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Abstract: A time–frequency residual convolution neural network (TFRCNN) was proposed to identify
various rolling bearing fault types more efficiently. Three novel points about TFRCNN are presented
as follows: First, by constructing a double-branch convolution network in the time domain and
the frequency domain, the respective features in the time domain and the frequency domain were
extracted to ensure the rich and complete feature representation of raw data sources. Second, specific
residual structures were designed to prevent learning degradation of the deep network, and global
average pooling was adopted to improve the network’s sparsity. Third, TFRCNN was better than the
other models in terms of prediction accuracy, robustness, generalization ability, and convergence. The
experimental results demonstrate that the prediction accuracy rate of TFRCNN, trained using mixing
load data, reached 98.88 to 99.92% after optimizing the initial learning rate and choosing the optimizer
and loss function. It was verified that TFRCNN can adaptively learn to extract deep fault features,
accurately identify bearing fault conditions, and overcome the limitations of classical shallow feature
extraction and classification methods, as well as common convolution neural networks. Hence,
this investigation revealed TFRCNN’s potential for bearing fault diagnosis in practical engineering
applications.

Keywords: deep learning; double branch; fault diagnosis; generalization ability; prediction accuracy;
robustness; rolling bearings

1. Introduction

A rolling bearing is a core rotary component of rotating machinery. Bearing failures
caused by variable load impact, fatigue spall, mechanical wear, etc., can seriously affect
the normal operation of rotating machinery. Therefore, studies on accurate bearing fault
diagnosis methods are of great significance for high efficiency and adaption to the devel-
opment of complex, intelligent, large-scale rotating machinery. Currently, fault diagnosis
encompasses mainly classical and emerging deep learning methods.

Classical methods include feature extraction, feature dimensionality reduction, recog-
nition and classification, etc. They start with statistical analysis [1,2], an autoregressive
model (AR) [3], empirical mode decomposition (EMD) [4], Fourier transform (FT) [5],
wavelet analysis [6,7], singular value decomposition (SVD) [8], and other methods to ex-
tract signal features which largely determine the effect of fault diagnosis. Then, feature
dimensionality reduction is performed using methods such as principal component anal-
ysis (PCA) [9] and manifold learning [10] to remove noise and redundant components
in order to obtain low-dimensional sensitive features. Finally, trained machine learning
methods, such as artificial neural networks (ANNs) [11–13] and support vector machine
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(SVM) [14–17], are used to identify and classify unknown fault features. Classical diagnostic
methods combining feature extraction and pattern recognition have undoubtedly achieved
remarkable results. However, with the increasing scale, complexity, and intelligence of ro-
tating machinery, classical methods have exposed the following shortcomings in processing
large multimodal uncertain signals:

1. There is a reliance on expert experience and special knowledge to manually extract
fault features, and feature information is subjectively selected and incomplete.

2. A model trained with specific fault data is prone to overfitting, has poor generalization
ability and versatility, and has difficulty meeting the diagnosis requirements of the
complex background of big data.

3. Due to the separation of feature extraction from fault recognition, neither can be uni-
formly adjusted and optimized, resulting in a loss of fault information, and affecting
the diagnostic results.

4. Back-propagation neural networks (BPNNs), SVMs, and other shallow networks have
weak feature extraction ability and poor nonlinear fitting ability, making it difficult
to mine comprehensive feature information and establish an accurate complicated
mapping relationship between signals and fault types.

