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Abstract: Backstepping-based fixed-time tracking control is proposed for a robotic arm system to
solve the problem of trajectory tracking control under system uncertainties, which ensures the robotic
arm system can realize stable tracking control within a fixed time independent of the initial state of the
system. In addition, to address the uncertainties in the robotic arm system, a control strategy based on
disturbance observer compensation is designed, which provides feed-forward compensation through
the accurate estimation of the system uncertainties and enhances the system’s robustness. Finally, a
two-link robotic arm model is used for simulation experiments, and the comparison results show
that the control scheme designed in this article can effectively improve the robotic arm’s tracking
accuracy and convergence speed.
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1. Introduction

The robotic arm, a vital component of industrial robots, has become increasingly
intelligent and widely applied in industries, military, medical, aerospace, and other fields.
For robotic arms, they can perform some complex tasks with human beings and work
in dangerous workplaces [1]. As such, research on robotic arm control has attracted
more and more experts and scholars. However, due to robotic arms being a type of
complex dynamical system characterized by multivariable, nonlinear, and strongly coupled
processes [2], the actual control processes of the robotic arm are affected by model errors,
internal friction, external environmental disturbances, and other uncertain factors, thereby
affecting the accuracy of the robotic arm trajectory tracking [3]. To achieve trajectory
tracking effects with strong stability, high accuracy, and fast convergence speed, it is of
practical significance to introduce control algorithms to design controllers with certain
robustness for the research of robotic arm control systems [4].

In terms of robotic arm control, in order to address the complex control issues of robotic
arm systems and achieve high-precision tracking performance, experts have proposed many
control methods [5]. At present, the methods available for designing nonlinear control
systems include sliding mode control, backstepping, robust control, model predictive
control, neural network (NN) control, and adaptive control [6–9]. In ref. [6], an adaptive
gain method based on state constraints was studied. This controller takes into account
the influence of position and speed limitations on the trajectory tracking control of the
robotic arm and conducts a comprehensive technical design for the multi-link robotic
arm. The simulation results indicate that the method was superior to similar adaptive
controllers that do not consider the constraints and the proportional–integral–differential
form. Subsequently, a robust control law for space robots that considers system uncertainty
and closed-chain constraints was proposed in ref. [7], which has the advantage of weak
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dynamic coupling in the driving system. In ref. [8], adaptive robust backstepping was
proposed to enhance the performance of mobile manipulator robots; in addition, with this
approach, there is no longer a need for prior knowledge of the control system, effectively
improving its practicality. In ref. [9], second-order sliding mode control (SMC) based on
adaptive neural networks was developed for a dual-arm robot, which can fully approximate
the dynamic model of the robotic arm while ensuring the higher robustness of the entire
system. It is worth noting that the above methods usually use adaptive technology to
address the control problem of robotic arms, and the time required for tracking errors to
reach zero is infinite.

To ensure that the tracking error of the system converges in a finite time, a finite
time controller based on backstepping has been studied [10–12]. In ref. [10], an improved
fault-tolerant controller was constructed by applying fuzzy control and adaptive backstep-
ping, effectively addressing the trajectory tracking control problem of non-strict feedback
nonlinear systems with actuator faults. In ref. [11], the finite-time consensus fault-tolerant
control tracking problem of nonlinear multi-agent systems with non-strict feedback forms
was solved by combining finite time control with neural networks and backstepping. In
ref. [12], a novel control method for robotic arms based on backstepping and terminal
sliding mode control was developed to address the problem of trajectory tracking control
for robotic arms, which can preserve the advantages of both backstepping and sliding
mode control, thus effectively improving the fast transient response and robustness of the
system. Certainly, this control method can effectively accelerate the convergence velocity,
and the convergence time can be given by T ≤ 1/α(1 − γ) ln[αV1−γ(x0) + β/β]. However,
its convergence time is related to the initial value of the system’s state, and therefore, its
convergence time cannot be formulated.

