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Abstract: The selection of critical features from microarray data as biomarkers holds significant
importance in disease diagnosis and drug development. It is essential to reduce the number of
biomarkers while maintaining their performance to effectively minimize subsequent validation
costs. However, the processing of microarray data often encounters the challenge of the “curse of
dimensionality”. Existing feature-selection methods face difficulties in effectively reducing feature
dimensionality while ensuring classification accuracy, algorithm efficiency, and optimal search space
exploration. This paper proposes a hybrid feature-selection algorithm based on an enhanced version
of the Max Relevance and Min Redundancy (mRMR) method, coupled with differential evolution.
The proposed method improves the quantization functions of mRMR to accommodate the continuous
nature of microarray data attributes, utilizing them as the initial step in feature selection. Subsequently,
an enhanced differential evolution algorithm is employed to further filter the features. Two adaptive
mechanisms are introduced to enhance early search efficiency and late population diversity, thus
reducing the number of features and balancing the algorithm’s exploration and exploitation. The
results highlight the improved performance and efficiency of the hybrid algorithm in feature selection
for microarray data analysis.

Keywords: microarray data; feature selection; biomarker; differential evolution

1. Introduction

Genes are the basic units of genetic information, and their expression and variation
have a significant impact on the health status of an organism. The expression patterns of
specific genes can be objectively measured and used as biological characteristics for disease
diagnosis or prognosis, and these specific genes can be referred to as biomarkers. With
the development of microarray technology, researchers are now able to simultaneously
test a large number of gene expressions (referred to as features), obtain microarray data,
and subsequently select biomarkers. These biomarkers are then utilized in constructing pre-
dictive models for disease diagnosis and other related tasks such as drug development [1].
However, the primary challenge faced in this context is the high dimensionality of the
microarray data coupled with the limited sample size available for analysis [2].

Machine-learning-based feature-selection techniques are widely employed to extract
relevant features from high-dimensional data, thereby eliminating irrelevant features and
identifying valuable biomarkers in microarray data [3]. These techniques can be broadly
categorized into four main groups: filter, wrapper, embedded, and hybrid methods [4].
These categories encompass a range of approaches that offer various advantages and
trade-offs in terms of feature-selection performance.
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Filter methods, focusing on relationships between features and labels, offer speed
and simplicity but may compromise accuracy in classification models; examples include
ReliefF [5], t-test [6], and Chi-squared test [7]. Conversely, wrapper methods like Recursive
Feature Elimination (RFE) [8] and genetic algorithm (GA) [9] pair heuristic algorithms
with classifiers, enhancing performance but increasing the computational intensity and
overfitting risk. Embedded methods, such as Supported Vector Machine Recursive Feature
Elimination (SVM-RFE) [10] and random forest algorithm (RF) [11], integrate feature
selection with classifier training, striking a balance between the benefits of filter and
wrapper methods, yet they are less efficient than filter methods and less accurate than
wrapper methods.

The hybrid feature-selection method has been proven effective on microarray data
recently [3,4]. The method effectively combines the advantages of the filter method and
wrapper, where the filter method is used for the coarse-scale filtering of features and
generates a subset of initially filtered features as the input of the wrapper method.

In their work, Gao et al. [12] proposed a two-stage hybrid feature-selection method
for microarray data. This method combined information gain (IG) and a support vector
machine (SVM) to filter irrelevant and redundant features iteratively. Experimental results
on the Colon dataset demonstrated a classification accuracy of 90.32% using only three
selected features.

Another approach by Sun et al. [13] utilized a feature-selection method based on a
rough neighborhood set and entropy metric with a Fisher score. The method initially
employed the Fisher score to filter features and reduce the computational complexity. Then,
a feature-selection method based on the neighborhood rough set and entropy metric was
applied to handle expression data noise and select effective features. The effectiveness of
this method was demonstrated on several publicly available gene-expression datasets.

In the work of Lu et al. [3], an efficient and stable feature-selection method for microar-
ray expression data was proposed. This method combined mutual information with an
adaptive genetic algorithm (AGA). Mutual information was used as a filtering method for
initial feature selection, followed by the AGA as a second-stage feature-selection method
to further select effective genes. The experimental results showed the high accuracy and
robustness of the method.

Wang et al. [14] presented an innovative feature-selection algorithm based on an
improved Markov blanket technique to address the high time complexity of the wrapper
method. The method incorporated the Markov blanket into the iterative loop process of the
wrapper algorithm to eliminate redundant features effectively. This approach demonstrated
an improved classification accuracy and reduced temporal complexity.

Similarly, Lin et al. [15] improved the feature-selection method based on rough neigh-
borhood sets by filtering expression data noise through the uncertainty measure of neigh-
borhood entropy. They introduced neighborhood confidence and coverage into decision
neighborhood entropy and mutual information for feature selection. Redundant features
were further eliminated by using Fisher’s method. The effectiveness of the method was
demonstrated on ten gene-expression datasets.

However, the hybrid feature-selection algorithm for microarray data still faces several
issues. Firstly, existing studies on filter methods for coarse-scale features typically rely on in-
formation entropy and mutual information. The effectiveness of these methods in handling
microarray data with continuous attributes depends on specialized binning operations,
which are often overlooked in current research [16]. Moreover, when designing the wrapper
method, existing studies lack in-depth discussions and analyses regarding the number of
retained features, which is crucial for microarray data analysis. The majority of the selected
features are difficult to validate as biomarkers with subsequent diagnostic significance,
necessitating significant resources for additional experiments to expand the sample size [17].
Consequently, controlling the number of features can effectively conserve resources and
enhance the feasibility of biomarker validation, yielding practical significance.
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To address the above issues, this paper proposes a hybrid feature-selection algorithm
that combines the improved Max Relevance and Min Redundancy (mRMR) algorithm and
the binary differential evolution (BDE) algorithm for biomarker selection on microarray
data. The proposed method employs the improved mRMR algorithm as a filtering method.
mRMR has demonstrated effectiveness in filtering out redundant and irrelevant features
while selecting the most relevant ones for the target [18,19]. However, its calculation
based on information entropy is not directly applicable to microarray data with continuous
attributes. To make it suitable for microarray data analysis, we enhance two quantization
methods within the algorithm.