In recent years, deep learning has been successfully applied in the fields of speech
image recognition and natural language processing due to its powerful automatic feature
extraction capability, providing a new method of fault diagnosis. Proposed by Hinton G. in
2006 [18], deep learning simulates the learning process of the human brain by building a
deep neural network, trains network neurons with big data samples, and adaptively learns
the feature information hidden in the samples layer by layer, from low to high, to form
more abstract high-level features so as to discover the distributed features of samples for
recognition. Typical deep learning methods include convolutional neural networks (CNNs),
deep belief networks (DBNs), autoencoder networks (AEs), recurrent neural networks
(RNNs), etc. Because deep adaptive learning does not require manual feature extraction,
it enhances the feature extraction capability and intelligence of the recognition process,
eliminates environmental and human influence, avoids the uncertainty and complexity of
classical diagnosis methods, and meets the requirements of adaptive fault feature extraction
and classification in the context of big data. Therefore, it has been promptly studied in
fault diagnosis [19–24]. Among these methods, CNN is prominent [25]; for example,
a cyclic spectral-coherence-based CNN can achieve high diagnosis accuracy and better
generalization ability by applying domain-related techniques to reduce the difficulty of
feature learning and obtain high-level feature representations [26]. A common CNN with
Gramian noise reduction can improve the performance of denoising and classification
for bearing fault diagnosis [27]. By changing the feature weights of various convolution
scales and picking out the key features, an adaptive multi-scale fully convolutional network
showed its ability to demonstrate feature extraction, noise immunity, and robustness for
bearing fault diagnosis [28]. As shown in Figure 1, a CNN consists of an input layer,
convolution layers, pooling layers, fully connected layers, and a classifier; its convolution
layer and pooling layer are alternately stacked to form a deep network. The functions of
each layer are as follows:
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Convolution layer: The convolution kernel performs local scanning and convolution
computation on the input feature map to filter and obtain deeper features using the same
weight and threshold, according to the stride. Then, the convolution output is nonlinearized
via the activation function to improve model capability.

Pooling layer: This layer divides the activated feature map into multiple windows
according to the sampling size, and it reduces the feature dimension by selecting the
characteristic parameter each window as itself. Pooling can improve feature sparsity and
network generalization ability.

Fully connected layer and classifier: by convoluting, activating, pooling, and flattening
the output, it is recognized and classified using a fully connected layer and classifier.

Achieving adaptive distributed feature extraction and recognition classification through
a deep network composed of the above function layers, CNN has the following characteristics:

1. The network is composed of multiple layers of filters;
2. Weight sharing, local receptive field, and pooling are used to reduce the complexity

and overfitting;
3. Big data processing capability.

The current research on CNN for fault diagnosis involves model construction and
algorithm selection, network structure and parameter optimization, raw data preprocessing
and data representation, data input mode, etc. Results show that CNN has good fault
accuracy, convergence, robustness, generalization, universality, etc. In general, research on
a deep learning model such as CNN for fault diagnosis is on the rise, but it also faces the
following major challenges:

1. The performance of the models cannot be strictly analyzed and proven. For example,
it is difficult to discuss and interpret the robustness to improve the reliability of deep
learning-based fault diagnosis models.

2. There are no uniform rules for setting the layers and network parameters depending
only on expert experience and data characteristics.

3. Model convergence rate is restricted owing to the deep layers, nonlinear structure,
and big data.

4. Further research for hybrid fault diagnosis methods is needed to be applied to the
complex plant-wide industrial system.

5. Fault diagnosis models should be sufficiently generalized to meet the variable working
condition requirements.

Aiming at the traits of rotating machinery, such as complex structure composition, big
data monitoring, and operating condition, a time–frequency residual convolution neural
network (TFRCNN) was proposed. This objective was to fully extract the diverse character-
istics of the big state signals of rotating machinery bearings, preventing the background
noise from weakening the bearing fault signals and mitigating learning degradation with
the growth of network layers. Thus, measures were taken to accomplish TFRCNN effec-
tiveness as follows: CNN was used to take advantage of its integration of deep feature
extraction from big data and fault classification, the anti-interference ability of TFRCNN
was strengthened by extracting the time and frequency domain features of the bearing
state signals, and a residual structure was adopted as part of TFRCNN to solve the degra-
dation of the deep network. Regarding TFRCNN, the biggest difference compared to
other CNNs is the dual-branch structure within the time and frequency domains, which
allows for avoiding complex feature extraction techniques, leading to high diagnosis
accuracy and better generalization ability. Hence, TFRCNN has potential in practical
engineering applications.