In order to overcome this drawback, fixed-time theory can be exploited, ensuring
a system reaches stability within a fixed timeframe; at the same time, the convergence
time is independent of the system’s initial state, and the convergence time can be given
by T ≤ Tmax := 1/α(1 − p) + 1/β(q − 1). This method can determine the maximum
convergence time of the system during the controller design process, thereby providing
valuable system performance information in advance. The theory is more applicable to
systems that require a strict convergence time. In ref. [13], a fault-tolerant-prescribed
performance tracking control approach based on fixed-time techniques was designed to
solve robot manipulators with actuator faults. By designing a fixed-time performance
function with precise convergence and combining it with terminal sliding mode control,
thus effectively improved the tracking accuracy of the robotic arm and the robustness of the
system. To achieve fixed-time convergence and better robustness, a fixed-time sliding mode
control (FTSMC) was studied in ref. [14]. By combining high-order sliding mode control
and fixed time theory, the performance of the controller was effectively improved. In
ref. [15], an adaptive FTSMC was also applied to robot manipulators. However, FTSMC has
a drawback in that it can generate chattering effects, thereby causing mechanical oscillations
in the robotic arm system. To this end, scholars have developed a fixed-time controller
based on backstepping without a chattering effect or by lowering the chattering effect. In
ref. [16], by combining fixed-time control, backstepping, and a newly developed obstacle
function, the output tracking problem of MIMO nonlinear systems with asymmetric output
constraints was successfully solved; finally, the effectiveness of the algorithm was verified
through simulations using a two-degree-of-freedom robotic arm. In ref. [17], by combining
fixed-time control and backstepping with a newly designed performance function, the
tracking control problem for stochastic nonlinear systems with unknown measurement
sensitivity was effectively solved. The widespread use of backstepping control relies on
the availability of complete knowledge about robot dynamics during the design process.
However, when system uncertainties are present, the tracking performance achieved by
backstepping-based control strategies is often lower compared to other control methods.

In order to solve the issue of system uncertainties, scholars have proposed many
effective attempts [18–25]. There are currently two main types of algorithms: (1) neural
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network-based approximation algorithms; and (2) disturbance observer-based algorithms.
Neural network-based algorithms can leverage their powerful approximation ability to
estimate system uncertainty [18]. In ref. [19], a new fuzzy wavelet neural network (FWNN)
was designed to estimate the unknown uncertainties in the presence of unknown nonlinear
uncertainties by concentrating them into a composite uncertainty, thus effectively enhanc-
ing the robustness of the system. In ref. [20], a fixed-time neural network control method
was studied to address system uncertainties. By integrating switching mechanisms into
control design, the semi-global stability of traditional neural network control systems can
be extended to global stability, effectively eliminating the impact of system uncertainties
on robotic arm control. Adaptive non-singular terminal sliding mode control (NSTSMC)
was developed in ref. [21], which uses neural networks to deal with system uncertainties
without prior knowledge. Finally, the effectiveness of the control method was verified
through simulation. Still, neural network algorithms often contain approximate residuals
that can affect their accuracy, which can only achieve globally uniformly bounded tracking
performance instead of asymptotic stability. In disturbance observer-based algorithms,
system uncertainty is estimated by the disturbance observer. In ref. [22], a nonlinear dis-
turbance observer is developed to address the system uncertainties of the robotic arm.
Although the observer is capable of providing precise estimations of the system uncertain-
ties, it can only achieve an asymptotically stable tracking performance, which means that
the optimal convergence speed of the system is exponentially convergent, and the tracking
error can converge to zero in infinite time. Subsequently, a disturbance observer based on a
finite-time algorithm was proposed in ref. [23] to address the measurement uncertainties
on the robotic surface vehicle (RSV).

