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Abstract: In the dynamic and complex environment of industrial control rooms, operators are
often inundated with numerous tasks and alerts, leading to a state known as task overload. This
condition can result in decision fatigue and increased reliance on cognitive biases, which may
compromise the decision-making process. To mitigate these risks, the implementation of decision
support systems (DSSs) is essential. These systems are designed to aid operators in making swift,
well-informed decisions, especially when their judgment may be faltering. Our research presents an
artificial intelligence (AI)-based framework utilizing dynamic influence diagrams and reinforcement
learning to develop a powerful decision support system. The foundation of this AI framework is the
creation of a robust, interpretable, and effective DSS that aids control room operators during critical
process disturbances. By incorporating expert knowledge, the dynamic influence diagram provides a
comprehensive model that captures the uncertainties inherent in complex industrial processes. It
excels in anomaly detection and recommending optimal actions. Furthermore, this model is improved
through a strategic collaboration with reinforcement learning, which refines the recommendations to
be more context-specific and accurate. The primary goal of this AI framework is to equip operators
with a live, reliable DSS that significantly enhances their response during process upsets. This paper
describes the development of the AI framework and its implementation in a simulated control room
environment. Our results show that the DSS can improve operator performance and reduce cognitive
workload. However, it also uncovers a trade-off with situation awareness, which may decrease as
operators become overly dependent on the system’s guidance. Our study highlights the necessity of
balancing the advantages of decision support with the need to maintain operator engagement and
understanding during process operations.

Keywords: decision support systems; control room operators; task overload; artificial intelligence;
dynamic influence diagrams; reinforcement learning; situation awareness; trust in automation;
process control

1. Introduction

In recent years, the industrial landscape has undergone a significant transformation
with the advent of Industry 4.0, also known as the fourth industrial revolution [1]. First
introduced at Hannover Messe 2011 in Germany, Industry 4.0 marks a new era in intelligent
manufacturing, characterized by the integration of advanced technologies and data-driven
decision making. This paradigm shift aims to enhance productivity, effectiveness, and
competitiveness across many industries, from automotive manufacturing and aerospace
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to ch and revised all. and renewable energy sectors [2]. Central to this transformation is
the adoption of decision support systems (DSSs), which are pivotal in facilitating informed
and optimized decision-making processes. The contemporary industrial environment,
characterized by its complexity and dynamism, necessitates intelligent DSSs capable of
managing vast amounts of information, modeling intricate systems, and supporting opera-
tors effectively [3]. Al-Dabbagh et al. (2018) [4] emphasize the significant role of Decision
Support Tools in enhancing the control and operation of industrial facilities.

A critical aspect of a DSS is its dual nature, encompassing both technical and human
factors. The primary consideration in DSS usage is the human element. These systems
are designed to assist, not replace, human decision makers [5]. Developing a model
that can process large volumes of data and efficiently convey information to operators
is a complex task. The effectiveness of a DSS in enhancing operator performance is not
guaranteed and requires careful construction [6]. Constructs such as situation awareness
(SA), mental workload, and trust are crucial in understanding and predicting human-
system performance in complex environments [7]. The process of trust calibration plays a
critical role in the usage of DSS and human operator [8]. The technical challenge in building
a DSS is equally significant. Generally, there is a reluctance to adopt systems that are not
directly interpretable, tractable, and trustworthy, particularly in safety-critical contexts [9].
Thus, there is a pressing need for models that are not only effective in handling large data
volumes but also interpretable and safe. Trustworthy and effective models are essential.

In the context of contemporary chemical processes, there is a strong reliance on au-
tomation via distributed control systems [10]. Routine adjustments to expected process
variations are overseen by process logic controllers (PLCs), which remotely control equip-
ment components like valves and motor drives. At the core of industrial operations,
operators interact with a graphical user interface (GUI) that aggregates and displays signals
from instruments attached to machinery. Occasionally, system parameters might deviate
beyond the set thresholds in the PLCs, triggering alarm notifications on the GUI. These
alarms demand the operators’ attention. Using the GUI’s data, operators are responsible for
diagnosing the irregularity and deciding on the necessary actions to restore balance in the
process. This diagnostic and corrective process demands intricate cognitive processing, urg-
ing operators to synthesize multiple data points, account for external factors like weather
conditions, and predict the potential outcomes of each possible action [11]. Such situations
can quickly become overwhelming for operators, making decisions susceptible to cognitive
biases rather than comprehensive assessments. In these critical moments, the importance
of decision support tools becomes evident. In developing a decision support system (DSS)
for a chemical plant, our approach aligns with the principles outlined by Lee and Seong
(2012), who emphasized the importance of identifying abnormal operating procedures in
safety-critical environments, such as nuclear power plants, to enhance operational safety
and efficiency [12].

Creating an effective decision support system (DSS) for control room operators in-
volves balancing high performance with clear interpretability while also considering the
unique needs and behaviors of human operators. The system must efficiently process large
data volumes, provide understandable insights, and integrate seamlessly with existing
workflows. It is crucial that the DSS enhances decision making without overwhelming the
operators, ensuring it becomes a trusted and valuable tool in high-stakes environments.

1.1. Literature Review

The fusion of intelligent systems within manufacturing and the wider realm of oper-
ations management has traditionally been seen as a beneficial confluence of operational
research (OR) and AI. This collaborative potential is emphasized in studies by [13,14].
Additionally, ref. [15] emphasized the escalating inclination towards the adoption of AI
methodologies in this domain .

Hsieh et al. (2012) [16] address a critical aspect of nuclear power plant (NPP) safety.
They focus on the development of a decision support system intended to aid operators in
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quickly and accurately identifying abnormal operating procedures (AOPs) in NPPs. The
study stands out for its emphasis on reducing the complexity of decision-making processes,
particularly in the high-stress environment of NPP control rooms. A significant contribution
of the paper is the integration of a comprehensive abnormal symptom database into the
decision support system, which allows operators to filter out irrelevant information and
prioritize critical alarms. This approach is designed to improve the accuracy and speed of
identifying appropriate AOPs, thereby enhancing the overall safety and effectiveness of
NPP operations. Importantly, the authors conducted an experiment involving graduate
students simulating NPP operators to validate the system’s effectiveness. The results
indicated a reduction in decision-making time and errors as well as a decrease in the mental
workload of operators using the system, but the study did not assess SA. This evidence
emphasizes the potential of the decision support system as a valuable tool in NPPs.

Kang and Lee (2022) [17] outline the limitations of existing emergency operating
procedures (EOPs), which often fail to adapt to the dynamic nature of emergency situations,
increasing the cognitive workload on operators and the potential for human error. The
emergency guidance intelligent system (EGIS) they developed aims to overcome these
limitations by providing agile, dynamic, and intuitive operations. It assists operators
by automating the monitoring of plant status, identifying current and latent risks, and
presenting this information in a clear and actionable manner. A key feature of the EGIS is
its ability to reduce the workload on operators by prioritizing tasks and presenting only the
most relevant information, thus potentially reducing the time required for initial emergency
response. However, SA was also not assessed. The system was rigorously tested in various
simulated emergency scenarios, demonstrating its effectiveness in improving response
times and reducing operator workload compared to traditional procedures.

One important limitation of these two studies is that their methods are based on
a rule-based system, which makes them difficult to apply if the situation is uncertain.
One very effective and interpretable model to use for decisions under uncertainty are
Bayesian networks [18,19]. Bayesian networks have been used in fault detection, diagnosis,
prognostics, and also root cause analysis [20] , but there are not many reported applications
of Bayesian networks in the industry, or they are only mentioned as knowledge-based
systems, as mentioned in [21]. On the other hand, Bayesian networks are a very promising
tool for building a powerful and trustworthy DSS. Some industrial applications were tested.