In the proposed method, the improved binary differential evolution algorithm serves
as the wrapper method. BDE has been shown to possess an efficient and concise optimiza-
tion algorithm with a high search speed and global search capability [20,21]. However,
diversification (exploring the search space) and intensification (exploiting the best-found
solutions) are two conflicting criteria [22]. In the improved BDE method, we redesign the
binary variation operator, employ an improved adaptive scaling factor, and introduce a
new variation operator quantization to control the number of features. These modifications
strike a balance between diversification and intensification, enhancing the algorithm’s
exploration and exploitation capabilities. Additionally, an adaptive crossover operator is
introduced to boost the search speed in the early stage of the algorithm and maintain popu-
lation diversity in the later stage, ensuring a thorough exploration of the solution space.

The proposed method introduces several key innovations, which are outlined as follows:

1. Improved mRMR-based feature selection: The method proposes an enhanced mRMR
algorithm for initial feature filtering. It introduces two novel feature-quantization
functions that accommodate the attribute continuity and feature correlation observed
in microarray data.

2. Binary differential evolution algorithm: The method utilizes a binary differential
evolution algorithm to further filter the features. To enhance the algorithm’s perfor-
mance, two adaptive mechanisms are incorporated: an adaptive scaling factor and
an adaptive crossover operator. These mechanisms effectively reduce the number of
features and improve the algorithm’s search efficiency in the early stages while also
maintaining population diversity in the later stages.

3. Comprehensive validation and analysis: The proposed method is extensively val-
idated by using a publicly available dataset. A detailed analysis of the selected
biomarkers’ performance is presented, providing insights into their efficacy and
potential diagnostic significance.

These innovations collectively contribute to the effectiveness and practicality of the
proposed method for biomarker selection in microarray data analysis.

2. Dataset and Experimental Setup
2.1. Dataset

In this paper, a total of eight DNA microarray datasets and two RNA-seq datasets
were utilized. These datasets, along with their specific characteristics, are summarized
in Table 1. The details of each dataset are as follows: Colon: This dataset pertains to
colon cancer and comprises 40 tumor samples and 22 normal samples. It encompasses
2000 genetic-information features. Prostate: The Prostate dataset consists of 52 prostate
samples and 50 nonprostate samples. It includes 12,625 genes for each sample. Leukemia:
This dataset focuses on leukemia and consists of 25 samples of Acute Myeloid Leukemia
(AML) and 47 samples of Acute Lymphocytic Leukemia (ALL). Each sample contains
7129 genes. Lymphoma: comprising 22 tumor samples and 23 normal samples, the Lym-
phoma dataset contains 4026 genetic-information features. DLBCL: This dataset pertains to
lymphoma, specifically diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma
(FL). It encompasses 59 DLBCL samples and 19 FL samples, with each sample comprising
7070 gene information features. Gastric: The Gastric dataset consists of 29 tumor samples
and 36 nonmalignant samples. It includes 22,645 genes for each sample. Stroke: focusing
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on ischemic stroke, the Stroke dataset comprises 20 ischemic stroke samples and 20 control
samples, with each sample containing 54,675 genes. All1: this dataset contains 95 B-cell
samples and 33 T-cell samples, with each sample encompassing 12,625 genes. CESC: The
Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) dataset is a
valuable resource for studying cervical cancer. It encompasses 73 samples from long-term
survivors and 234 samples from short-term survivors, totaling 307 samples. LIHC: The
Liver Hepatocellular Carcinoma (LIHC) dataset is a comprehensive dataset for investi-
gating hepatocellular carcinoma. It consists of 93 samples from long-term survivors and
330 samples from short-term survivors, totaling 423 samples. All of these datasets can be
accessed at the following link: https://github.com/xwdshiwo/BioFSDatasets_and_code
(accessed on 30 January 2024).

Table 1. Description of the datasets used in this paper.

Dataset Features Samples Pos Neg Unbalance Rate

Colon 2000 62 40 22 1.82 (40/22)
Leukemia 7129 72 47 25 1.88 (47/25)
Prostate 12,625 102 52 50 1.04 (52/50)

Lymphoma 4026 45 22 23 0.95 (22/23)
DLBCL 7129 77 58 19 3.05 (58/19)
Gastric 22,645 65 29 36 0.81 (29/36)
Stroke 54,675 40 20 20 1.00 (20/20)
ALL1 12,625 128 95 33 2.88 (95/33)
CESC 16,288 307 73 234 0.31 (73/234)
LIHC 15,587 423 93 330 0.28 (93/330)

2.2. Experimental Setup

The experiments in this study were performed on Windows 11 with the following
hardware configuration: an Intel Core i7 12700 H CPU, 32 GB of RAM, and a GTX 1060 GPU.
The programming language used for development was Python 3.9, and the scikit-learn
library version employed was 1.1.2. In the experiment, the mRMR algorithm is utilized
for the initial filtering of features, resulting in the retention of 500 features. These retained
features are then input into the improved BDE algorithm. The parameter settings of the
BDE algorithm employed in the experiment are presented in Table 2.

Table 2. Improved BDE algorithm parameters.

Parameters Values Description

NP 20 Population size
G 500 Number of iterations
F Equation (12) Scaling factor

CR Equation (13) Crossover probability
P 500 Chromosome number
α 0.3 Adaptive crossover factor

3. The Proposed Method
3.1. Overall Framework of the Proposed Method

Most of the previous research on feature selection in microarray data analysis has
overlooked the continuity of attributes, leading to the need for discretization methods
such as information entropy-based approaches to obtain satisfactory results. Additionally,
the interdependence among genes, which is a crucial aspect of microarray data, has often
been neglected.

To address these limitations, we propose the MBDE algorithm. This approach utilizes
the mRMR method to capture the correlations between features and updates the quantiza-
tion function to handle continuous attributes. Furthermore, the BDE method is employed

https://github.com/xwdshiwo/BioFSDatasets_and_code
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for fine-scale feature selection. The general workflow of the proposed method is illustrated
in Figure 1. It can be divided into three stages.

Data pre-process

Begin

Initialize target feature subset to 
be empty

Add candidate feature subset to 
the target subset by Eq.4

Calculate redundancy between 
target and candidate subset by 

Pearson

Add best features form candidata 
subset to target subset

Reaches set 
numbers?

Yes

Output target fature 
subset

No

Initialize population

Variation operation by random 
control of F(Eqs.9-12)

Crossover by adaptive 
factors(Eq.13)

Calculate fitness by SVM with 
5CV

Selection of superior 
individuals by Eq.14 

Maximum iterations?

Yes

Optimal subset

End

No

Improved mRMR Improved BDE

Figure 1. Overall process of MBDE algorithm.