In order to address with measurement uncertainties, two finite time disturbance ob-
servers were developed to estimate the mismatched and matched lumped disturbances in
RSV kinematics and dynamics, respectively. Through feed-forward disturbance compensa-
tion, the proposed controller is not only robust to model uncertainty and environmental
disturbances but also insensitive to measurement uncertainties. Although the finite-time
disturbance observer can accurately estimate the disturbance on the robotic arm, its con-
vergence time is related to the initial observation error, which limits its applicability. To
our knowledge, the convergence time of fixed-time disturbance observers (FDO) is inde-
pendent of the system’s initial state, which has been widely used to estimate the system
uncertainties of robotic arm systems in recent years. In ref. [24], a second-order sliding
mode disturbance observer was designed based on fixed-time theory to enable small un-
manned aerial vehicles to perform stable hovering operations, even in the presence of
external interferences, compared to traditional disturbance observer-based sliding mode
control methods; this control method has a faster convergence speed. In ref. [25], a uniform,
robust exact differentiator was used to design a fixed-time observer, which can accurately
estimate the uncertainty of the robotic arm system within a fixed timeframe. These are
application examples of fixed-time disturbance observers. Currently, many scholars are
studying fixed-time disturbance observers, and using fixed-time disturbance observers to
solve the system uncertainty in robotic arm systems is still an open topic.

Based on the above discussion, in this article, a controller based on a fixed-time
disturbance observer is proposed for the trajectory tracking control problem of n-joint
robotic arms with system uncertainties. The key contributions of this research are outlined
as follows:

(1) Backstepping-based fixed-time tracking control is proposed in this article. Com-
bining the backstepping, observer, and fixed time theory effectively improves the
convergence speed and tracking precision of the robotic arm.

(2) A fixed-time disturbance observer is designed to accurately estimate the system
uncertainties existing in the robotic arm system, which provides compensation for the
controller, thus improving the tracking performance and robustness of the robotic arm
system. Meanwhile, we introduce the hyperbolic tangent function tanh(.) to avoid
the observation chattering effect.
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2. Preliminaries and Problem Formulation
2.1. Preliminaries

Before the process and to make the readers easily understand the manuscript, the
following lemmas are introduced.

Lemma 1 [26]. The scalar system can be described as follows:

.
y = −γ1y2−m/n − γ2ym/n, y(0) = y0 (1)

where γ1 and γ2 are positive constants, m and n are positive odd numbers with m < n; thus, the
system is fixed-time stable, and the upper bound on the convergence time is bounded by T(y0):

T(y0) ≤
nπ

2
√

γ1γ2(n − m)
(2)

Lemma 2 [27]. There exists a continuous radially unbounded function V: Rn → R+ ∪ 0 ,
which satisfies:

(1) V(µ) = 0 ↔ µ = 0
(2) If the solution µ(t)satisfies the inequality as follows:

V(µ) ≤ −αVp(µ)− βVq(µ) (3)

where α, β, p, and q are positive constants, 0 < p < 1, q > 1. Then, the system is globally
fixed-time stable with settling time T satisfying

T ≤ Tmax :=
1

α(1 − p)
+

1
β(q − 1)

(4)

Remark 1. From (4), we know that the convergence time of the system is only related to system
parameters α, β, p and q, and it is not related to the initial state of the system. In real-world
applications in engineering, this algorithm is more suitable when there are strict requirements for
the convergence time.

Lemma 3 [28]. There exists a continuous radially bounded function V: Rn → R+ ∪ 0 , which satisfies:

(1) V(µ) = 0 ↔ µ = 0
(2) If the solution µ(t)satisfies the inequality as follows:

V(µ) ≤ −αVp(µ)− βVq(µ) + ϑ (5)

where α, β, p, q, and ϑ are positive constants, 0 < p < 1, q > 1. Then, the system is actually
fixed-time stable with a settling time T satisfying

T ≤ Tmax :=
1

αθ(1 − p)
+

1
βθ(q − 1)

(6)

where 0 < θ < 1.

Lemma 4 [29]. If ι1, ι2, . . . ιM ≥ 0, we have
M
∑

i=1
ιki ≥

(
M
∑

i=1
ιi

)k

0 < k ≤ 1

M
∑

i=1
ιki ≥ M1−k

(
M
∑

i=1
ιi

)k

1 < k <∞
(7)
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2.2. Problem Formulation

The dynamics of a n-link robotic arm is as follows [30]:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) = τ(t)− JT(q) f (t) (8)

where q ∈ Rn represents the position vector, and
.
q ∈ Rn and

..
q ∈ Rn represent the speed

and acceleration vectors, respectively. M(q) ∈ Rn×n is the symmetric positive definite
inertia matrix with the property M(q) = MT(q). C

(
q,

.
q
)
∈ Rn×n is the Coriolis–centripetal

matrix, and G(q) ∈ Rn denotes the gravitational matrix. τ(t) ∈ Rn is the control input of
the system. J(q) means the Jacobian matrix. f (t) ∈ Rn denotes the vector of the constrained
force exerted by the user and the environment.