In the study by Weidl et al. (2005) [22], a versatile methodology for root cause analysis
and decision support in industrial process operation is introduced. The authors effectively
demonstrate how object-oriented Bayesian networks (OOBNs) [23], ref. [24], can be utilized
to model complex dependencies and uncertainties inherent in industrial systems, thereby
providing a robust framework for decision support. The study meticulously illustrates the
potential of OOBNs in capturing the intricate interdependencies within industrial processes,
emphasizing their utility in predictive maintenance and operational effectiveness. A key
contribution of the paper is the demonstration of OOBNs as a flexible and dynamic tool,
adaptable to the diverse and evolving nature of industrial operations. The authors present
a compelling case for the use of OOBNs in decision making, highlighting their superiority
over traditional methods in handling uncertainty and complexity. This is particularly
pertinent in the context of industrial asset management, where the ability to predict and
manage potential failures and optimize operational performance is crucial. The paper
also thoughtfully discusses the challenges and limitations associated with implementing
OOBNs in industrial settings, such as the need for high-quality data, the complexity of
model construction and interpretation, and the integration with existing industrial systems.

Horvitz and Barry (2013) [25] extensively utilize Bayesian networks and influence
diagrams to innovate in the realm of time-critical decision-making processes. Their study
emphasizes the effectiveness of these tools in evaluating the trade-offs between the prompt-
ness of actions and their potential outcomes, especially in dynamic settings where decisions
are both urgent and consequential. They propose a decision-theoretic approach to the de-
sign of interfaces capable of integrating and displaying complex probabilistic dependencies
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in real time. This methodology is crucial in areas where making timely decisions is essential,
leading the way for the development of systems that can more efficiently assist human
operators by providing information tailored for swift and well-informed decision making.

However, a notable limitation of both studies is the lack of participant-based test-
ing to empirically evaluate the actual impact on human performance, workload, and
situational awareness.

In [26], Abbas et al. address a critical challenge in the realm of safety-critical systems:
the difficulty in identifying the physical model of complex systems and the limitations of
deep reinforcement learning (DRL) in these contexts. The paper proposes an innovative
approach that combines the advantages of probabilistic modeling with reinforcement learn-
ing, thus providing a novel solution to enhance decision making in safety-critical systems.
The core of their proposed methodology, the behavioral cloning-based specialized rein-
forcement learning agent (BC-SRLA), seeks to integrate these approaches into a hierarchical
framework. This architecture not only leverages the strengths of probabilistic modeling
and reinforcement learning but also incorporates elements of interpretability and minimal
interaction with the environment. This approach is particularly aimed at addressing the
challenges associated with using RL in safety-critical industries. This shows the potential
of the use of a probabilistic model with RL [27–29].

1.2. Contribution

This research represents a notable advancement in the field of decision support sys-
tems (DSSs) and is specifically designed for control room operations in safety-critical sectors.
We devised a DSS that is not only effective but also interpretable, ingeniously fusing the
strengths of Bayesian networks and reinforcement learning. This innovative approach
leverages the predictive capabilities of Bayesian networks to precisely model intricate
systems and their inherent uncertainties. Simultaneously, reinforcement learning enhances
the system’s adaptability and accuracy, facilitating more precise decision making. The
methodology described in this study serves as an extensive framework for building an AI
system that effectively captures the physical behavior of processes and their uncertainties.
This is vital for the development of a robust and dependable DSS. Additionally, the integra-
tion with reinforcement learning is elaborately explained, contributing to the formation of a
potent and precise DSS. The combination of Bayesian networks and reinforcement learning
not only improves the system’s predictive accuracy but also ensures its practicality and
applicability in real-world, safety-critical contexts.

The other key contribution of our work is the empirical validation of the developed
framework through a structured experimental study involving participants from diverse
backgrounds. This hands-on testing approach provides a comprehensive assessment of the
system’s impact on various critical aspects of control room operations, including operator
performance, workload, situation awareness, and physiological responses. By engaging
participants in simulated scenarios that mimic real-world challenges, we have been able
to gather valuable data and insights into the practical application and effectiveness of the
decision support system. Furthermore, the physiological measurements collected during
the experiment provide an objective assessment of the system’s impact on the operators.
This aspect of our study is particularly noteworthy as it offers a quantifiable measure of the
physiological responses to using the decision support system.

1.3. Structure

This paper is a combined and extended version of papers published in conferences
about this experiment; see [30] for the construction of the dynamic influence diagram and
ref. [31] for the AI framework. In this paper, we commence by delineating the methodology
employed, encompassing both the experimental design and the mathematical approaches
utilized. Subsequently, we explain the construction of a decision support system grounded
in dynamic influence diagrams and reinforcement learning and provide a detailed descrip-
tion of the comprehensive AI framework we developed. Following this, we present the
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application and evaluation of this framework through experimental testing. We discuss the
results and their implications. This paper concludes with a summary of our findings and
reflections on their significance and on future work.

2. Materials and Methods
2.1. Experimental Setup

The basis of our experiment is a simulator designed for formaldehyde production [32].
This simulator is customized to replicate the environment of a control room. A key en-
hancement to this setup is the “support panel”, which transforms the simulator into a
comprehensive control room simulation. This panel includes various features: a graphical
display for production monitoring, an alarm list, a procedure list, and an automated sug-
gestion feature. In terms of process, the plant simulates a production rate of 10,000 kg/h of
30% formaldehyde solution, produced by the partial oxidation of methanol with air. The
simulator consists of six sections: tank, methanol, compressor, heat recovery, reactor, and
absorber. It also includes 80 alarms of different priority levels, along with nuisance alarms
(irrelevant alarms). The main screen of the simulator is shown in Figure 1, and the detailed
tank mimic is displayed in Figure 2. The support panel is shown in Figure 3. To evaluate
the effectiveness of the developed decision support, three scenarios are defined:

1. Pressure indicator control failure: In this scenario, the automatic pressure management
system in the tank stops working. As a result, the operator must manually adjust the
nitrogen inflow to maintain the correct pressure. Here, the cessation of nitrogen flow
leads to a pressure drop as the pump continues to supply nitrogen to the plant.

2. Nitrogen valve primary source failure: This scenario is a variation of the first one in
which the tank’s primary nitrogen source fails. The operator is required to switch to a
backup system. As the backup system initiates slowly, the operator needs to control
the pump power to reduce the rate of pressure decline in the tank.

3. Temperature indicator control failure in the heat recovery section: Initially, the opera-
tor tries to solve the problem by manually adjusting the cooling water flow set point
in the absorber. When this fails, the operator consults the supervisor for advice. The
supervisor indicates that the issue cannot be resolved from the control room and re-
quires a field operator’s intervention. While the field operator attends to the problem
on-site, the control room operator must manage the reactor’s temperature. The main
challenge in this scenario is preventing the reactor from overheating, necessitating
close monitoring and adjustment of the reactor’s cooling water temperature.

2.2. Digitized Screen-Based Procedures

Procedures are crucial for control room operators to ensure process safety. However,
shortcomings exist in both the design and operator usage of these procedures, leading
to major accidents in safety-critical sectors such as the nuclear and oil and gas industries.
Notable examples include the Piper Alpha Platform explosion and the Longford Gas Plant 1
explosion and fire [33]. Issues with procedures, such as being outdated, overly voluminous,
or poorly represented, have necessitated different designs and updates, including the
adoption of computerized procedures or flowchart representations.

This study introduces a screen-based digitized procedure, designed by [34], for com-
parison with an AI-based procedure support. The digitized procedure employs a hierar-
chical, rule-based task representation format, detailing each step to resolve plant alarms.
The procedure for each alarm is organized for easy navigation on a support display, as
illustrated in the top-right corner of Figure 3.
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Figure 1. Process flow diagram of production: Formaldehyde is synthesized by mixing methanol
with compressed air and then heating the mixture. This initiates a chemical reaction in the reactor
followed by dilution in the absorber to achieve the desired concentration. Below, there are various
mimics that the operator can display on another screen for a detailed process flow diagram of specific
plant sections (refer to Figure 2). First published in Lecture Notes in Computer Science vol. 14294,
pp. 15–26 by Springer Nature, [30].

Figure 2. Overview of the tank section: On the left is the nitrogen flow control panel. In
the center, there is the tank’s process flow diagram, displaying all possible alarms. On the
right, a graph shows the physical values that the operator needs to monitor. First published in
Lecture Notes in Computer Science vol. 14294, pp. 15–26 by Springer Nature, [30].
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Figure 3. Support panel layout: In the upper-left quadrant, the alarm list alerts the operator to current
issues. The upper-right quadrant houses the traditional procedure system. The lower-left quadrant
features a critical graph displaying production metrics. In the lower-right quadrant, the suggestion
box automatically provides situation-specific recommendations to the operator. First published in
Lecture Notes in Computer Science vol. 14294, pp. 15–26 by Springer Nature, [30].