In the first stage, the data are preprocessed, which includes handling missing values
and performing data normalization. In the second stage, an improved mRMR algorithm
is employed for initial feature filtering, resulting in the retention of 500 features in our
experimental setup. Finally, in the third stage, the improved BDE algorithm is utilized for
further feature selection, ultimately outputting the best subset of features. By integrating
these stages, the proposed method aims to effectively address the challenges of feature
selection in microarray data analysis, considering both the attribute continuity and the
interdependence among genes.

3.2. Stage One: Preprocessing Method

The original dataset contains outliers and missing values, which can negatively im-
pact the data quality and subsequent analysis. To address this issue, we apply the 3σ
principle to identify outliers in the data. Specifically, we consider data points outside the
range of (µ − 3σ, µ + 3σ) as outliers, where µ represents the mean and σ represents the
standard deviation.

To handle both outliers and missing values, we employ the K-nearest neighbors (KNN)
imputation method. This approach fills in the missing values and replaces outliers with
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values derived from neighboring data points. By using KNN, we can ensure that the
imputed values are representative of the local data distribution. Furthermore, we apply a
logarithmic transformation to all expressed data. This transformation helps to reveal data
relationships more effectively and facilitates better statistical inference.

To illustrate the effect of the preprocessing steps, Figure 2 shows the impact of outlier
and missing value processing by using the Colon dataset as an example. As observed,
the preprocessing steps effectively remove outliers and prepare the dataset for subsequent
analysis and tasks.
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Figure 2. The effect of outlier and missing value processing on the Colon dataset (only part of the
data are shown), (a) is before data preprocessing and (b) is after data preprocessing.

3.3. Stage Two: Improved mRMR Algorithm

In the context of microarray data analysis, the dimensionality of the data is typically
high. Applying the wrapper method directly to select features would result in a significant
increase in the algorithm complexity. Therefore, it is common to use a filter method for
coarse-scale feature selection initially. One effective filtering feature-selection method is the
Minimum Redundancy Maximum Relevance (mRMR) algorithm. The mRMR algorithm is
an incremental search algorithm that aims to select features with the highest correlation to
the target variable while minimizing redundancy with the already-selected features.

Traditionally, the mRMR algorithm employs two objectives for feature selection: max-
imizing the relevance between the features and the target variable, and minimizing the
redundancy among the selected features. These objectives are mathematically described by
Equation (1) and Equation (2), respectively:

max A(S, C) =
1
n ∑

fi∈S
I( fi; C) (1)

min R(S) =
1
n2 ∑

fi , f j∈S
I
(

fi; f j
)

(2)

In Equations (1) and (2), S represents the feature subset, C represents the label variable,
and fi and f j represent features within the feature subset S. The term A(S, C) denotes the
correlation between the target feature subset S and the label C, while R(S) represents the
redundancy within the feature subset S.
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In the traditional mRMR algorithm, the correlation and redundancy are quantitatively
calculated by using mutual information. The mutual information between two variables X
and Y is mathematically represented by Equation (3):

I(X; Y) =
∫

X

∫
Y

P(X, Y) log
P(X, Y)

P(X)P(Y)
(3)

In Equation (3), P(X, Y) represents the joint probability distribution of the random variables
X and Y, while P(X) and P(Y) represent their respective marginal probability distributions.

The traditional mRMR algorithm incorporates the two objective functions, Equations
(1) and (2), into the feature-selection process. There are two common methods of integra-
tion: subtractive integration and divisive integration. This paper adopts the subtractive
integration approach.

While the traditional mRMR algorithm utilizes mutual information to quantify the
relationships between features and between features and labels, applying mutual informa-
tion to microarray data poses challenges, as it is more suitable for data with continuous
attributes and may require expert guidance for the binning operation. In contrast, the t-test
and Pearson correlation coefficient are not subject to such limitations and have demon-
strated superior performance in feature-selection tasks for microarray data [23]. The equa-
tions for the t-test and Pearson correlation coefficient are described in Equation (4) and
Equation (5), respectively:

t( fi) =

∣∣∣ f̄ipos − f̄ineg

∣∣∣√
S2

ipos
/npos + S2

ineg
/nneg

(4)

ρ
(

fi, f j
)
=

∑
(

fi − f̄i
)(

f j − f̄ j
)√

∑
(

fi − f̄i
)2

∑
(

f j − f̄ j
)2

(5)

In Equation (4), f̄ipos represents the mean value of feature fi in the positive samples,
while f̄ineg represents the mean value of feature fi in the negative samples. S2

ipos
and S2

ineg

denote the variances of feature fi in the positive and negative samples, respectively. npos
and nneg represent the number of samples in the positive and negative classes, respectively.

Considering a dataset with all features denoted as F and the subset of features to
be selected as FS, the search process of mRMR involves iteratively selecting the optimal
features from the candidate feature subset F − FS and adding them to FS. The selection
conditions for the optimal features can be obtained by using Equation (6):

max
fi∈F−Fs

[
t( fi)−

1
s

Σ f j∈Fs ρ
(

fi, f j
)]

(6)

The original mRMR algorithm utilizes a predetermined number of features as the
stopping criterion for the feature subset search. However, this criterion is determined em-
pirically and may not guarantee optimal performance for the final feature subset selection.
In this paper, we propose a modified stopping criterion for mRMR based on the average
classification accuracy (Acc) of the classification model by using five-fold cross-validation
on the current feature subset. The calculation of Acc is given by Equation (7), where TP
represents the number of true positive samples that are correctly predicted; TN represents
the number of true negative samples that are correctly predicted; and FN and FP represent
the number of false negative and false positive predictions, respectively:

Acc =
TP + TN

TP + TN + FP + FN
(7)
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In this paper, we introduce a modified stopping criterion for the incremental search
process in the mRMR algorithm. The criterion is considered to be met in the current case if
either the classification accuracy of the classification model reaches 100% during the total
search process or if there is no improvement observed for k consecutive iterations. This cri-
terion ensures that the search process is terminated when the algorithm achieves an optimal
classification performance or when further iterations do not yield significant improvements.

Moreover, the improved mRMR algorithm incorporates a quantization function suit-
able for continuous data to evaluate the correlation and redundancy between features.
By applying this algorithm to microarray data, we can effectively filter out redundant,
irrelevant, or weakly correlated genes. As a result, we obtain a subset of candidate biomark-
ers from the complete set of genes, which enhances the efficiency and relevance of the
feature-selection process for microarray data analysis.