To facilitate the control design, let {
x = q
v =

.
q

(9)

Then, according to Equations (8) and (9), the robotic arm dynamics can be rewritten
as follows: { .

x = v
.
v = M−1(x)[τ(t)− C(x, v)v − G(x)] + ϖ

(10)

where ϖ = −M−1(x)JT(x) f (t) represents the system uncertainties.
According to Equation (10), the tracking trajectory can be described as follows:{ .

xd = vd.
vd = Md

−1(x)[τd(t)− C(xd, vd)vd − G(xd)]
(11)

where xd =
[
qd1 qd2. . . qdn

]T and vd =
[ .
qd1

.
qd2. . .

.
qdn

]T denote the desired position
vector and velocity vector of the robotic arm, respectively, and τd(t)− C(xd, vd)vd − G(xd)
is the desired dynamics.

In order to achieve the design of subsequent control strategies, we propose the follow-
ing assumption.

Assumption 1. The constrained force f (t) is bounded, such that there exists a constant L > 0,
which satisfies ∥ ϖ ∥≤ L ≤ +∞, where ∥ . ∥ represents the 2-norm of the matrix or vector.

Remark 2. This assumption is reasonable. From an engineering perspective, the time-varying
constrained force f (t) is bounded due to the physical structure limitation.

The main control objectives of this paper are to design a disturbance observer-based
trajectory tracking control law for a robotic arm under Assumption 1 so that the robotic arm
can track the desired trajectory while ensuring that all signals in the closed-loop system are
globally fixed-time stable. The mathematical form is described as follows:

lim
t→T

∥x − xd∥ = 0 (12)

where T is a positive constant, which is the expected convergence time, and T ∈ [0,+∞).

3. Controller Design without System Uncertainties

The controller without system uncertainties can be designed as follows:
Step 1: Define the position error e1 ∈ Rn between the actual position and the desired

trajectory of the robotic arm as follows:

e1 = x − xd (13)



Processes 2024, 12, 93 6 of 15

According to Equations (10) and (11), the derivative of Equation (13) is:

.
e1 = v − vd (14)

Select the kinematic controller αv as follows:

αv = vd − αe2−m/n
1 − βem/n

1 − k0e1 (15)

where α, β and k0 are positive constants, and m and n are positive odd numbers with m < n.
Consider the Lyapunov function as follows:

V1 =
1
2

eT
1 e1 (16)

The time derivative of V1 is:
.

V1 = eT
1

.
e1

= eT
1 (v − vd)

= eT
1

(
−αe2−m/n

1 − βem/n
1 − k0e1

)
= −αe3−m/n

1 − βe1+m/n
1 − k0e2

1

= −k0e2
1 − α × 2

3−m/n
2 ×

(
1
2 e2

1

) 3−m/n
2

− β × 2
1+m/n

2

(
1
2 e2

1

) 1+m/n
2

≤ −α × 2
3n−m

2n V1
2− m+n

2n − β × 2
m+n

2n V1

m+n
2n

= −λ1V1
2−p/q − λ2V1

p/q

(17)

where λ1 = α × 2
3n−m

2n , λ2 = β × 2
m+n

2n , p = m + n, q = 2n and p < q.
Combined with Lemma 1, the position tracking error e1 is able to achieve stability at a

fixed time, and the convergence time T1 can be calculated by:

T1 =
qπ

2
√

λ1λ2(q − p)
(18)

Step 2: Define the speed error e2 ∈ Rn as follows:

e2 = v − αv (19)

According to Equation (10), we further have:

.
e2 = M−1[τ(t)− C(x, v)v − G(x)]− .