2.3. Dynamic Influence Diagrams

This section aims to clarify the fundamental principles behind dynamic influence dia-
grams (DIDs). Our discussion begins with an examination of Bayesian networks (BNs), laying
the groundwork for understanding DIDs. We then delve into influence diagrams, a specialized
form of BNs, to grasp their structure and operational mechanisms. Ultimately, we introduce
the element of dynamism to these diagrams, culminating in a thorough understanding of
dynamic influence diagrams and their role in intricate decision-making scenarios.

2.3.1. Bayesian Network

A Bayesian network serving as a domain model is fundamentally a graphical structure
composed of nodes and connecting arcs. The nodes represent domain concepts or variables,
while the arcs symbolize the interactions among these nodes. These interactions are quan-
titatively described using conditional probabilities, capturing the dependencies between
different domain elements [35]. This model is employed for decision making, prediction,
and inference, modeling the probabilistic connections among various variables [36]. In the
graph, each node symbolizes a variable, and the edges reflect the conditional dependencies.
The strengths of these dependencies are quantified using conditional probabilities.

The following definition is provided by Jensen and Nielsen [18]:

Definition 1 (Discrete Bayesian network). A discrete Bayesian network N = (X, G, P) is
composed of the following:

• A DAG G = (V, E), where V = v1, ..., vn represents the nodes and E denotes the di-
rected links.

• A set of discrete random variables, X , each of which is represented by a node in G.
• A set of conditional probability distributions, P , with each distribution P(Xv|Xpa(v)) corre-

sponding to a random variable Xv ∈ X .
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A Bayesian network encodes a joint probability distribution over a set of random
variables, X , of a problem domain. The conditional probability distributions, P , define a
multiplicative factorization of the joint probability distribution over X :

P(X ) = ∏
(v∈V)

P(Xv|Xpa(v)) (1)

2.3.2. Influence Diagrams

An influence diagram is a probabilistic graphical model that represents relations
between chance variables and decision nodes in a decision-making process [37]. It is a
Bayesian network augmented with decision nodes and utility functions, aiding in decision
making under uncertain conditions. Decision nodes symbolize the choices or actions
available to a decision maker; chance variables denote uncertain events or states; and utility
functions reflect the values or preferences from the decision maker’s point of view linked
to various outcomes. Influence diagrams offer a systematic approach for modeling and
analyzing complex decision scenarios, enabling decision makers to compute the expected
utility of different options and make well-informed choices. A limited-memory influence
diagram, as described in [38], modifies the conventional influence diagram model by
relaxing the assumptions of perfect recall of past events and the strict sequence of decisions.
The discrete limited-memory influence diagram is defined as follows:

Definition 2 (Discrete limited-memory influence diagram [39]). A discrete limited-memory
influence diagram, denoted as N = (X, G, P, U), is composed of the following:

• A directed acyclic graph (DAG) G = (V, E), with nodes V and directed edges E. This graph
represents dependence relations and information precedence among variables.

• A set of discrete random variables XC and discrete decision variables XD, where X = XD ∪ XC.
These variables are represented by the nodes of G.

• A set of conditional probability distributions P containing one distribution P(Xv|Xpa(v)) for
each discrete random variable Xv given its parents Xpa(v).

• A set of utility functions U containing one utility function u(Xpa(v)) for each node v in the
subset VU ⊆ V of utility nodes.

To determine the option of a decision variable with the highest expected utility, we
calculate the expected utility for each decision alternative. Given a decision variable A
with options a1, . . . , am, a hypothesis H with states h1, . . . , hn, and a set of observations ϵ
as evidence, then we can compute the utility of each outcome of the hypothesis and the
expected utility of each action, The utility of an outcome (ai, hj) is given by U(ai, hj), where
U(·) represents the utility function. The expected utility of taking action ai is calculated by

EU(ai) =
n

∑
j=1

U(ai, hj) P(hj|ϵ) (2)

In this equation, P(·) indicates our belief in hypothesis H given the evidence ϵ. The
utility function U(·) quantifies the decision maker’s preferences on a numerical scale.

To select the optimal decision, we apply the principle of maximum expected utility,
which involves choosing an option a∗ such that

a∗ = argmaxai∈A EU(ai) (3)

2.3.3. Dynamic Influence Diagram

Dynamic influence diagrams incorporate discrete time into the model. This time-sliced
approach is based on a static network, where each time slice maintains a static structure [40].
The evolution of the system over time is defined by the connections between variables
of different time slices. Temporal links within a time slice consist of connections from
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variables of the preceding time slice to those of the current one. The interface of a time slice
is the set of variables that have parents in the preceding slice. In essence, a dynamic model
can be visualized as a series of static models ordered sequentially, each representing the
system’s state at a specific time step. The links between time steps define the impact of the
system’s past state on its present state, as shown in Figure 4 [39]. For our experiment, we
utilized a finite horizon dynamic influence diagram.

Pressure
T+1

Pressure
T+1

Mg Vg

Pressure
T+1

Mg Vg

T0 T1 T10

...

Figure 4. Structure of a dynamic model with 10 time slices (T1,. . . T1p0). To calculate “Pressure T+1”
at time T1, we first need to insert the evidence at T0 about the pressure. This corresponds to the
current pressure. These data allow us to update the state of the Mg node at T1. Using the state of the
variables Mg and Vg, we can update the value of “Pressure T+1” at T1. In this way, the pressure is
predicted. We can now use this predicted pressure to calculate the state of the nodes in the next time
step and continue this process until T10.

In Figure 5, the structure of a basic dynamic influence diagram (DID), managed using
HUGIN software [41], is illustrated. This diagram includes several nodes:

1. Decision node (depicted in pink): Represents the range of decision options available
to an operator at a given point in time where a decision must be made. Each state
of this node directly influences the distribution of physical values within the system,
demonstrating the impact of an operator’s decisions on the process.

2. Physical value node: Models the physical parameters of the system using states
represented as intervals. This discretization is crucial for simplifying the model while
retaining essential details. States indicating hazardous conditions in this node increase
the likelihood of adverse outcomes.

3. Consequence node: Encompasses potential outcomes or consequences (e.g., tank
explosion or tank implosion) resulting from the system’s current state. Each state in
this node is linked to a specific cost, reflecting the severity or impact of that outcome.

4. Utility node (colored in green): Integrates the cost (or reward) of each potential
consequence. The utility value is calculated by considering the probability of each con-
sequence and its associated cost, quantifying the overall risk or benefit of a particular
system state.

5. Physical value node with stripes: Represents the physical values from the previous
time step. Its function is to model the impact of past states on the current situation.
This node is linked to the current physical value node, illustrating how previous
states influence present conditions. Additionally, it is connected to the decision node,
which is crucial for modeling informed decision-making processes in future time
steps. By incorporating the previous physical values into the decision-making process,
the model can predict the most appropriate actions based on the previous state of the
“Physical value” node. This approach enables the construction of a comprehensive
scenario where optimal decisions are made at each step, considering both past and
present conditions.
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Figure 5. Structure of a dynamic influence diagram.

The primary goal of this DID is to forecast future physical values and use these
predictions to guide the operator to make the best possible decision.

2.3.4. Conflict Analysis

An anomaly is detected when a variable deviates from its intended set point or the
default value predetermined by the automatic control mode. For anomaly detection,
we apply conflict analysis as outlined in [42] within the influence diagram framework.
In this context, conflict arises when the evidence propagated through the model shows
inconsistencies or contradictions. More precisely, a conflict is assumed when the product of
the individual probabilities of each piece of evidence is higher than the joint probability
of the evidence. Consider a set of evidence, ϵ = (ϵ1, . . . , ϵn). The measure of conflict is
defined as follows:

conf(ϵ) = conf([ϵ1, . . . , ϵn]) = log(
n

∏
i

P(ϵi)

P(ϵ)
) (4)

A conflict is flagged when conf(ϵ) > 0. A conflict can often be resolved by a hypoth-
esis, denoted by h, with a low probability of occurrence prior to observing ϵ and a high
probability after observing ϵ. If conf(ϵ ∪ h) < 0, it implies that h resolves the conflict. In
our model, h represents a fault within the system. Consequently, if a fault resolves the
conflict, it is detected and identified as a resolution of the conflict.