3.4. Stage Three: Improved BDE Algorithm

The proposed approach in this subsection introduces an improved binary differential
evolution (DE) algorithm specifically designed for feature selection in microarray data
analysis. DE is a widely utilized adaptive global optimization algorithm known for its
simplicity, ease of implementation, rapid convergence, and robustness. It has found
applications in various domains including data mining, pattern recognition, and artificial
neural networks.

In our work, we enhance the DE algorithm by incorporating a new binary quantization
method and scaling factor. This extension aims to enhance the algorithm’s exploration
capability in the initial stage, thus improving population diversity. Additionally, we ensure
the algorithm’s exploitation capability in the subsequent stage to exploit local advantages.
To achieve this, we introduce an adaptive crossover operator, which not only accelerates
the convergence speed in the initial stage but also maintains the algorithm’s exploitation
capability in later stages.

The improved binary differential evolution algorithm presented in this paper ad-
dresses the challenges of feature-selection in microarray data by effectively balancing
exploration and exploitation. This enhancement allows for the more efficient and accu-
rate identification of relevant features for microarray analysis, contributing to the overall
performance and effectiveness of the feature-selection process.

The traditional binary differential evolution algorithm calculates the variance vector
Hi(g) through the evolution process, as described in Equation (8). In this equation, three
individuals Xp1, Xp2, and Xp3 are randomly chosen from the population, with the condition
i ̸= p1 ̸= p2 ̸= p3:

Hi(g) = Xp1(g) + F ·
(
Xp2(g)− Xp3(g)

)
(8)

However, this direct manipulation of the binary strings in the traditional approach
does not effectively emulate the behavior of the continuous differential evolution algorithm.
Consequently, it exhibits suboptimal performance, particularly in scenarios involving
high-dimensional data [24].

Therefore, in the improved binary difference evolution algorithm, we use the vector
ui(g) to represent the j-th binary code of the final mutation vector, which is shown as
Equation (9):

uj
i(g) =

{
1, if pr ≥ rand (0, 1) or X j

p3(g) = 1
0, otherwise

(9)

In Equation (9), the value of pr is calculated according to Equation (10) to ensure
that the vector approximation after binary quantization falls within the range of 0 to 1.
The proposed binary quantization method was inspired by [25]. In this method, when F is
set to 0.5, pr is approximately 0.462, and when F is set to 1, pr is approximately 0.762. This
implies that in Equation (9), even if F is 1, it will not cause pr to exceed the value of rand
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(0, 1), thereby reducing the likelihood of selecting the j-th feature. As a result, the number
of features is effectively reduced:

pr =
ediffj

i(g) − e−diffj
i(g)

ediffj
i(g) + e−diffj

i(g)
(10)

The diffj
i(g) represents the j-th dimension binary code of the difference vector, which

is calculated in Equation (11):

diff j
i(g) =

{
0 , if X j

p1(g) = X j
p2(g)

FX j
i (g), otherwise

(11)

The scaling factor F plays a crucial role in balancing exploration and exploitation in
the improved BDE algorithm. Increasing the value of F helps expand the search range
and enhance population diversity, thereby promoting exploration. On the other hand,
decreasing the value of F improves the exploitation ability and accelerates convergence,
but may lead to premature convergence.

In the improved BDE algorithm, the value of F is determined based on Equation (12),
where g represents the current iteration number and G represents the total number of
iterations. By incorporating the iteration information, the scaling factor F dynamically
adjusts over the course of the algorithm. Moreover, in the selection of Xp1, we ensure
that Xp1 and Xp2 are not equal, preserving the element of randomness. This improved
scaling factor strategy effectively strikes a balance between exploration and exploitation in
the algorithm:

F =

{
rand [0, 0.5], (g/G) ≥ 0.5
rand [0.5, 1], (g/G) < 0.5

(12)

The crossover process plays a crucial role in maintaining population diversity in
the improved BDE algorithm. The improved adaptive crossover operator is computed
according to Equation (13), where α represents a parameter that will be further discussed in
the experimental section. The final selection operator is determined based on Equation (14).
In our method, we utilize the support vector machine (SVM) as the model to calculate the
fitness function.

The adaptive crossover operator, as described in Equation (13), adjusts the crossover
probability based on the fitness value of the individual. This allows individuals with higher
fitness values to have a higher probability of undergoing crossover, while individuals
with lower fitness values have a lower probability. By adaptively adjusting the crossover
probability, the algorithm can effectively balance exploration and exploitation, promoting
the convergence of the population toward better solutions.

In our method, the fitness function is evaluated by using the support vector machine
(SVM) model. The SVM is a popular and effective classifier that can distinguish between
positive and negative samples based on the selected features. The fitness function quantifies
the classification accuracy of the SVM model, guiding the search process toward selecting
features that contribute to a better classification performance:

CR = α
2e−(g/G)

e(g/G) + e−(g/G)
(13)

xi(g + 1) =
{

vi(g) , if f (vi(g)) better than f (xi(g))
xi(g) , otherwise

(14)

where xi(g + 1) is a new individual and f (∗) is the average classification accuracy of SVM
five-fold cross-validation.
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4. Experimental Results
4.1. The Results of Improved mRMR

In order to demonstrate that the improved mRMR algorithm can better rank important
features when evaluating features, and thus more important features can be selected for
further analysis when performing feature filtering, we selected the top 20 features by
using the traditional mRMR algorithm and the improved mRMR algorithm, respectively,
and compared these features in turn by using the average classification accuracy of ten-
fold cross-validation as the evaluation metric. In the comparison, we sequentially added
features to the test set for testing, using Gaussian Naive Bayes as the classifier.

Figure 3 depicts the results of the comparison experiments utilizing the Gaussian
Naive Bayes classifier. In the comparison experiments conducted on the Colon dataset,
the classification accuracy of the improved mRMR algorithm exhibited a marginal decrease
relative to the original mRMR algorithm when the number of selected features was set
at nine. However, for other configurations of selected features, the improved mRMR
algorithm showcased superior classification accuracy over its original counterpart. Notably,
the improved mRMR algorithm achieved a peak classification accuracy of approximately
89.3% when employing 15 selected features. In contrast, the original mRMR algorithm
attained its maximum classification accuracy of approximately 87.4% when nine features
were selected. These findings substantiate the superiority of the improved mRMR algorithm
in terms of the classification accuracy on the Colon dataset.
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Figure 3. In the comparison experiments between the original mRMR algorithm and the improved
mRMR algorithm, the horizontal axis represents the number of selected features while the plain
Bayes classifier is used for classification. Among the 80 sets of comparison experiments conducted
on the four datasets, a total of 76 sets, accounting for 95% of the experimental results, demonstrate
that the improved mRMR algorithm achieves higher classification accuracy compared to the original
mRMR algorithm.