αv (20)

The control strategy τ(t) can be designed as follows:

τ(t) = M[−k1e2 − αe2−m/n
2 − βem/n

2 +
.
αv] + C(x, v)v + G(x) (21)

where k1 > 0.
Substituting Equation (21) into Equation (20) yields:

.
e2 = −k1e2 − αe2−m/n

2 − βem/n
2 (22)

Consider the Lyapunov function as follows:

V2 =
1
2

eT
2 e2 (23)
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The time derivative of V2 is as follows:
.

V2 = eT
2

.
e2

= eT
2

(
−k1e2 − αe2−m/n

2 − βem/n
2

)
= −k1e2

2 − αe3−m/n
2 − βe1+m/n

2
≤ −α × 2

3n−m
2n V2

3n−m
2n − β × 2

m+n
2n V2

m+n
2n

= −λ3V
2− p

q
2 − λ4V

p
q

2

(24)

where λ3 = α × 2
3n−m

2n , λ4 = β × 2
m+n

2n , p = m + n, q = 2n and p < q.
According to Lemma 1, the speed tracking error e2 can reach zero, and the convergence

time of T2 is calculated as follows:

T2 =
qπ

2
√

λ3λ4(q − p)
(25)

Theorem 1. The B-FTTC strategy (21) designed in this article enables the robotic arm to track the
desired trajectory within a fixed time T3, and the convergence time is independent of the system’s
initial state.

Proof. Select the following Lyapunov function:

V3 = V1 + V2
= 1

2 eT
1 e1 +

1
2 eT

2 e2
(26)

Take the time derivative of V3 as follows:

.
V3 = eT

1 (v − vd) + eT
2

(
−k1e2 − αe2−m/n

2 − βem/n
2

)
= eT

1

(
−αe2−m/n

1 − βem/n
1 − k0e1

)
+ eT

2

(
−k1e2 − αe2−m/n

2 − βem/n
2

)
= −αe3−m/n

1 − βe1+m/n
1 − k0e2

1 − k1e2
2 − αe3−m/n

2 − βe1+m/n
2

= −k0e2
1 − k1e2

2 − α
(

e3−m/n
1 + e3−m/n

2

)
− β

(
e1+m/n

1 + e1+m/n
2

)
≤ −α × 2

3n−m
2n

[(
1
2 e2

1

) 3n−m
2n

+
(

1
2 e2

2

) 3n−m
2n

]
− β × 2

m+n
2n

[(
1
2 e2

1

)m+n
2n

+
(

1
2 e2

2

)m+n
2n

]
(27)

According to Lemma 4, we further have:

.
V3 ≤ −2α × V

3n−m
2n

3 − β × 2
m+n

2n V
m+n

2n

3

= −λ5V
υ

3 − λ6V
σ

3

(28)

where λ5 = 2α, λ6 = β × 2
m+n

2n , υ = 3n−m
2n , σ = m+n

2n , λ5 > 0, λ6 > 0, υ > 1 and 0 < σ < 1.
Combined with Lemma 2, this control system is globally fixed-time stable, and the

convergence time T3 can be calculated by:

T3 ≤ Tmax = 1
λ5(υ−1) +

1
λ6(1−σ)

= n
n−m

(
1
α + 2

n−m
2n
β

)
(29)

It follows that the B-FTTC strategy designed in this section enables the robotic arm to
track the desired trajectory within a fixed time.

That brings an end to the proof. □
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4. Controller Design with System Uncertainties
4.1. Disturbance Observer Design

There are system uncertainties in the actual control system of the robotic arm, and the
entire system’s control accuracy is affected. In order to mitigate the influence of system
uncertainties on the system, the dynamic model of the mechanical arm is combined with a
disturbance observer. We can use disturbance observers to estimate the system uncertainties
accurately. By correcting the estimated value of the system uncertainties, the error between
the actual value and the estimated value of the system uncertainties can reach zero. The
following is the specific design process.