2.4. Deep Reinforcement Learning (DRL)

In recent years, the integration of deep reinforcement learning (DRL) techniques has
revolutionized decision support systems, particularly in the realm of process control [43].
Process control involves the management and optimization of complex systems, where
traditional control methods may fall short in addressing the complexities and uncertainties
inherent in real-world processes. By leveraging the power of DRL, which combines deep
neural networks with reinforcement learning algorithms, we aim to enhance the adaptability,
effectiveness, and robustness of decision making in dynamic and uncertain environments.

DRL is a paradigm at the intersection of artificial intelligence, machine learning, and
control systems [44]. It represents a powerful approach for training agents to make sequen-
tial decisions in complex and dynamic environments. At its core, DRL integrates deep
neural networks to approximate complex functions and reinforcement learning algorithms
to enable agents to learn optimal policies through interaction with their environment. Math-
ematically, the fundamental formulation of reinforcement learning involves the concept
of Markov decision processes (MDPs), where an agent interacts with an environment by
taking actions based on its current state, receiving rewards, and updating its policy to
maximize cumulative future rewards. The Q-value function, denoted as Q(s, a), represents
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the expected cumulative reward of taking action “a” in state “s” and following the optimal
policy thereafter. The Bellman equation, a cornerstone in reinforcement learning, expresses
the recursive relationship between Q-values:

Q(s, a) = E[r + γ max
a′

Q(s′, a′)|s, a] (5)

Twin Delayed Deep Deterministic Policy Gradient (TD3) Architecture

One notable advancement in DRL is the twin delayed DDPG (TD3) architecture [45],
designed to address challenges such as overestimation bias and brittle training. TD3 was
used in our framework as the base DRL architecture. TD3 incorporates twin Q-value
estimators to mitigate overestimation errors and a delayed policy update mechanism for
stabilizing the learning process. The TD3 algorithm introduces the following key equations:

Critic update:

L(θQ) = E(s,a,r,s′)∼D

[
1
2
(Q1-target(s, a)− y)2

]
(6)

y = r + γ(1 − d) min
i=1,2

Qi (7)

Policy update:
L(θπ) = −Es∼D [Q1(s, π(s))] (8)

where:

• L(θπ): the loss function with respect to the parameters θπ .
• Q(s, a): expected cumulative reward for action a in state s.
• Es∼D : the expected value over states sampled from the distribution D.
• r: immediate reward obtained from taking action a in state s.
• γ: discount factor for future rewards.
• maxa′ Q(s′, a′): maximum expected future reward in the next state s′.
• Q1-target(s, a): predicted Q-value by the target critic network.
• y: target value for the critic update.
• s, a, r, s′: state, action, reward, and next state, sampled from replay buffer.
• πtarget(s′): action selected by the target policy in the next state.
• Q1(s, π(s)): Q-value associated with the selected action and state.
• π(s): action selected by the policy in the current state.
• d: binary variable indicating whether the next state is a termination state or not.

These equations encapsulate the optimization objectives for updating the critic and
policy networks within the TD3 architecture, providing a solid foundation for understand-
ing its theoretical underpinnings and subsequent practical implications in the context of
process control decision support systems.

2.4.1. DRL for Process Control

Authors in [46] focused on the use of DRL in the process control environment. The
following state, action, and reward are formulated in our case following the literature [43].

State

In the context of a partially observable Markov decision process, relying solely on
the observed state may be inadequate due to the system’s inherent partial observability
constraints. Consequently, the state perceived by the DRL system differs from the actual
environment state. To overcome this challenge, the investigation employs a tuple compris-
ing the history of expert actions concatenated with the history of process variables. This
history can extend up to a length denoted as “l”, as illustrated in Equation (9). The selected
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historical information encompasses the current state at time “t” and only the preceding
trajectory at time “t − 1”:

st :=
〈(

yt−l , aE
t−l−1

)
, . . . ,

(
yt, aE

t−1

)〉
(9)

Action

The actor network in reinforcement learning is responsible for determining the policy,
which is essentially the mapping from states to actions. In the context of the TD3 architec-
ture, the actor network typically outputs a continuous action parameterized by a neural
network. The actor’s output can be denoted as follows:

πθ(s) = µ(s) (10)

Here, µ(s) is the deterministic policy function, representing the mean of the distribu-
tion over the continuous action space.

Reward

In a disturbance rejection scenario, the agent aims to determine an optimal policy,
denoted as π∗

θ (st), which effectively minimizes tracking errors and stabilizes the process
while deviating minimally from the optimal set point. This objective is realized by incorpo-
rating the goal into the DRL agent through a reward function (r) or a cost function (−r),
such as the negative l1-norm of the set-point error. Mathematically, for a system with “m”
process variables as inputs, this is expressed in Equation (11).

r
(

st, aA
t , st+1

)
= −

my

∑
i=1

∣∣yi,t − yi,sp
∣∣ (11)

where:

• aE: expert action.
• aA: RL agent’s action (same as πθ(s)).

2.4.2. Specialized Reinforcement Learning Agent (SRLA)

The challenge in implementing DRL within complex and continuous state–action
spaces, like those found in real-world processes with multiple input variables, lies in the
model’s tendency to learn from the entire dataset rather than focusing on relevant data. This
can pose difficulties in achieving convergence. Authors in [26,47] formulated a framework
called a specialized reinforcement learning agent (SRLA), which specializes the DRL agent
on particular required states such as abnormalities to reduce the task complexity and
activates the agent for training and inference only when it is most required. The framework
proposes a hierarchical architecture composed of a higher probabilistic model and a DRL
agent at the lower level of the hierarchy. The probabilistic model defines the states of
specialization, and the DRL agent is activated on those states for training and inference as
shown in Figure 6, taken from [26].
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Figure 6. Specialized reinforcement learning agent (SRLA) framework. Source: [26].

SRLA in Process Industry

Authors in [46] applied an instantiation of SRLA in process control simulation that out-
performs conventional methodologies, and therefore, we have defined a similar structure
to use as our AI framework.

2.5. Statistical Tests

In this research, a thorough statistical approach was used to guarantee the robustness
and validity of the findings. The statistical evaluation began with the Shapiro–Wilk test [48],
an established technique for examining the normality of data distributions. This test is
crucial for choosing the right statistical methods for further analysis, as it checks whether
the data fit a normal distribution. When datasets showed homogeneity of variances, as
confirmed by Levene’s test [49], the Student’s T-test [50] was employed. This parametric
test is apt for comparing the means of two groups under the assumption of equal variances,
offering a statistically solid approach for mean comparisons. In instances where the
assumption of equal variances was not met, Welch’s T-test [51] was used. This test modifies
the Student’s T-test to accommodate situations with unequal variances between groups,
providing a more precise method for mean comparisons in such cases. For datasets that
did not align with the normality assumption, the Wilcoxon rank-sum test [52] was utilized.
This nonparametric test is ideal for comparing two independent samples with non-normal
distributions, serving as a reliable alternative to parametric tests in these scenarios.

The integration of these statistical tests, both parametric and nonparametric, allowed
for a comprehensive examination of the data. This methodology enabled accurate evalua-
tion of the significance of the findings, considering the unique characteristics of the data
distributions and variances.

3. Result
3.1. Construction of the Model

In this section, we provide an in-depth description of the steps taken to create the
dynamic influence diagram, shown in Figures 7 and 8. The main purpose of this model is to
detect anomalies and provide the operator with the best procedure to follow; while the sim-
ulator itself is not open to the public, the models and the code required to utilize the model
can be found at https://github.com/CISC-LIVE-LAB-3/Decision_support (accessed on
23 January 2024).

https://github.com/CISC-LIVE-LAB-3/Decision_support
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Figure 7. This figure represents the model developed for the first two scenarios. It features pink
nodes, which represent decision variables: “Auto” with on/off states, “Set point” depicting nitrogen
flow or pump power set points, and “System” indicating primary/secondary states that correspond
to the nitrogen flow system currently in use. The yellow nodes in the model represent random
variables, encompassing aspects such as physical values, faults, and potential consequences. Striped
nodes in the diagram represent past variables that have an impact on the current state. Lastly, the
green nodes represent costs tied to the specific states of their parent nodes.