In the comparison experiments conducted on the DLBCL dataset, the performance
of the original mRMR algorithm and the improved mRMR algorithm varied based on
the number of selected features. Initially, when a small number of features was selected,
the original mRMR algorithm outperformed the improved mRMR algorithm. However,
as the number of features increased to four, the improved mRMR algorithm gradually
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surpassed the original mRMR algorithm in terms of classification accuracy. Notably,
the improved mRMR algorithm achieved a peak classification accuracy of approximately
93.4% when seven features were selected. In comparison, the original mRMR algorithm
attained a maximum classification accuracy of about 88.2%.

In the comparison experiments conducted on the Leukemia dataset, the improved
mRMR algorithm consistently outperformed the original mRMR algorithm in terms of the
classification accuracy across the entire range of selected features, from 1 to 20. The advan-
tage of the improved algorithm was particularly evident when a small number of features
was selected, and its superiority gradually diminished as the number of features increased.
Notably, the improved mRMR algorithm achieved a peak classification accuracy of approx-
imately 95.9% when nine features were selected. In contrast, the original mRMR algorithm
attained its highest classification accuracy of 95.7% when 13 features were selected.

In the comparison experiments conducted on the Prostate dataset, the improved
mRMR algorithm consistently outperformed the original mRMR algorithm in terms of the
classification accuracy across the entire range of selected features, from 1 to 20. The advan-
tage of the improved algorithm was particularly evident when a small number of features
was selected. Notably, the improved mRMR algorithm achieved its highest classification
accuracy of approximately 76.4% when five features were selected. In contrast, the orig-
inal mRMR algorithm attained its highest classification accuracy of about 67.4% when
11 features were selected.

It can be seen from Figure 3 that the classification accuracy does not increase with the
increase in the number of selected features. For example, in the comparison experiments
on the Leukemia dataset, the classification accuracy of the original mRMR algorithm and
the improved mRMR algorithm first increased and then stabilized with the increase in
the number of features. At the same time, in the comparison experiments on the Prostate
dataset, the classification accuracy first increased and then decreased with the increase in the
number of features. In the comparison experiment on the Prostate dataset, the classification
accuracy tended to increase and then decrease with the number of features. This trend
is because as the number of selected features increases, irrelevant, redundant, and noisy
features are added to the target feature subset, resulting in a decrease in the classification
accuracy, so it is important to reduce the dimensionality of such high-dimensional data as
feature microarray data.

4.2. The Results of Improved BDE

In this subsection, we evaluate the effectiveness of the improved binary differential
evolution algorithm by comparing it with two other algorithms: the classical genetic
algorithm and the binary differential evolution algorithm. The comparison is performed by
using a set of 500 features that have been filtered by the improved mRMR method. All the
algorithms are configured with identical parameter settings, and the number of iterations is
set to 500. Figure 4 presents the fitness variation of the different algorithms over the course
of the iterations on the four datasets.

The results depicted in Figure 4 demonstrate the distinctive characteristics of the
three algorithms. The genetic algorithm exhibits continuously changing fitness values
throughout the iterations and tends to achieve lower fitness values after convergence. It
is particularly challenging for the genetic algorithm to converge, as observed in the case
of the Prostate dataset. Due to its nature of altering individuals through crossover oper-
ations, ensuring the survival of the best individuals becomes challenging. Consequently,
the genetic algorithm is not well-suited for handling high-dimensional data with limited
samples. On the other hand, both the binary differential evolution (BDE) and improved
binary differential evolution (IBDE) algorithms perform exceptionally well in convergence
scenarios. They converge rapidly on all datasets, ensuring high classification accuracy rates.
Although BDE slightly outperforms IBDE in terms of the classification accuracy, it lacks
a clear criterion for limiting the number of features selected. Table 3 provides detailed
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information regarding the number of features and the corresponding classification accuracy
achieved after convergence by each algorithm.
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Figure 4. The variation in fitness with respect to the number of iterations for the improved binary dif-
ferential evolution algorithm, the traditional binary differential evolution algorithm, and the genetic
algorithm across different datasets. (a) represents the results of the Colon dataset, (b) represents the
results of the Leukemia dataset, (c) represents the results of the Lymphoma dataset and (d) represents
the results of the Prostate dataset.

Table 3. The best fitness (classification accuracy) versus number of features for the three algorithms.

GA BDE IBDE

Datasets Features Acc Features Acc Features Acc
Colon 16 0.9012 54 0.9500 7 0.9358

Leukemia 12 0.9857 67 1.0000 7 0.9590
Prostate 10 0.8242 57 0.9414 7 0.9119

Lymphoma 20 1.0000 59 1.0000 7 1.0000
DLBCL 17 0.9244 49 0.9583 6 0.9667
Gastric 12 0.9087 55 0.9328 6 0.9449
Stroke 15 0.9385 42 0.9725 4 0.9670
ALL1 10 1.0000 45 1.0000 2 1.0000

The results presented in Table 3 reveal interesting findings. While the average classifi-
cation accuracy achieved by the IBDE algorithm is approximately 0.008 lower than that of
the BDE algorithm across the eight datasets, it is noteworthy that the average number of
features selected by the BDE algorithm is 9.3 times higher than that of the IBDE algorithm.
This suggests that the BDE algorithm is able to significantly reduce the number of features
while maintaining a satisfactory classification accuracy.

4.3. Parameter Analysis

In this subsection, we delve into the analysis of the parameter in the IBDE algorithm.
Table 4 presents the number of features retained and the fitness of the algorithm under
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different parameter settings. It is evident that when the parameter α is set to a small value,
the algorithm exhibits a stronger search capability, resulting in better fitness. However,
this leads to a larger number of retained features. Conversely, when the parameter α
is increased, the algorithm tends to retain fewer features. Nevertheless, the fitness is
not noticeably compromised. Hence, the parameter α can be adjusted based on specific
application requirements to strike a balance between classification accuracy and the number
of features. Furthermore, it is worth noting that the parameters do not have a significant
impact on the time complexity of the algorithm.

Table 4. The parameter analysis of MBDE.