Step 1: Define an auxiliary variable:

E = v − Γ (30)

where Γ is given by: { .
Γ = M−1(τ(t)− C(x, v)v − G(x)) + ϖ̂

ϖ̂ = κ1E + κ2Eα1 + κ3Eβ1 + κ4tanh(E)
(31)

where κi ∈ R2×2(i = 1, 2, 3, 4) is a positive definite diagonal matrix and each element in κ4
is greater than L, α1 and β1 are positive constants with 0 < α1 < 1 and β1 > 1, tanh(.) is
the hyperbolic tangent function, and ϖ̂ is the estimation of ϖ.

According to Equations (10) and (31), the derivative of Equation (30) is as follows:

.
E =

.
v −

.
Γ

= M−1(x)(τ(t)− C(x, v)v − G(x)) + ϖ − M−1(τ(t)− C(x, v)v − G(x))− ϖ̂

= ϖ − κ1E − κ2Eα1 − κ3Eβ1 − κ4tanh(E)
(32)

Step 2: Define the observation error ϖ̃ as follows:

ϖ̃ = ϖ̂ − ϖ (33)

From (31) to (32), we have

ϖ̃ = ϖ̂ − ϖ

= κ1E + κ2Eα1 + κ3Eβ1 + κ4tanh(E)−
.
E − κ1E − κ2Eα1 − κ3Eβ1 − κ4tanh(E)

= −
.
E

(34)

According to Equation (34), we know that if
.
E converges, then ϖ̃ also converges.

Theorem 2. Under Assumption 1, the disturbance observer in (31) can accurately estimate the ϖ
within a fixed time with an estimation error of zero.

Proof. Select the following Lyapunov function:

V4 =
1
2

ETE (35)

According to Equation (32), taking the time derivative of V4 yields:

.
V4 = ET

.
E

= ET(ϖ − κ1E − κ2Eα1 − κ3Eβ1 − κ4tanh(E)
)

≤ −κ2
(
ETE

) α1+1
2 − κ3

(
ETE

) β1+1
2 − LETtanh(E) + L ∥ E ∥

≤ −
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where ϑ = Lδ1, and δ1 is a positive constant.
Combined with Lemma 3, the system is actually fixed-time stable with a settling time

T4 satisfying:

T4 ≤ 2
1−α1

2
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min(κ3)θ(β1 − 1)
(37)

According to the definition of V4, when t ≥ T4, we have V4 ≡ 0,
.

V4 ≡ 0 and
.
E = 0,

and we further have ϖ̃ = 0.
This brings an end to the proof. □

Remark 3. Compared with traditional disturbance observers, the observer proposed in this paper
can achieve an accurate estimation of system uncertainties while ensuring that the observation error
can converge to zero within a fixed time, and that the convergence time is independent of the initial
observation error. At the same time, it can effectively avoid the problem of observation chattering.

4.2. Controller Design

A diagram of the robotic arm tracking control was shown in Figure 1. The control
strategy for the robotic arm system was designed as follows:

τ(t) = M[−k1e2 − αe2−m/n
2 − βem/n

2 +
.
αv − ϖ̂] + C(x, v)v + G(x) (38)
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Theorem 3. Under system uncertainties, the control strategy in (38) enables the robotic arm to
track the desired trajectory within a fixed time T5.

Proof. The time derivative of V3 can be rewritten as follows:
.

V3 = eT
1

.
e1 + eT

2
.
e2

= eT
2 (ϖ − ϖ̂)− αe3−m/n

1 − βe1+m/n
1 − k0e2

1 − k1e2
2 − αe3−m/n

2 − βe1+m/n
2

(39)

Under the action of an observer, the observing error ϖ̃ = ϖ̂ − ϖ = 0, t ≥ T4 and
.