Figure 8. Composite model for scenario 3: the upper module is tasked with managing the cooling
water flow in the absorber, whereas the lower module provides guidance on the optimal cooling
water temperature settings for the reactor.

3.1.1. Operational Framework and Objectives of the DID Model

The DID model created for this study is designed to manage the three scenarios
outlined in Section 2.2, with an emphasis on the tank system in the process. In the first two
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scenarios, the DID offers decision support by replicating the physical processes of the tank
system, thus assisting operators in achieving systemic equilibrium. The main aim of the
model is to regulate the nitrogen injection rate and pump power, preventing the hazards
associated with both overpressure (leading to explosion) and underpressure (resulting in
implosion). Consequently, the DID aids in maintaining optimal pressure levels inside the
tank, vital for the plant’s stability and operational effectiveness.

For the third scenario, however, creating a model to represent the entire process was
considered infeasible within the scope of this work. Instead, a model was developed to
provide decision support specifically for this scenario. Although this more concise model
does not capture all aspects of the process, it effectively identifies anomalies and guides
the operator in adjusting the process, especially in relation to the reactor’s temperature.
This strategy ensures that operators receive precise and applicable advice, enabling them
to take suitable measures in response to the scenario without needing a detailed model of
the entire system.

3.1.2. Fault Detection

Fault detection in our system is conducted using conflict analysis, as previously
described. The models for fault detection in the first two scenarios and the final scenario
are depicted in Figures 9 and 10, respectively. While both models operate on a similar
principle, in the first two scenarios, there are additional elements such as the “System” node
and “Pressure T+1”. These components reflect the ability to switch to a backup system in
scenarios 1 and 2, adjusting the nitrogen flow in response to pressure measurements.

Figure 9. Model used for anomaly detection for the two first scenarios.

Figure 10. Model used for anomaly detection for the third scenario.

In both models, the default setting is the auto mode with a predetermined flow. A
fault is indicated when the actual flow is anomalously low, leading to a conflict between
the expected and actual flow readings. To resolve this, the “Fault” node is adjusted to
“Fault control”, aligning the low nitrogen flow with the fault condition and thus resolving
the conflict. If the issue continues even after reverting to auto mode, a new conflict arises,
which is then resolved by adjusting the fault value “Fault valve”.

3.1.3. Parameter and Structure Specification

The specification of parameters in our model is based on the physical equations
associated with the process, as detailed in [32], and the model’s inherent logic. Due to
the discretization of variables in the model, we adopted a sampling method to create
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the conditional probability table (CPT). To illustrate this approach, let us consider the
calculation of pressure in our case study.

Pressure in our model depends on two variables, Mg (mole) and VG (m3), and it
follows the perfect gas law:

PV = nRT (12)

In our experiment, the corresponding physical Equation is

P = Mg ∗ 8.314 ∗ 1000 ∗ 298/(28 ∗ VG) (13)

Here, P is measured in Pascals, Mg in kilograms, and VG in m3. The temperature is
set at 298 degrees Celsius, 8.314 J/(mol*K) represents the perfect gas constant, and 28 is the
molecular mass of methanol in kg/kmol, converted to kg/mol by dividing by 1000.

The model’s structure is constructed based on this formula, linking Mg and VG to
the pressure node. This equation is also used to define the expression in the pressure
node, as depicted in Figure 11. Additionally, Mg and VG act as intermediary variables,
preventing the direct linking of all variables to the pressure node, which would otherwise
create an overly large conditional probability table. This approach also makes the model’s
representation of different physical equations more understandable.

Figure 11. Example for the calculation of the pressure CPT. Only part of the table is shown due to
its sized. First published in Lecture Notes in Computer Science vol. 14294, pp. 15–26 by Springer
Nature, [30].
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For the CPT generation, we employed a sampling method. In our study, we generated
25 values within each interval for the parent nodes Mg and VG. We then calculated the
probability of a value falling within the “Pressure T+1” state intervals after applying the
relevant formula. This methodology of sampling and probability estimation is similarly
applied to other nodes like Mg, VG, level of liquid, flow of liquid, intermediate node, and
temperature of the reactor, each governed by their respective physical equations.

The CPTs for “Nitrogen Flow” and “Pump Power” are contingent on the states of their
respective parent nodes. For instance, when the system operates in “Auto” mode without
any faults, the “Nitrogen Flow” typically maintains a range of approximately 3.9 to 4 m3/h.
This range is considered standard for situations where the system autonomously regulates
the flow for optimal operation. Similarly, “Pump Power” adjusts according to the states of
its parent nodes. These logically structured CPTs enable the Bayesian network to accurately
replicate the system’s behavior under various conditions, thereby rendering it an effective
tool for decision support and forecasting potential future scenarios.

3.1.4. Utility

In our model, nodes are utilized to represent potential outcomes, such as incidents
that could occur within the industrial plant. Upon entering observed values and decisions
into the influence diagram, we compute the probabilities of these outcomes. Each outcome,
designated as a consequence node, is connected to a utility node that indicates the financial
cost associated with that outcome. For instance, the cost of a tank explosion might be
estimated at approximately USD 1 million, as referenced in [53]. The probability of such
an explosion is influenced by factors like pressure and flow rates, and each decision in the
model alters these likelihoods.

The model particularly focuses on outcomes associated with tank pressure, including
“Tank explosion” and “Tank implosion”. These outcomes are intricately linked to fluctua-
tions in pressure. For example, the probability of a tank explosion increases proportionally
with rising pressure. If the pressure remains within a safe bracket, such as “101,200–102,600”
Pa, the risk of explosion is nonexistent. However, if it falls below a critical threshold,
like “-inf-96,800” Pa, the risk of explosion becomes inevitable. Conversely, the risk of
“Tank implosion” escalates as pressure decreases. This framework assists in predicting and
mitigating the risks tied to pressure variations in the tank.

3.1.5. Dynamic Model

In our model, a DID is employed to forecast future states of the system and pinpoint
actions that optimize utility at each juncture. This method ensures the selection of optimal
actions, taking into consideration both present and forthcoming scenarios. The model
functions over 10 time steps, with each representing a one-minute interval. Consequently,
it can predict the system’s condition in one-minute segments for the upcoming ten minutes,
efficiently capturing the system’s dynamics. This configuration allows us to inform the
operator about potential critical events within the next 10 min and recommend the most
effective actions to either avert or manage these occurrences.

Decision making within the model is intricately linked to the states of various nodes,
such as “Auto” and “Set Point”, which are affected by the current pressure (“Pressure T+1”).
This arrangement emulates how an operator would base decisions on both current and
anticipated pressure states, thus enhancing the model’s realism and predictive power. The
DID is structured to simulate scenarios where the operator makes accurate decisions uti-
lizing these data. Moreover, the model delineates a cause-and-effect relationship between
the “Auto” and “Set Point” nodes, wherein the “Auto” mode automatically determines
the “Set Point” to a specific value. This aspect is crucial for depicting the system’s reaction
to different operational modes and influences the spectrum of potential actions and their
consequences. Overall, the model offers an intricate depiction of the decision-making envi-
ronment, factoring in elements like prevailing conditions, future forecasts, and the interplay
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between automated and manual controls. This comprehensive methodology renders the
DID an invaluable asset for simulating and refining decision making in complex systems.

3.2. AI Framework

In our proposed framework, we combine the predictive capabilities of a DID with the
adaptability of RL agents. The DID is precisely constructed based on the physical equations
that govern the process, focusing particularly on the dynamics of the tank system and other
critical components for specific scenarios. This model is adept at not just capturing the
physical dynamics of the tank system but also addressing the inherent uncertainties in the
process. It excels in detecting anomalies, representing fault states of the tank, projecting
future states, and advising on optimal actions.

A key aspect of a DID is the need for discretizing variables, as influence diagrams
are generally more effective with discrete variables. To overcome the challenges posed by
discretization, we integrate localized reinforcement learning agents. These agents fine-tune
the actions suggested by the DID, offering precise continuous values rather than wide-
ranging intervals. This accuracy is crucial in assisting the operator to make more exact
decisions. Nevertheless, due to safety considerations, it is essential to exercise caution when
incorporating black-box models such as RL agents. Consequently, the continuous value
provided by an RL agent is only considered if it aligns with the interval recommended by
the DID. If the RL-derived value falls outside this range or seems contradictory, the DID’s
suggestion is automatically given precedence. This methodology ensures that the system’s
recommendations stay within safe operational limits, harnessing the strengths of both the
DID and RL agents to improve decision making while prioritizing safety.