Paramenter Dataset Features Acc Time Cost(s)

α = 0.9 Colon 4 0.9333 2657.5594
Leukemia 6 0.9723 2794.3365
Prostate 4 0.9119 2870.0474

Lymphoma 5 0.9777 2740.1594

α = 0.7 Colon 3 0.9179 2685.4997
Leukemia 5 0.9304 2796.2625
Prostate 3 0.8933 2898.1710

Lymphoma 3 0.9777 2725.0789

α = 0.5 Colon 5 0.9666 2671.4259
Leukemia 10 0.9714 2839.8899
Prostate 10 0.9123 2896.5553

Lymphoma 2 0.9777 2731.6164

α = 0.3 Colon 7 0.9358 2598.0236
Leukemia 7 0.9590 2872.5760
Prostate 7 0.9119 2895.0205

Lymphoma 7 1.0000 2755.2378

4.4. Comparison with Classical Feature-Selection Methods

In this subsection, we conduct a comprehensive comparison between the proposed
methods and classical feature-selection algorithms. To ensure fair and unbiased results,
all methods employ Support Vector Machine (SVM) as the classifier, and the average
classification accuracy from five-fold cross-validation is utilized as the final evaluation
metric. Moreover, the number of features used in the compared methods is kept consistent
for a meaningful comparison.

The classical feature-selection algorithms considered in this comparison include L1 reg-
ularization (Lasso), random forest (RF), logistic regression (LR), L2 regularization (Ridge),
correlation coefficient (Corr), decision tree (DT), mutual information (MIC), independent
sample t-test (t-test), and stability selection (Stab). The corresponding results are summa-
rized in Table 5.

Table 5. Results of comparison with classical feature-selection methods on Acc, bold indicates the
best result.

Datasets Lasso RF LR Ridge Corr DT MIC t-test Stab Proposed

Colon 0.921 0.946 0.913 0.920 0.931 0.921 0.906 0.844 0.933 0.935
Leukemia 0.893 0.921 0.917 0.910 0.933 0.920 0.881 0.823 0.911 0.959
Prostate 0.881 0.890 0.786 0.911 0.822 0.885 0.853 0.797 0.906 0.911

Lymphoma 0.988 0.973 0.973 0.950 0.946 0.958 0.897 0.871 0.990 1.000
DLBCL 0.943 0.943 0.937 0.961 0.937 0.958 0.912 0.887 0.943 0.966
Gastric 0.911 0.934 0.922 0.822 0.900 0.925 0.857 0.863 0.933 0.944
Stroke 0.895 0.885 0.843 0.887 0.935 0.903 0.857 0.813 0.938 0.967
ALL1 1.000 1.000 1.000 1.000 1.000 1.000 0.967 0.955 1.000 1.000
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Table 5 clearly demonstrates the superiority of the proposed methods over the classical
feature-selection algorithms across all datasets. Notably, the proposed method achieves
substantial improvements in classification accuracy compared to the classical algorithms.
On average, the proposed method outperforms the classical feature-selection algorithms
by 2.23% on the Colon dataset, 6.40% on the Leukemia dataset, 6.11% on the Prostate
dataset, 5.17% on the Lymphoma dataset, 3.27% on the DLBCL dataset, 5.38% on the
Gastric dataset, 9.32% on the Stroke dataset, and 0.86% on the ALL1 dataset. These results
clearly demonstrate the effectiveness of the proposed method in improving the classification
accuracy compared to the classical approaches.

To further demonstrate the sophistication of the proposed method, we also compared
two evaluation metrics, precision and recall, with detailed results shown in Tables 6 and 7. It
can be seen that the proposed method equally outperforms all traditional feature-selection
methods, with an average improvement of 8.02% and 7.46% across all datasets for both
evaluation metrics.

Table 6. Results of comparison with classical feature-selection methods on Precision, bold indicates
the best result.

Datasets Lasso RF LR Ridge Corr DT MIC t-test Stab Proposed

Colon 0.863 0.873 0.956 0.924 0.924 0.924 0.956 0.924 0.782 0.927
Leukemia 0.933 0.933 1.000 0.933 0.933 0.927 0.933 0.670 0.656 0.944
Prostate 0.960 0.960 0.913 0.978 0.960 0.960 0.978 0.942 0.831 0.988

Lymphoma 0.983 0.974 0.843 0.988 0.979 0.960 0.960 0.960 0.705 1.000
DLBCL 0.883 0.883 0.960 0.960 0.860 0.824 0.960 0.883 0.694 0.976
Gastric 0.769 0.769 0.931 0.927 0.971 0.967 0.967 0.931 0.672 0.955
Stroke 0.860 0.820 0.817 0.762 0.900 0.736 0.867 0.808 0.750 0.988
ALL1 1.000 1.000 0.975 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 7. Results of comparison with classical feature-selection methods on Recall, bold indicates the
best result.

Datasets Lasso RF LR Ridge Corr DT MIC t-test Stab Proposed

Colon 0.925 0.900 1.000 0.875 0.925 0.925 0.925 0.925 0.900 0.945
Leukemia 0.920 0.920 0.720 0.960 0.960 0.920 1.000 0.600 0.741 0.942
Prostate 0.922 0.922 0.940 0.867 0.885 0.885 0.849 0.885 0.607 0.978

Lymphoma 0.960 0.960 0.870 0.910 0.910 0.910 0.960 0.910 0.860 1.000
DLBCL 0.800 0.800 0.800 1.000 0.950 0.950 1.000 0.850 0.855 0.956
Gastric 0.977 0.967 0.893 0.927 0.927 0.893 0.860 0.893 0.827 0.961
Stroke 0.800 0.800 0.700 0.995 0.989 0.900 0.850 0.976 0.855 0.977
ALL1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4.5. Compare with Hybrid Feature-Selection Method

This subsection presents a comparison between the proposed method and several
advanced hybrid feature-selection methods, with detailed results provided in Table 8.
The analysis reveals that the proposed method achieves superior performance on the Colon,
Prostate, and Lymphoma datasets compared to the existing methods. Specifically, the pro-
posed method achieves a higher classification accuracy while utilizing a smaller number
of features. Although the classification accuracy of the MBDE method is slightly lower
than that of the method proposed by Aziz et al. [26] on the Leukemia dataset, the proposed
method still demonstrates its advanced nature by reducing the number of selected fea-
tures by six. Overall, these results highlight the effectiveness and competitiveness of the
proposed method when compared to the existing approaches.
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Table 8. Comparison of MBDE and other hybrid methods.