The contributions of TFRCNN drawn from the experiments are summarized below.

1. TFRCNN can extract rich and comprehensive time–frequency features and enhance
anti-interference ability through its dual-branch structures within both time and
frequency domains. Its diagnosis performance outperforms that of FSRCNN and
TSRCNN just with a single branch of time or frequency.
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2. TFRCNN achieves end-to-end fault diagnosis employing a convolution neural net-
work to integrate feature extraction and fault classification, avoiding the disad-
vantages of conventional methods due to the separation of feature extraction and
fault classification.

3. Original data directly fed into TFRCNN can avoid individual prejudice and the
need for professional knowledge for feature extraction, which may lead to a loss of
feature information.

4. TFRCNN solves the degradation problem of deep learning via residual networks. It
also improves sparsity, generalization ability, and reduces prediction times via global
average pooling.

Thus, TFRCNN has the excellent advantages of high prediction accuracy and fast
speed, strong robustness, broad generalization ability, and good sparsity for bearing fault
diagnosis.

The rest of the paper is organized as follows: TFRCNN is presented in Section 2. In
Section 3, TFRCNN is validated by identifying the bearing fault locations and severities.
Finally, the conclusions are drawn in Section 4.

2. Proposed Method

The complex mechanical structure, operating conditions, and big data monitoring of
rotating machinery make the characteristic information of bearing faults complicated and
diverse, making them suitable for deep distributed feature extraction from big data using a
CNN. Because original bearing time signals contain sensitive characteristic information and
the clustering of spectral signals can weaken noise interference, both were selected as the
sample data. A residual network structure was adopted to prevent the learning degradation
of the deep network while enhancing diagnostic effectiveness. Hence, a time–frequency
residual convolution neural network, TFRCNN, was proposed.

2.1. TFRCNN

TFRCNN structure is shown in Figure 2.
TFRCNN consists of two convolution neural networks. One accepts one-dimensional

time domain data, named the time signal residual convolution neural network (TSRCNN).
The other accepts two-dimensional frequency domain data, named the frequency signal
residual convolution neural network (FSRCNN).

TFRCNN carries out network learning and feature extraction from the two types of
data, respectively. Each branch is successively stacked with a simple convolution layer, a
maximum pooling layer, eight residual convolution blocks (see blocks I and II in Figure 2),
a global pooling layer, and three fully connected layers, among which twenty convolution
and fully connected layers are trained. The rectified linear unit (ReLU) activation function
is used to update the network parameters in error back-propagation. Its linearity makes
the gradient proportional to the ReLU output to avoid gradient disappearance.

Here, the principle of TSRCNN is illustrated assuming a bearing time domain sample
containing 512 sampling values, written as a 512 × 1 array.

First, 64 time domain samples were fed into the first convolution layer as a batch. Each
sample convolved with 64 kernels of 3 × 1, and 64 of 512 × 1 features were extracted. The
setting number of features were extracted via convolution to denoise the input signal. The
computation and the risk of network overfitting were reduced by sharing the convolution
kernel weights.

Second, a pooling kernel of 3 × 1 slid on the convolution output features at two
strides to select the maximum value in the window, renewing 64 of 256 × 1 features.
These features were then transmitted into the residual convolution block. The pooling
layer used down-sampling without parameters, which reduced the network scale and
prevented overfitting.
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Figure 2. TFRCNN architecture.

A total of eight residual convolution blocks are The majority of TSRCNN is composed
of eight residual convolution blocks. After a series of mapping through the residual
convolution blocks, the number of features increased from 64 to 512, each with a size of
32 × 1. The use of a residual convolution block is to solve the degradation of ordinary
convolution in deep network learning. The structure of a residual convolution block is
described in Figure 3.
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Global average pooling averaged all the elements of each output feature of the last
residual block, yielding 512 smoothing features as the input neurons of the first fully
connected layer. Global average pooling can significantly decrease model parameters,
accelerate convergence, save computing consumption, and prevent overfitting.