The model operates within a human-in-the-loop (HITL) framework, utilizing a multi-
specialized reinforcement learning agent (M-SRLA) setup. In this arrangement, multiple
agents function independently, and a specific agent is activated to propose the best control
strategy to the operator when an abnormality in the process is detected by the influence
diagram. This is depicted in Figure 12, sourced from [44]. We refer to this system as “Human-
Centered Artificial Intelligence for Safety-Critical Systems” (HAISC), (See Algorithm 1).

Figure 12. Human-centered artificial intelligence for safety-critical systems (HAISC). Source: [44].
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Algorithm 1: Influence Diagram-based Recommendation Algorithm.
Input: System parameters
Output: Procedure with necessary steps and specific values
Propagate currents system parameters
if Anomaly detected then

Propagate the anomaly
for each decision nodes do

for each states do
Find the states with the maximum utility
if Default states then

Do nothing
end
else

Add to the recommended actions
end

end
end
if Interval I in the recommended actions then

Call specific DRL to determine the value a
if a ∈ I then

Use value;
else

Use interval;
end

end
end
else

Recommend to monitor the plants
end

3.3. Use of the Model

The model’s application for anomaly detection and optimal action recommendation
involves a four-step process:

1. Initially, the anomaly detection model is utilized to identify potential system faults.
2. Subsequently, combining observed data at time T0 with the identified anomaly from

step one, various actions at time T1 are evaluated for their maximum utility. This
evaluation culminates in devising an optimal action set aimed at either preventing or
mitigating potential critical events.

3. In instances where an interval-based set point is advised for the operator, a relevant
reinforcement learning agent is engaged to refine this value.

4. Lastly, the operator is presented with the optimal procedure, delineating the recom-
mended actions based on prior analysis. Additionally, any detected faults and their
potential consequences are communicated to the operator.

This systematic method enables comprehensive analysis of the system’s condition,
guaranteeing that operators are well-informed about potential complications and possess
the most efficacious strategies for their resolution. The integration of anomaly detection,
reinforcement learning, and decision-making tools in the model renders it a holistic and
potent solution for managing intricate systems. The following illustrates the application of
these steps across three scenarios:

Scenario 1. In the first scenario, a problem is encountered with the nitrogen flow being unexpectedly
low, attributed to a malfunction in the automatic control system. This results in pressure levels
falling below the normal range. The “Auto” node’s status of “on” contradicts the low nitrogen
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flow, as auto mode typically ensures a higher flow. Rectifying this discrepancy involves setting the
“Fault” node to “control valve failure”. Consequently, the model reflects the system’s current state
with this malfunction considered. Analysis suggests that deactivating “Auto” mode and manually
adjusting the nitrogen flow’s set point to between 4 and 7 m3/h would yield the highest utility. The
reinforcement learning agent, when consulted, suggests a precise value of 5.6 m3/h, aligning with
the DID’s recommended range. These actions, along with the set point and fault indication, are then
advised to the operator.

Scenario 2. In the second scenario, a challenge arises with the nitrogen flow, which is noted to
be lower than expected. This discrepancy is linked to a malfunction in the primary system’s flow
control. Initially, the model cannot determine whether the problem originates from the automatic
system or the primary system. The “Auto” node’s status as “on” implies that the nitrogen flow
should be higher. A conflict arises between the auto mode and the actual nitrogen flow.

To resolve this issue, the “Fault” node is adjusted to “control valve failure”, thus reconciling
the conflict in the model’s initial iteration. However, after a 10 s reevaluation, the problem persists,
suggesting a conflict between the expected set point and the actual nitrogen flow. Subsequently, the
fault is identified as a “Fault primary system”, leading the model to recommend switching to the
backup system. The transition to this system takes two minutes, during which the flow is adjusted
to “0–1.5”.

To counter the pressure drop during this period, the model proposes reducing the pump
power. This reduction is finely tuned to gradually decrease the pressure drop, ensuring the nitrogen
concentration within the system remains unaffected. The optimal set point for the pump power is
determined using a reinforcement learning agent in accordance with the DID-suggested interval.
Once the pressure is stabilized within the target range, the model advises reverting the pump power
to its automatic setting, resuming normal operations. This sequence of actions aims to preserve
system functionality while rectifying the fault, thereby minimizing disruptions in the process.

Scenario 3. In the third scenario, the decision support system identifies a conflict between the “Auto”
mode and the water flow in the absorber. Despite following the system’s initial recommendation
to switch to manual operation and modify the set point, the issue remains unresolved. A fault is
recognized, prompting the system to suggest that the operator should “call supervisor”.

The supervisor’s responsibility in this situation is to acknowledge the problem, which falls
outside the purview of control room management, and to dispatch a field operator for direct resolution.
Concurrently, the control room operator is directed to focus on monitoring the reactor’s temperature,
aiming to prevent any excessive overheating or undercooling.

In the event that the reactor temperature deviates from the norm, the decision support system
immediately provides the operator with a specific adjustment for the cooling water system’s tem-
perature. This adjustment is determined using the third reinforcement learning (RL) agent after
verifying that the value falls within the range recommended by the DID. Such guidance is vital for
keeping the reactor’s temperature within safe operating parameters, thereby ensuring uninterrupted
production while the field operator addresses the core problem.

Utilizing this method enables us to leverage a singular model for assessing the current
state of the system, projecting future states, and proposing the most suitable procedure
for the operator. It is important to underline that these procedures are dynamic and
continuously evolving to accommodate changes within the system. This strategy lays a
robust groundwork for the development of effective procedures. The procedures provided
to the operator through this system are more concise compared to standard procedures,
as they concentrate exclusively on necessary actions. Typically, a classical procedure
encompasses troubleshooting, action implementation, and monitoring phases. The decision
support system serves as an aid in the decision-making process, supplementing but not
replacing the existing procedure. It augments the conventional methods by offering tailored
recommendations in challenging scenarios. This approach presents a holistic solution,
substantially enhancing the decision-making capabilities of operators and, consequently,
boosting the overall effectiveness of the system.
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4. Experiment

In our experiment, we established two groups: Group 1 (G1), which operated without
the aid of the decision support system, and Group 2 (G2), which employed the decision
support system. Both groups were exposed to identical scenarios for testing purposes.
The objective was to compare their performance and responses, thereby evaluating the
effectiveness of the decision support system.

4.1. Participants

Our study involved 48 volunteer participants, predominantly students, who were
divided into two groups: 23 in Group 1 and 25 in Group 2. These individuals repre-
sented various levels of experience, with a majority being master’s students specializing in
chemical engineering. The experimental setup can be seen in Figure 13.

Figure 13. Participant with the AI configuration (G2).

4.2. Situation Awareness

SA in our study is assessed using a bifurcated approach. The first component involves
participants completing the situation awareness rating technique (SART) [54,55] question-
naire after each scenario. The SART is a self-assessment instrument designed to evaluate
the participant’s awareness of the situation. It focuses on their capabilities to monitor, com-
prehend, and predict the status of various elements within the environment. The second
component of SA assessment occurs in real time during the scenarios through the situation
present assessment method (SPAM) [56]. In this method, participants are intermittently
asked three specific questions at different stages of the scenario. These queries aim to
assess their focus and understanding of the system’s current state, their ability to foresee
future states, and their perception of the situation’s complexity and dynamics. This dual
methodology facilitates a thorough evaluation of SA by combining reflective self-reporting
with immediate, contextual assessments.

The outcomes of the SART questionnaire are illustrated in Figure 14. As indicated by
the statistical test in Table 1, there is no significant statistical difference in SA between the
two groups.
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Figure 14. Bar plot of the variable of the SART questionnaire for the two different groups. G1 without
decision support and G2 with.

Table 1. Statistical test results.