Datasets Methods Acc Features

Gao [12] 0.9032 3.0
Sun [13] 0.8430 5.0
Lu [3] 0.8909 19.0
Wang [14] 0.8570 11.1
Lu [15] 0.8400 3.0
Vanitha [27] 0.7419 3.0

Colon

Proposed 0.9333 4.0

Aziz [26] 0.9868 12.0
Tumuluru [28] 0.9459 NAN
Sun [13] 0.9273 3.0
Lu [3] 0.9762 7.0
Wang [14] 0.9610 8.3
Lu [15] 0.9520 9.0

Leukemia

Proposed 0.9723 6.0

Canedo [29] 0.9060 25.0
Jinthanasatian [30] 0.8743 5.0
Wu [31] 0.9044 NAN
Wang [14] 0.9040 9.0
Lu [15] 0.9160 4.0

Prostate

Proposed 0.9119 4.0

Moradi [32] 0.8771 50.0
Vanitha [27] 0.9090 4.0Lymphoma
Proposed 0.9777 5.0

4.6. Model Overfitting Analysis

In this section, we analyze the risk of overfitting of the model. Specifically, we es-
tablished an external test dataset on the dataset, which includes 30% of the original data
samples, and then used the remaining 70% of the data for five-fold cross-validation to train
the model. Then, we used the remaining 30% of the data to test different evaluation metrics.
We also provided the model’s predicted TP, FP, FN, and TN, where TP (true positive) refers
to the number of positive samples correctly predicted by the model, FP (false positive) refers
to the number of negative samples incorrectly predicted as positive, TN (true negative)
refers to the number of negative samples correctly predicted, and FN (false negative) refers
to the number of positive samples incorrectly predicted as negative.

We compared these results with the model’s five-fold cross-validation results on all
the data, where TP, FP, FN, and TN count the total in different test processes of the cross-
validation, and the other results are averaged. Considering the limitation of data sample
size, we conducted experiments on the CESC and LIHC datasets. The detailed results are
shown in Table 9. The results from Table 9 show that the model has similar performance
in the five-fold cross-validation results and the independent test set, thus indicating good
control over the risk of overfitting.

Table 9. Five-fold cross-validation results on all datasets and independent test data validation results.

5-Fold Cross-Validation Test Set Evaluation
Evaluation Metrics CESC LIHC CESC LIHC

TP 53.000 72.000 62.000 87.000
FP 20.000 21.000 8.000 12.000
FN 48.000 68.000 12.000 15.000
TN 186.000 262.000 10.000 13.000
Acc 0.779 0.790 0.793 0.787

Recall 0.525 0.514 0.552 0.512
Precision 0.726 0.774 0.727 0.786
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To further illustrate the detailed results of our method on different datasets and to
demonstrate the model’s reliability in predicting different classes of samples, as well as
to show that the model does not risk overfitting, we have also compiled the confusion
matrices for all datasets. The results, shown in Table 10, indicate that the model has a good
capability in predicting samples, including some imbalanced samples.

Table 10. Confusion matrix of experimental results.

Datasets TP FP FN TN

Colon 38 2 2 20
Leukemia 44 3 3 22
Prostate 49 3 2 48

Lymphoma 22 0 0 23
DLBCL 56 2 2 17
Gastric 28 1 1 35
Stroke 19 1 1 19
ALL1 95 0 0 33
CESC 53 20 48 186
LIHC 72 21 68 262

To further demonstrate that our model has a low risk of overfitting and exhibits a
good predictive performance on most datasets, we calculated the random predictive per-
formance, Acc_random, and the improvement of the model over this random performance
for each dataset. This calculation was performed according to the method described in
the literature [33,34] and by using Equations (15) and (16). The specific results are pre-
sented in Table 11. It is evident that our model performs well across all microarray data.
For RNA-seq data, the results are lower, which is a common issue. The range of results
from classic feature-selection methods on this dataset is as follows (CESC: 0.71–0.75, LIHC:
0.70–0.74). Currently, researchers are widely adopting multiomics integration techniques
for these types of data to enhance performance, as evaluated in references [35–37]. There-
fore, overall, our model is effective in disease diagnosis and prediction and carries a low
risk of overfitting:

Acc_random =
(TP + FN)(TP + FP) + (TN + FN)(TN + FP)

N2 (15)

∆Accuracy = Acc − Acc_random (16)

Table 11. Performance improvement ratio of the model over random prediction for different datasets.

Datasets Acc_random ∆Accuracy (%)

Colon 0.54 39.33
Leukemia 0.55 37.00
Prostate 0.50 45.10

Lymphoma 0.50 49.98
DLBCL 0.63 31.98
Gastric 0.51 46.34
Stroke 0.50 45.00
ALL1 0.62 38.27
CESC 0.59 18.88
LIHC 0.59 19.49

4.7. Analysis of the Features Selected by the Proposed Method

In this subsection, we conducted a statistical analysis on the features selected by the
proposed method to determine their potential as biomarkers. To illustrate this analysis,
we present the results for the first four features from the Leukemia and Prostate datasets.
Table 12 provides the probe IDs of these features, along with the corresponding gene names
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obtained through ID-to-name conversion by using the GPL platform. The “PubMed Hits”
column indicates the number of search results in PubMed when querying the disease
name along with the gene name, which serves as an indicator of whether the gene has
been reported to be associated with the disease. The p-value represents the statistical
significance obtained from conducting an independent sample t-test. A p-value less than
0.001 is denoted by ***.

Table 12. Information on the selected features of the proposed method. PubMed Hits indicate the
number of articles after searching with that gene name and disease name as keywords, *** represents
p < 0.001, and t-test was used as the calculation.

Datasets Prob ID Gene Name PubMed Hits p-Value

Leukemia M15395_at ITGB2 8 ***
U23852_s_at LCK 266 ***
D28473_s_at IARS 1 ***
M54992_at CD72 32 ***

Prostate 858_at POR 506 ***
34376_at PKIG 0 ***
38291_at PENK 7 ***
914_g_at ERG 1453 ***

The results presented in Table 12 demonstrate that the majority of features selected
by the proposed method have corresponding entries in PubMed, indicating their reported
association with the respective diseases. This further validates the diagnostic significance
of the selected features.

For the Leukemia dataset, the independent samples t-test revealed the following
findings: In the ITGB2 group, the “Neg” values were significantly lower than the mean
of the “Pos” values, with a statistically significant difference of −2.115 (−2.875 to −1.355)
between the two groups (p < 0.001). In the LCK group, the “Neg” values were higher
than the mean of the “Pos” values, with a difference of 1.381 (0.619 to 2.143), and the
difference was statistically significant (p < 0.001). In the IARS group, the “Neg” values
were higher than the mean of the “Pos” values, with a difference of 0.699 (0.309 to 1.09),
and the difference was statistically significant (p < 0.001). In the CD72 group, the “Neg”
values were higher than the mean of the “Pos” values, with a difference of 1.348 (0.698 to
1.998), and the difference was statistically significant (p < 0.001).