There were three fully connected layers behind the global average pooling layer. The
input neurons were weighted and summed by the layers, and the output neuron vector was
obtained after the activation of ReLU. The output vector of the first layer had 256 neurons
and the second had 128 neurons. The output vector of the third layer contained 10 neurons,
each representing the proportion of a sample in one of the 10 types of bearing faults.

The structure and principle of FSRCNN was similar to TSRCNN, but its frequency
domain sample was a two-dimensional array, 512 × 2, composed of real and imaginary
parts, so the corresponding convolution and pooling were two-dimensional calculations
with a convolution kernel of 3 × 3. The algorithm of TFRCNN is described by Algorithm 1.

Algorithm 1. Algorithm of TFRCNN for training and testing

Input: Xinput, Ylabel, N, learn_rate, split_rate
Output: W, accuracy
1: begin
2: Xtrain, Ytrain, Xtest, Ytest = split (Xinput, Ylabel, split_rate)
3: XFFTtrain, XFFTtest = fft (Xtrain, Xtest)
4: for n = 0→N do #TFRCNN training
5: outtrain = TFRCNNmodel.predict(Xtrain, XFFTtrain)
6: loss = losses.crossentropy (Ytrain-outtrain)
7: gradient = gradients (loss, variables)
8: W = optimizers.nadam(learn_rate, gradient, variables) #TFRCNN weight value
9: end for
10: outtest = TFRCNNmodel.predict(Xtest, XFFTtest) #TFRCNN test
11: Probability = softmax(outtest)
12: Prediction = argmax (Probability)
13: l = len (Ytest)
14: total_real = sum (Prediction[i] = Ytest[i])
15: total_num = l
16: accuracy = total_real/total_num
17: print (‘accuracy = ‘, accuracy)
18: end
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2.2. Main Blocks
2.2.1. Residual Block

As the number of network layers increased, the gradient turned weak or even disap-
peared, and the capability of learning and prediction subsequently became worse. There-
fore, the residual convolution network shown in Figure 3 was applied to solve the degrada-
tion of the deep network.

The residual convolution networks shown in Figure 3a,b represent two types of
residual blocks (I and II) as illustrated in Figure 2. These networks are composed of a
two-layer convolution-stacked residual mapping (left) and a shortcut connection (right).
Hence, the risk of network degradation could be eliminated by weakening the relationship
between layers using the interlayer connection of the shortcut branch.

In Figure 3a, both the input shape of the residual block and the output shape of
the residual mapping are 64 × 256 × 1, so an identity shortcut was used for a shortcut
connection, directly adding the input of the residual block and the output of the residual
mapping as the output of the residual block.

In Figure 3b, the output shape of the residual mapping is 128 × 128 × 1, inconsistent
with the input shape 64 × 256 × 1 of the residual block, so the projection shortcut with
a convolution kernel shape of 128 × 1 × 1 was used to convolve with the input of the
residual block at two strides, which made its output shape identical to the output of residual
mapping, and both were then added together as the output of the residual block.

2.2.2. Normalization Block

After the input sample passed through the first convolution layer of TFRCNN, the
convolution output features were normalized using the batch normalization (BN) layer
to meet the distribution with a mean of 0 and variance of 1, as shown in Figure 4. The
application of a BN block partially ruled out the risk of gradient disappearance or explosion
and accelerated network convergence.
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2.2.3. Softmax Classifier

The softmax classifier is shown in Figure 5. It is a normalized exponent function
and was used to exponentially transform each neuron in the output vector of the fully
connected layer, increase the discrimination from each other, and normalize the neuron
value between 0 and 1. The converted vector represents the probability distribution that the
test sample belongs to various faults, and the index number of the maximum probability
element was picked out as the fault category of the sample. As such, the sample feature
extracted using TFRCNN was converted into the probability distribution of various faults
and then classified.
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3. Experiments and Results

In this section, TFRCNN is compared with TSRCNN, FSRCNN, VGG13, and other
models.