Shapiro–Wilk G1 Shapiro–Wilk G2 Levene’s Test t-Test Wilcoxon
Rank-Sum Test

Instability 0.43 0.66 0.25 0.19 0.10
Variability 0.07 0.36 0.35 0.66 0.35
Complexity 0.22 0.39 0.63 0.75 0.42
Arousal 0.84 0.28 0.34 0.45 0.16
Spare_capacity 0.67 0.48 0.38 0.60 0.32
Concentration 0.016 0.18 0.58 (0.97) 0.33
Attention_division 0.05 0.96 0.88 (0.99) 0.39
Quantity 0.28 0.29 0.08 0.72 0.36
Quality 0.27 0.28 0.20 0.37 0.22
Familiarity 0.56 0.82 0.10 0.88 0.48

Based on the data in Table 2, and considering that Group G2 consistently registers
lower values than Group G1 as shown in Figure 15, the interpretation of the results is
as follows:

• Monitoring:

– The Shapiro–Wilk test reveals a non-normal distribution for Group G1 but a
normal distribution for Group G2.

– There are significant differences in monitoring, with Group G2 demonstrating
lower levels, as indicated by the t-test and the Wilcoxon rank-sum test.

• Planning:

– Both groups show a normal distribution according to the Shapiro–Wilk test.
– There are no notable differences in planning, although Group G2 tends to have

marginally lower levels.

• Intervention:

– The Shapiro–Wilk test suggests a non-normal distribution for both groups.
– A significant difference is noted, with Group G2 having a lower score at interven-

tion compared to Group G1.

• SPAM Index:

– The Shapiro–Wilk test indicates a normal distribution for both groups.
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– The SPAM index reveals a significant difference, with Group G2 having a lower
index than Group G1.

Table 2. Statistical test results for SPAM index and related factors.

Shapiro–Wilk G1 Shapiro–Wilk G2 Levene’s Test t-Test Wilcoxon
Rank-Sum Test

Monitoring 0.00 0.10 0.01 (0.00) 0.00
Planning 0.38 0.36 0.13 0.14 0.09
Intervention 0.07 0.26 0.76 (0.00) 0.00
SPAM_index 0.16 0.61 0.03 0.00 0.00

In conclusion, Group G2 consistently demonstrates lower levels of monitoring and
intervention and an overall lower SPAM index compared to Group G1. Although no
significant difference is observed in planning, Group G2 maintains a trend of lower values
across other evaluated aspects (Figure 15).

Figure 15. Bar plot of SPAM questionnaire variables for the two different groups: G1 without decision
support and G2 with decision support.

4.3. Workload

The workload of participants was quantitatively evaluated using the NASA Task
Load Index (NASA TLX) [57], a broadly acknowledged subjective workload assessment
instrument. After each scenario, participants filled out the NASA TLX questionnaire, which
assesses six workload dimensions: mental demand, physical demand, temporal demand,
performance, effort, and frustration level. The TLX index represents the mean of these
dimensions. The bar plot is illustrated in Figure 16, and the statistical analysis is detailed in
Table 3. Analysis of these findings provides the following insights:

• Mental demand: The analysis reveals no statistically significant difference in mental
demand between groups G1 and G2, implying that both groups encountered similar
levels of mental workload during the tasks.

• Physical demand: Similarly, the results display no significant difference in physical
demand between the groups, suggesting that the physical efforts demanded by the
tasks were equivalent for both.

• Temporal demand: Regarding temporal demand, the data show no significant differ-
ences, indicating that both groups faced comparable time pressures and constraints
while completing the tasks.
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• Performance: There was no significant variance in perceived performance among
participants from groups G1 and G2, indicating that both groups felt equally effective
in their performance.

• Effort: Participant-reported effort levels reveal no significant differences between the
two groups, suggesting a parallel level of effort expended in task completion.

• Frustration:A marked difference is noted in frustration levels, with Group G1 experi-
encing higher frustration than Group G2. This difference implies that the conditions
or tools accessible to Group G2 may have helped alleviate frustration.

• TLX Index: The overall TLX Index, a composite measure of workload, exhibits no
significant differences between the groups, signifying that the aggregate workload
experienced by the participants was uniform across both groups.

In summary, although there are no significant disparities in mental demand, physical
demand, temporal demand, performance, and effort between the groups, a marked differ-
ence in frustration levels is observed. This implies that while the overall workload may be
comparable, the subjective experience of the workload, especially regarding frustration,
differs between the groups, with Group G2 (using decision support) experiencing lower
frustration levels.

Figure 16. Bar plot of the variable of the NASA TLX questionnaire for the two different groups. G1
without decision support and G2 with.

Table 3. Statistical test results.

Shapiro–Wilk G3 Shapiro–Wilk G4 Levene’s Test t-Test Wilcoxon
Rank-Sum Test

Mental_demand 0.74 0.37 0.52 0.38 0.18
Physical_demand 0.04 0.00 0.20 (0.56) 0.47
Temporal_demand 0.81 0.05 0.28 0.72 0.37
Performance 0.53 0.01 0.05 (0.61) 0.16
Effort 0.54 0.72 0.68 0.85 0.41
Frustration 0.18 0.03 0.83 (0.04) 0.02
TLX_index 0.79 0.63 0.82 0.59 0.21

4.4. Performance

This section details a few performance metrics derived from operational data to
compare the two groups’ performances. The metrics presented here include reaction time
(this is the time it takes to switch the nitrogen valve button from auto to manual depending
on the scenario and initial task as written in the procedures); response time (the time it
takes to act; for example, in Scenario 1, this means the time it takes to adjust the nitrogen
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valve scale to the correct value); and overall performance of the operators (this considers
the time it takes to recover the low-pressure alarm; in some cases, this includes those who
fixed the fault even before an alarm. Those below or equal to the (25th) percentile are
grouped as “optimal performance”. Those who fall below or equal to the (50th) percentile
are classified as ‘good’, and the rest are classified as “poor performance”). The analysis
used data collected from 21 participants in each group (G1 and G2).

Figure 17 presents a comparison of the overall performance of the groups across the
three scenarios. Table 4 provides a comparison for each scenario, focusing on the reaction
time and the response time. To determine any significant differences in performance
between the groups within each scenario, a nonparametric test, specifically the Mann–
Whitney U test (p < 0.05), was employed.

Figure 17. Overall performance across all scenarios.

Based on the overall performance, Group 2 had optimal performance compared to
Group 1 Table 5. This is typically the same for the reaction and response times. The
statistical tests Table 4 indicate significant differences in the two groups’ time-based and
overall performance metrics while solving the scenarios except in scenario 3, where there is
no significant difference between the two groups. One possible interpretation is the wide
range of different behaviors inside each group due to the complexity of the task. All in all,
the group with the decision support showed better performance than the group without.

Table 4. Statistical test for significance between each group for each scenario.

Wilcoxon Rank-Sum Test

S1 S2 S3

Reaction time 0.00 0.00 0.14
Response time 0.07 0.00 0.08
Overall performance 0.00 0.05 1.00
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Table 5. Time-based performance comparison per scenario.

Reaction Time Response Time

M SD M SD

S1

G1 276.30 46.35 339.30 150.39
G2 106.96 130.96 259.04 170.13

S2

G1 266.91 80.42 361.48 102.57
G2 63.43 84.26 154.83 168.95

S3

G1 190.17 117.22 787.87 207.56
G2 117.38 55.78 680.00 226.43

4.5. Physiological Data

In this research, a comprehensive quantitative analysis was carried out on physiologi-
cal metrics gathered using smartwatch technology. Our focus was on three key parameters:
heart rate, temperature, and electrodermal activity (EDA) [58]. The aim was to identify
significant differences across groups and to uncover underlying patterns and variations
within the data. Such insights are invaluable for understanding the physiological responses
as captured by the wearable device.

For this analysis, we examined data from Group 1, consisting of 14 participants, and
Group 2, with 17 participants. Each participant’s mean values for heart rate, temperature,
and EDA were calculated across various scenarios. This approach allows for an assessment
and comparison of the mean physiological responses of each group to these scenarios,
thereby revealing distinct patterns as monitored by the smartwatch.

The box plot of the different measure men can be seen in Figures 18–20. Table 6 details
the results of our statistical tests for heart rate, temperature, and electrodermal activity
(EDA). For heart rate, both groups G1 and G2 passed the normality test, but a significant
difference in variances was identified. The Welch’s T-test revealed a borderline significant
difference (p-value = 0.05), corroborated by the Wilcoxon test (p-value = 0.09). Temperature
measurements exhibited no significant differences between the two groups. In the case of
EDA, neither group demonstrated a normal distribution. The variance differences were not
significant, and the Wilcoxon test indicated no significant differences between the groups.

