides an effective approach for the restoration of extensively damaged 
curved surface components. This differs from previous additive repair studies primarily 
in two aspects. Firstly, conventional studies often focus on repairing components with 
small-scale damage features such as pits and cracks, which can be directly addressed by 

Figure 14. Comparison between the results printed using the support beam repair strategy and
direct repair. (a) The result achieved through the utilization of support beams in the repair process.
(b) The outcome of direct repair without the incorporation of support beams. (c) The 3D point cloud
representation illustrating the results of repair with the implementation of support beams. (d) The
point cloud visualizations depicting the results of repair without the utilization of support beams.

4. Conclusions

Focusing on damaged polymer parts, this study introduces a novel FDM repair method
involving the sequential printing of support beams followed by the cover layer. In the
paper, deformation trajectories were modeled, and methods for calculating the distribution
of supporting beams were introduced. The proposed method in the paper addresses the
challenging issue of additive repair for large-area damaged curved surfaces, offering new
possibilities for in-situ repairs in scenarios where adding support is not feasible, such as in
the additive repair of human skull bones. Moreover, the proposed process endeavors to
achieve more precise repair outcomes for the morphology in a single step, thereby stream-
lining the conventional repair approach that involves the sequential addition and reduction
of materials. Experimental findings indicate that the maximum average deformation of the
uncompensated line measures approximately 5.20 mm, while the maximum deformation of
the compensated line sampling points is approximately 0.15 mm. Following compensation,
the maximum deformation of the suspended printed line diminishes to approximately 3%
of its pre-compensation magnitude. The mean distance between the point clouds of the
repaired parts using the proposed repair strategy is 0.197 mm and the intact model surface
is noticeably less than the mean distance corresponding to direct repair, at 0.830 mm. The
repair error with compensatory support beams was found to be 76% lower than that with-
out compensatory support beams. The proposed repair strategy significantly outperforms
direct repair in terms of repair integrity and deformation. To fully exploit the potential of
the proposed method, research on online detection, real-time trajectory generation methods,
and in-situ printing processes for additive repair will be the focal point of our subsequent
research efforts.
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