V3
would be reformulated as follows:

.
V3 = −αe3−m/n

1 − βe1+m/n
1 − k0e2

1 − k1e2
2 − αe3−m/n

2 − βe1+m/n
2

= −k0e2
1 − k1e2

2 − α
(

e3−m/n
1 + e3−m/n

2

)
− β

(
e1+m/n

1 + e1+m/n
2

)
≤ −α × 2

3n−m
2n

[(
1
2 e2

1

) 3n−m
2n

+
(

1
2 e2

2

) 3n−m
2n

]
− β × 2

m+n
2n

[(
1
2 e2

1

)m+n
2n

+
(

1
2 e2

2

)m+n
2n

]
≤ −2α × V

3n−m
2n

3 − β × 2
m+n

2n V
m+n

2n

3

= −λ5V
υ

3 − λ6V
σ

3

(40)

where λ5 = 2α, λ6 = β × 2
m+n

2n , υ = 3n−m
2n , σ = m+n

2n , λ5 > 0, λ6 > 0, υ > 1 and 0 < σ < 1.
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Combined with Lemma 2, this control system is globally fixed-time stable, and the
settling time is T5 ≤ T3 + T4.

This brings an end to the proof. □

5. Simulation Verification

In this section, to verify the effectiveness of the proposed method, we will use two
cases to verify the effectiveness of the proposed method:

Case 1: Verify the control method proposed in this article with different initial conditions.
Case 2: Compare with the control method proposed in ref. [21] to verify the effective-

ness of the control method proposed in this article.
The planar model of a two-link rehabilitation robot [21] is given in Figure 2.
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Figure 2. Planar model of the two-link rehabilitation robot. Where li and mi denote the length and
mass of the link i, respectively. ri represents the distance from the joint i − 1 to the center of mass of
the link i, where i = 1, 2.

Define:

q =

[
q1
q2

]
=

[
θ1
θ2

]
(41)

According to ref. [30], we can use the Euler–Lagrange equation to express the dynamics
of the rehabilitation robot as Equation (8), where:

M(q) =
[

m1r2
1 + m2

(
l2
1 + r2

2 + 2l1r2 cos(q2)
)
+ I1 + I2 m2

(
r2

2 + l1r2 cos(q2)
)
+ I2

m2
(
r2

2 + l1r2 cos(q2)
)
+ I2 m2r2

2 + I2

]
(42)

C
(
q,

.
q
)
=

[
−m2l1r2

.
q2 sin(q2) −m2l1r2(

.
q1 +

.
q2) sin(q2)

m2l1r2
.
q1 sin(q2) 0

]
(43)

G(q) =
[

(m1r2 + m2l1)g cos(q1) + m2r2g cos(q1 + q2)
m2r2g cos(q1 + q2)

]
(44)

J(q) =
[
−(l1 sin(q1) + l2 sin(q1 + q2)) −l2 sin(q1 + q2)

l1 cos(q1) + l2 cos(q1 + q2) l2 cos(q1 + q2)

]
(45)

The parameters of the robotic arm are shown in Table 1.
In order to validate the proposed control scheme in this article, we used MATLAB

R2018b for simulations and the processor of the computer was an Intel(R), Core(TM),
i7-8550U, CPU @ 1.80 GHz, 1.99 GHz. We conducted simulations using the aforementioned
model, and the initial conditions were set as follows:{

q1(0) = q2(0) = 0.2
.
q1(0) =

.
q2(0) = 0

(46)
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Table 1. The parameters of the robotic arm.

Parameter Description Value

m1 Mass of link 1 2.00 kg
m2 Mass of link 2 0.85 kg
l1 Length of link 1 0.35 m
l2 Length of link 2 0.31 m
I1 Moment of inertia of link 1 0.06125 kgm2

I2 Moment of inertia of link 2 0.02042125 kgm2

The controller and observer parameters were set as follows: k0 = 0.5, k1 = 15, α = 20,

β = 5, m = 9, n = 13, κ1 =

[
35 0
0 35

]
, κ2 =

[
4 0
0 4

]
, κ3 =

[
5 0
0 5

]
, κ4 =

[
100 0

0 1000

]
,

α1 = 0.6, and β1 = 2. The simulation time was set for 40 s, and the value of the constrained
force vector was assumed as f (t) =

[
0.2 sin(t) 0.2 cos(t)

]T .
Case 1: compared with different initial states in the proposed method.
To verify that the convergence time of the system is independent of the initial state

with the designed control law, the algorithm proposed in this article was validated with
different initial states, q(0) =

[
0.2 0.2

]T , q(0) =
[
0.4 0.4

]T and q(0) =
[
0.6 0.6

]T , and
the simulation results are shown in Figures 3 and 4.
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The simulation results in Figures 3 and 4 validate the correctness and effectiveness of
the designed control algorithm. With different initial states, the controller achieved system
stability and control objectives within a fixed time.