An intriguing observation emerged from the comparative analysis of groups G1 and
G2. Group 2 generally exhibited a lower heart rate compared to Group 1. This finding
is notable, as it implies that the presence of a decision support system could help reduce
stress among control room operators. The inference is that decision support systems might
play a vital role in diminishing stress levels, potentially enhancing both the well-being
and operational efficacy of operators in high-pressure settings. These results emphasize
the significance of incorporating assistive technologies in environments where making
decisions under stress is common.

Table 6. Temperature data comparison.

Comparison Shapiro–Wilk G1 Shapiro–Wilk G2 Levene’s Test t-Test Wilcoxon
Rank-Sum Test

Heart rate 0.22 0.18 0.02 0.05 0.09
Temperature 0.46 0 0.98 0.13 0.1
EDA 0 0 0.19 0.17 0.21
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Figure 18. Box plot of the heart rate across three scenarios for each group.

Figure 19. Box plot of the temperature across three scenarios for each group. The circle indicates outlier.
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Figure 20. Box plot of the electrodermal activity across three scenarios for each group. The circle
indicates outlier.

5. Discussion

In this section, we discuss the results presented in this paper. First, we discuss the
AI framework built, then the results of the experiment, and finally the limitations of
this research.

5.1. The Framework

A significant propriety of utilizing the AI framework is its capability to extract and
present a large amount of critical information. This includes indicators of proximity to
alarm thresholds, timing of potential events, likelihood, ... . Given that the model represents
the process dynamics, it can access and utilize different sources of data. However, it is
crucial to balance the amount of information presented to the operator; while the DID
framework offers extensive possibilities for data display and analysis, the selection of
information to be shown to the operator must be judiciously curated. This careful selection
is essential to avoid overwhelming the operator with excessive data, thereby ensuring that
the additional information enhances rather than hinders their decision-making process and
overall workload management.

Incorporating a “What If” display could be a significant enhancement for operators
using a DSS. As suggested in the existing literature [59], this feature would enable opera-
tors to visualize the potential consequences of following the actions recommended by the
DSS. Such a display can provide a clearer understanding of the implications of different
choices, thereby aiding operators in making more informed decisions. The implemen-
tation of a “What If” scenario is particularly feasible with the use of dynamic influence
diagrams. DIDs can model future states of a system, taking observation and decisions into
consideration [39].

One crucial aspect of the DID is the discretization of variables, which influences its pre-
cision. Opting for highly precise, fine-grained discretization can lead to an unwieldy model
size, resulting in CPTs that are too extensive for practical computation times. Therefore,
the choice of discretization must be a balanced one, reflecting the inherent uncertainty in
physical measurements while maintaining manageable computation times. Moreover, the
dynamic aspect creates easily a high computational time. Future research will be dedicated
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to optimizing this discretization process and the model, taking into account the uncertainty
of physical measurements and the need to control the model’s complexity effectively.

Another critical focus is the meticulous revision of the CPTs for variables not defined
by physical equations. This revision aims to ensure that these CPTs, whether based on prior
probabilities or logical constructs, more accurately reflect real-world scenarios. This aspect
will be thoroughly examined to facilitate a more formal and comprehensive discussion of
the CPTs, enhancing the model’s overall reliability and applicability.

Another intriguing aspect of employing DIDs in our study is the potential for inte-
grating data into the model to refine the CPTs, thereby enhancing their alignment with
real-world scenarios. While in this study, the model was primarily constructed based
on expert knowledge encapsulated in the form of physical equations of the process, the
inclusion of empirical data presents a significant opportunity for improvement.

5.2. Experimental Result

Our study reveals that the implementation of a DSS leads to a noticeable reduction
in workload for control room operators. This is evidenced by the NASA TLX results,
which indicate a significant decrease in frustration levels among operators using the
DSS. Additionally, physiological measurements, such as a lower heart rate in the DSS
group, further support the notion of reduced workload. In terms of performance metrics
like reaction time, response time, and success rates, operators with access to the DSS
outperformed those without, aligning with findings in previous studies [16,17]. However,
this study also highlights a decrease in SA among operators using the DSS; while the
SART questionnaire did not yield significant results, the SPAM methodology revealed a
substantial drop in SA for the group with the DSS. This could be attributed to an over-
reliance on the DSS, where operators following traditional procedures, despite taking more
time, tend to develop a better understanding of the situation.

These findings underscore that while DSSs can significantly enhance the performance
of control room operators, they also have the potential to reduce SA. This suggests that
DSSs should not be used indiscriminately. Over-reliance on a DSS could undermine the
critical role of human operators. The optimal use of a DSS appears to be in situations where
operators face constraints, such as time pressure, that prevent them from effectively using
traditional procedures. In scenarios where time permits, operators should be encouraged
to engage with traditional procedures to gain a deeper understanding of the situation. This
balanced approach ensures that the DSS serves as a valuable aid without compromising
the essential human element in control room operations.

5.3. Limitations

The framework presented in our study, while innovative and effective, encounters
certain limitations that warrant consideration. A technical limitation of our framework
is its scalability. Constructing a DID that encompasses the entire process using physical
equations is a challenging and time-intensive endeavor. This complexity often necessitates
focusing on specific parts of the plant for detailed and accurate modeling. Alternatively,
a more generalized model of the process can be developed, but this approach may lead
to more generic recommendations, potentially limiting the system’s performance in spe-
cific scenarios.

Another limitation lies in the participant demographic of our study. We primarily
engaged chemical engineering students who, despite their familiarity with the context, lack
real-world experience as control room operators. This gap in practical experience could
influence the applicability of our findings to actual industrial settings, where operators
may face different challenges and exhibit varying responses to the decision support system.

The physiological data collected during the experiment were analyzed in their raw
form, without accounting for individual differences among participants. This approach
may overlook the nuances in physiological responses that are unique to each participant. A
more detailed and personalized analysis of these data are necessary to gain deeper insights
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into the physiological impacts of using the decision support system. Such an analysis could
provide a more comprehensive understanding of how different individuals respond to the
system under various scenarios.

In summary, while our study offers valuable contributions to the field of decision
support systems in control room environments, these limitations highlight areas for future
research and refinement. Addressing these challenges will enhance the applicability and
performance of such systems in real-world industrial settings.

6. Conclusions

In the rapidly evolving industrial sector, control room operators often face over-
whelming tasks and alerts, leading to task overload and decision fatigue. This situation,
exacerbated by cognitive biases, can compromise decision-making processes. Our research
addresses these challenges by introducing an AI-based framework that utilizes dynamic
influence diagrams and reinforcement learning to create an effective DSS. This system is
designed to assist operators in making swift, well-informed decisions, especially when
their own judgment may falter. The framework’s core is a robust, interpretable tool that
aids operators during critical process disturbances, combining expert knowledge with a
dynamic influence diagram to model uncertainties in complex industrial processes and
enhance anomaly detection and action recommendations. The integration of reinforcement
learning fine-tunes these recommendations to be more context-specific and precise. This
study marks a significant advancement in decision support systems, especially in safety-
critical control room environments. We developed a DSS that synergistically combines
Bayesian networks’ predictive power with the adaptability of reinforcement learning. This
approach models complex systems and uncertainties, improving the adaptability and preci-
sion of decision making. The empirical validation of this framework involved a structured
experimental study with participants, providing a comprehensive assessment of the sys-
tem’s impact on operator performance, workload, situation awareness, and physiological
responses. The physiological measurements offer an objective assessment of the system’s
impact on operators, underlining the importance of empirical testing in understanding
the practical application and effectiveness of the DSS. In conclusion, while a DSS can
significantly enhance operator performance and reduce cognitive workload in complex
industrial environments, it also presents a trade-off with situation awareness. Operators
may become overly confident in and reliant on the system, potentially diminishing their
situation awareness. Trust emerges as a critical factor in the adoption and effectiveness
of a DSS, highlighting the need for a balanced approach in its use. The DSS must be a
trusted tool, enhancing decision making without overwhelming operators, and should be
employed judiciously, particularly in safety-critical scenarios, to provide crucial guidance
and maintain operator engagement and comprehension.
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