3.1. Environment Configuration

The configurations for the experiment are listed in Table 1.

Table 1. Environment configuration.

Item Version Function

Windows10 Win10 Home Operating system
CPU Intel (R) Core (TM) i5-9400 2.90 GHz
RAM SODIMM, 24.0 GB
GPU NVIDIA GeForce GTX 1660 Ti 6.0 GB
Cuda 10.1 GPU operation platform

Anaconda 2.1.1 Package and environment manager
Python 3.7 Programming language

Pycharm 2021.3 Python IDE
Third-party library Tensorflow2.1 Deep learning function library

Numpy Data sort, merging, packaging
Scipy Open “. mat” format data

Sklearn Dividing train and test sets

3.2. Experimental Data

The experimental data were taken from the bearing data center at the Case Western
Reserve University (CWRU). The CWRU bearing database was used because it is a public
and authoritative database with a comprehensive range of bearing fault types. The test rig is
shown in Figure 6. It consists of a 2-horsepower motor, a torque transducer, a dynamometer,
and control electronics. The experiment samples were acquired at the 12 o’clock position at
the drive end of the motor housing, with a sampling frequency of 12 KHz, and they were
divided into four types of signals, including ball defect, inner race defect, outer race defect,
or normal according to the fault location. There were three types of signals, with 0.1778
mm, 0.3556 mm, and 0.5334 mm defect points based on the fault size. The samples could
consequently be categorized into 10 types of bearing state signals, labeled 0–9. Table 2 lists
its categories and labels.
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Table 2. Sample categories and labels.

Sample Fault Location Fault Size (mm) Label

B007 Ball 0.1778 0
B014 Ball 0.3556 1
B021 Ball 0.5334 2
IR007 Inner race 0.1778 3
IR014 Inner race 0.3556 4
IR021 Inner race 0.5334 5
OR007 Outer race 0.1778 6
OR014 Outer race 0.3556 7
OR021 Outer race 0.5334 8
Normal 9

In Table 3, DS0, DS1, DS2, and DS3 respond to the load powers of 0, 735 w, 1470 w,
and 2205 w, respectively, and DS4 is a collection of all the loads. The training and test sets
for each dataset were composed of 10 types of samples, listed in Table 2.

Table 3. Experiment datasets.

Dataset Load Power (W) Speed (rpm) Total Samples Training Set Test Set

DS0 0 1792 3048 2048 1000
DS1 735 1772 3048 2048 1000
DS2 1470 1750 3048 2048 1000
DS3 2205 1730 3048 2048 1000
DS4 collection collection 12,192 2048 10,144

3.3. Model Training and Testing

The training and diagnostic flow of TFRCNN is illustrated in Figure 7.

• Step 1. Network initialization. Randomly generate weights w and bias b, set initial
learning rate lr, and the number of training iteration N.

• Step 2. Network output. The training set is passed forward through the network, and,
finally, the network output function of w and b is obtained.

• Step 3. Gradient derivation. The gradient is the partial derivative of the network
loss function with respect to w and b. The loss function is the difference between the
network output function and the real value.
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• Step 4. Network update. Optimize the learning rate, calculate the gradient, and update
network parameters w and b.

• Step 5. Repeat Steps 2 to 4, and train TFRCNN from the 1st till the Nth.
• Step 6. Model testing. Test TFRCNN and evaluate its fault diagnosis performance.
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Figure 7. TFRCNN training and diagnostic flow chart.

The model performance is affected by the initial learning rate, loss function, and
optimizer. Some training and loss curves of TFRCNN, TSRCNN, and FSRCNN are shown
in Figures 8–10 with changes in the initial learning rate, loss function, and optimizer.