For the Prostate dataset, the independent samples t-test yielded the following observa-
tions: In the POR group, the “Neg” values were higher than the mean of the “Pos” values,
with a statistically significant difference of 0.108 (0.026 to 0.189) between the two groups
(p < 0.001). In the PKIG group, the “Neg” values were lower than the mean of the “Pos”
values, with a difference of −0.228 (−0.41 to −0.046), and the difference was statistically
significant (p < 0.001). In the PENK group, the “Neg” values were lower than the mean of
the “Pos” values, with a difference of −0.918 (−1.174 to −0.662) between the two groups,
and the difference was statistically significant (p < 0.001). In the ERG group, the “Neg”
values were higher than the mean of the “Pos” values, with a difference of 1.132 (0.796 to
1.468), and the difference was statistically significant (p < 0.001).

These findings indicate that the selected features are statistically significant in distin-
guishing between different classes and have the potential to serve as biomarkers for the
respective diseases.

We also performed a heat map analysis the expression of these four genes in positive
and negative samples, and the results are shown in Figure 5. We found differences in
the distribution of samples between positive and negative samples, demonstrating that
the genes selected by the proposed method are able to distinguish between positive and
negative samples.
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Figure 5. Heat map of Leukemia and Prostate, with sample cut-off line indicating the split between
Pos samples and Neg samples.

To further analyze the ability of the selected features to discriminate between samples
on the whole, we used PCA to downscale the above four features to obtain three dimensions
and visualized the ability of the downscaled information to discriminate between positive
and negative samples by using 3D visualization techniques, and the results are shown
in Figure 6. The black sample points in the figure represent Pos samples and the red
sample points represent Neg samples. We can see that the features selected by the proposed
method can effectively distinguish between different samples and have the potential ability
to diagnose diseases.

Figure 6. The 3D visualization of the features selected by the proposed method. The black sample
points in the figure represent Pos samples and the red sample points represent Neg samples. The per-
centages of the different axes in the figure indicate the percentage of the original feature information
that is represented by that principal component.

Figure 7 presents the correlation analysis of the features selected by the proposed
method, utilizing the Pearson correlation coefficient as a measure. The Prostate dataset
reveals that none of the selected features exhibit a significant correlation. Conversely,
the Leukemia dataset demonstrates a significant correlation within a specific group of
features. The absence of significant correlations among the remaining features further
supports the efficacy of the proposed method, highlighting its ability to select nonredundant
features. In summary, the features selected by the proposed method exhibit low redundancy,
as evidenced by the correlation analysis.
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Figure 7. Correlation analysis of the features selected by the proposed method, with Pearson
correlation coefficients.

5. Conclusions

This paper presents a hybrid feature-selection algorithm that integrates an improved
mRMR method with an enhanced binary differential evolution algorithm for microarray
data analysis. By refining the quantization functions, this method boosts the capability
of mRMR to handle continuous attributes and conducts coarse-scale feature filtering.
Subsequently, the enhanced binary differential evolution algorithm is applied for fine-
scale feature selection. The algorithm, augmented with an adaptive crossover operator,
effectively reduces the number of features while balancing the exploration and exploitation
capabilities. The experimental results demonstrate that the proposed approach successfully
decreases feature dimensionality and selects biomarkers with high accuracy and diagnostic
significance, which are crucial for disease diagnosis and prevention.

However, there are limitations to the approach presented in this study. Although the
improved binary differential evolution algorithm shows promise in feature selection,
the single-objective evolutionary algorithm still faces challenges in balancing classification
accuracy with the number of features, especially when dealing with complex datasets.
Moreover, while the introduction of an adaptive crossover operator enhances the flexibility
in exploring the feature space, there is room for improvement in global search capabilities
and the guidance of elite solution sets. Future research might explore more intricate mul-
tiobjective optimization strategies or introduce more efficient global search mechanisms
to overcome these limitations and further enhance the performance and practicality of
the algorithm.
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34. Batista, J.; Vikić-Topić, D.; Lučić, B. The difference between the accuracy of real and the corresponding random model is a useful
parameter for validation of two-state classification model quality. Croat. Chem. Acta 2016, 89, 527–534. [CrossRef]

35. Wang, T.; Shao, W.; Huang, Z.; Tang, H.; Zhang, J.; Ding, Z.; Huang, K. MOGONET integrates multi-omics data using graph
convolutional networks allowing patient classification and biomarker identification. Nat. Commun. 2021, 12, 3445. [CrossRef]
[PubMed]

36. Cantini, L.; Zakeri, P.; Hernandez, C.; Naldi, A.; Thieffry, D.; Remy, E.; Baudot, A. Benchmarking joint multi-omics dimensionality
reduction approaches for the study of cancer. Nat. Commun. 2021, 12, 124. [CrossRef] [PubMed]

37. Poirion, O.B.; Jing, Z.; Chaudhary, K.; Huang, S.; Garmire, L.X. DeepProg: An ensemble of deep-learning and machine-learning
models for prognosis prediction using multi-omics data. Genome Med. 2021, 13, 112. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2017.05.021
http://dx.doi.org/10.1016/j.asoc.2016.01.044
http://dx.doi.org/10.5562/cca3551
http://dx.doi.org/10.5562/cca3117
http://dx.doi.org/10.1038/s41467-021-23774-w
http://www.ncbi.nlm.nih.gov/pubmed/34103512
http://dx.doi.org/10.1038/s41467-020-20430-7
http://www.ncbi.nlm.nih.gov/pubmed/33402734
http://dx.doi.org/10.1186/s13073-021-00930-x
http://www.ncbi.nlm.nih.gov/pubmed/34261540

	Introduction
	Dataset and Experimental Setup
	Dataset
	Experimental Setup

	The Proposed Method
	Overall Framework of the Proposed Method
	Stage One: Preprocessing Method
	Stage Two: Improved mRMR Algorithm
	Stage Three: Improved BDE Algorithm

	Experimental Results
	The Results of Improved mRMR
	The Results of Improved BDE
	Parameter Analysis
	Comparison with Classical Feature-Selection Methods
	Compare with Hybrid Feature-Selection Method
	Model Overfitting Analysis
	Analysis of the Features Selected by the Proposed Method

	Conclusions
	References