Case 2: compared with ref. [21].
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The controller designed in ref. [21] is as follows:

.
τ = M

...
x d + Mk1

..
xd − M

( .
Q + k1M−1

)
τ

+ŴTZ − b
a Mk−1

3
.
s2−a/b

1

− bg
ah Mk−1

3 k2diag
(
|s1|g/h−1

) .
s2−a/b

1

−M
(

k4s2 + k5sgn2l−1(s2)
) (47)

The controller parameters are set as follows:
k1 = diag[100, 5], k2 = diag[0.001, 0.001], k3 = diag[0.15, 0.15], k4 = diag[50, 50],

a = 0.9, b = 0.5, g = 0.6, h = 0.2, Γ1 = 10I16×16, Γ2 = 10I16×16.
In order to demonstrate the efficacy of the designed controller, a comparative analysis

was performed with the adaptive non-singular terminal sliding mode control (NSTSMC)
proposed in [21]. Figures 5–9 show the simulation results of the experiment.

The trajectory tracking and error of joints 1 and 2 are shown in Figures 5 and 6, where
q1 and qd1 represent the actual motion trajectory and desired motion trajectory of joint
1 of the robotic arm, respectively, and q2 and qd2 represent the actual motion trajectory
and desired motion trajectory of joint 2 of the robotic arm, respectively. By analyzing
Figures 5 and 6, it is evident that the control method proposed in this article exhibits higher
accuracy in tracking errors e1 and e2 compared to the NSTSMC.
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Additionally, both controllers successfully tracked the desired trajectory with favorable
tracking response characteristics. Under both methods, the position error of the robotic
arm achieved global time convergence. The convergence time of the NSTSMC was about
2.5 s, while the method in this article had a faster convergence speed of about 0.43 s, and
the convergence time was less than the set time min (T5) = 1.74 s. This is 82.8% faster than
the NSTSMC. This indicates the superior tracking performance of the proposed control
method in tracking the desired trajectory. In Figure 7, the control inputs based on the
proposed control method in this article and the NSTSMC are shown. The black and blue
lines represent the proposed control inputs, while the red and purple lines represent
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the compared control inputs. In the initial stage, the compared control inputs show less
chattering than the proposed control inputs. When the system is stable, both control
methods achieve stable control inputs. This indicates the robustness of the proposed
control law with system uncertainties.

Figures 8 and 9 show the observation effects of the system uncertainties of joints 1
and 2, respectively, where ϖ1 and ϖ̂1 represent the actual value and observed value of
ϖ of joint 1, respectively, and ϖ2 and ϖ̂2 represent the actual value and observed value
of ϖ of joint 2, respectively. By analyzing Figures 8 and 9, it is evident that the designed
disturbance observer can accurately estimate the system uncertainties present in the system,
and real-time compensation can be performed on the control inputs, effectively enhancing
the control precision and convergence speed of the system.

In summary, the above simulation results verify the correctness and effectiveness of
the designed controller and disturbance observer.

6. Conclusions

In this article, a backstepping fixed-time control method based on disturbance observer
compensation was proposed for an n-link robotic arm. The stability of the designed
controller and observer was proven based on the Lyapunov theory, and accurate trajectory
tracking of the robotic arm under system uncertainties was realized and, at the same
time, ensuring that all signals in the closed-loop system are globally fixed-time-stable.
Simulation verification showed that the control scheme proposed in this article achieved
the desired response characteristics and tracking performance. The observer designed in
this article also accurately estimated the system uncertainties, effectively improving the
robustness of the system by continuously providing compensation to the controller. The
method proposed in this article can also be used for other Euler–Lagrange systems, such
as full-actuated ships or multiple-agent systems. Future work will consider adjusting the
control parameters using optimal algorithms.
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