The optimized training and loss curves for three models were identified via experi-
ments, as shown in Figure 11.

After extensive experiments, the optimized initial learning rate, loss function, and
optimizer were determined by comprehensively considering their impact on the models.
When the initial learning rate was 10−4, TFRCNN could be optimized by adopting the
nadam optimizer and cross-entropy loss function. Similarly, with an initial learning rate of
10−4, both TSRCNN and FSRCNN could be optimized by using the adam optimizer and
cross-entropy loss function. Due to the dual branch of the time–frequency feature extrac-
tion for TFRCNN, features were enriched and improved from the sources, ensuring the
effectiveness of features. Additionally, global average pooling was adopted for the model,
which can save computational power and time. During the training process, TFRCNN
could quickly converge the loss function to the global optimal solution, thereby reducing
the training steps, improving convergence speed, and saving training time. Among the
three models, the training accuracy of TFRCNN was higher than that of FSRCNN and
TSRCNN, and its convergence speed was close to that of FSRCNN but much faster than that
of TSRCNN. Table 4 presents the number of steps and training time for model optimization.
According to Figure 10a, when the training accuracy was first over 97% and remained stable
at that level or higher in later iterations. The corresponding training step was considered
as the number of iterations.
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Figure 8. TFRCNN training accuracy and loss: (a) training accuracy with the learning rate;
(b) training loss with the learning rate (cross entropy, nadam); (c) training accuracy with the loss
function; (d) training loss with the loss function (lr = 10−4, nadam); (e) training accuracy with the
optimizer; (f) training loss with the optimizer (lr = 10−4, cross entropy). nadam (nesterov accelerated
gradient and adaptive moment estimation); adam (adaptive moment estimation); sgd (stochastic
gradient descent); mse (mean squared error); mae (mean absolute error).
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Figure 9. TSRCNN training accuracy and loss: (a) training accuracy with the learning rate;
(b) training loss with the learning rate (cross entropy, nadam); (c) training accuracy with the loss
function; (d) training loss with the loss function (lr = 10−4, nadam); (e) training accuracy with the
optimizer; (f) training loss with the optimizer (lr = 10−4, cross entropy).
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Figure 10. FSRCNN training accuracy and loss curves: (a) training accuracy with the learning rate;
(b) training loss with the learning rate (cross entropy, nadam); (c) training accuracy with the loss
function; (d) training loss with the loss function (lr = 10−4, nadam); (e) training accuracy with the
optimizer; (f) training loss with the optimizer (lr = 10−4, cross entropy).
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Figure 11. Optimized training accuracy and loss curves for TFRCNN, TSRCNN, and FSRCNN:
(a) optimized training accuracy curves; (b) optimized training loss curves.

Table 4. Steps and training time for optimization.

Model Iterations Time (s)

TFRCNN 20 80
TSRCNN 150 250
FSRCNN 50 60

The initial learning rate, optimizer, loss function, and other parameters of the models
are outlined in Table 5.

Table 5. Model settings.

Model TFRCNN TSRCNN FSRCNN

Net parameter 15,167,754 3,844,234 11,323,520
Preprocessing normalization, FFT normalization FFT
Batch sample 64 64 64
Learning rate 1 × 10−4 1 × 10−4 1 × 10−4

Decay coefficient 0.99 0.99 0.99
Optimizer nadam adam adam

Loss function cross entropy cross entropy cross entropy
Step 300 300 300

3.4. Model Validation
3.4.1. Prediction of Model Trained under a Specific Load for the Load Case

TFRCNN was trained with the training sets from DS0 toDS4, as shown in Table 3,
and was tested with the respective test sets. The confusion matrices of the test results are
provided in Figure 12a–e.

From the confusion matrices, it can be concluded that the prediction accuracy of
TFRCNN is as high as 99.9% under each load condition; namely, only a sample out of 1000
was misjudged. For example, under condition of load 0 in Figure 12a, only label 1 out of
1000 samples was misjudged as label 2. TSRCNN and FSRCNN were trained and tested in
the same manner as TFRCNN.

Figure 13 shows the prediction accuracy of the three models for 10 repeated tests with
their own test sets after being trained with different load datasets, from DS0 to DS4. The
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mean accuracy and standard deviation are shown in Table 6. Figure 14 shows the mean
accuracy and corresponding error of the three models.

Table 6. Mean accuracy and standard deviation of models under a specific load.

Dataset
Mean (%) Standard Deviation

TFRCNN TSRCNN FSRCNN TFRCNN TSRCNN FSRCNN

DS0 99.96 99.92 98.50 0 0 0
DS1 99.86 99.89 99.38 0.001187715 0.00028 0
DS2 99.94 99.81 99.67 0.000632456 0.000193 0
DS3 99.93 99.70 99.57 0.000790569 0.000169 0
DS4 99.52 97.88 99.31 0.004389685 0.001053 0

On the whole, the model with the highest prediction capability was TFRCNN, followed
by FSRCNN and TSRCNN. The prediction accuracy of TFRCNN stood at 99.52–99.96%,
higher than 97.88–99.92% for TSRCNN, and 98.50–99.67% for FSRCNN, as seen in Table 6,
along with the high stability measured by the standard deviations. This indicates that
TFRCNN was not sensitive to the load changes, which demonstrates that TFRCNN has
strong robustness, high prediction accuracy, and wide generalization for all types of loads.
Therefore, TFRCNN was better than the other two models. The reason for this is that
TFRCNN adopts a double-branch structure with time and frequency domains, which
can fully extract complex and diverse bearing fault characteristics, and deeply fuse and
efficiently identify bearing faults. TFRCNN has better performance than FSRCNN and
TSRCNN, which have a single structure.
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Figure 16. Accuracy of the models trained with DS4 for 10 repeated tests: (a) TFRCNN; (b) TSRCNN;
(c) FSRCNN.

Table 7. Mean accuracy and standard deviation of the models trained with DS4.

Dataset
Mean (%) Standard Deviation

TFRCNN TSRCNN FSRCNN VGG13 TFRCNN TSRCNN FSRCNN VGG13

DS0 98.88 98.08 98.50 97.73 0 0 0 0
DS1 99.92 98.98 99.38 99.25 0.001159 0.000386 0 0
DS2 99.85 99.63 99.67 99.25 0.001634 0.00028 0 0
DS3 99.78 99.32 99.57 99.61 0.001497 0.000317 0 0
DS4 99.52 97.88 99.31 99.01 0.00439 0.001053 0 0

From Figure 15a–d, it can be seen that when the load increased, the prediction ca-
pability of the models trained with a single load dataset decreased. For models trained
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with DS0, DS1, and DS2, the prediction accuracy of TFRCNN remained above 90.87% (see
Figure 15b), which was superior to FSRCNN and TSRCNN. The prediction accuracy of
the three models trained with DS3 was not high but had a higher fluctuation. Since a big
impact and noise under heavy loads aggravate the risk of data contamination and result in
specificity enhancement and lack of sparsity of the sample data, the models trained with
such data have overfitting and narrow generalization ability, thus reducing the prediction
accuracy for the other load cases.

In Figure 15e, TFRCNN, FSRCNN, and TSRCNN trained with mixing load data DS4
had better overall prediction capability for each load dataset than when trained with
a single load dataset. Among the three models, TFRCNN had the highest prediction
accuracy, ranging from 98.88 to 99.92%, with small fluctuation and good stability measured
via standard deviations (see Table 7). The strong robustness and wide generalization of
TFRCNN were confirmed again, and the validity of the double-branch structure and global
average pooling design of TFRCNN was further verified as well.

Hence, from the aspects of prediction accuracy and generalization, TFRCNN trained
with mixing load data is the best model.

3.4.2. TFRCNN Compared with VGG

As mentioned above, TFRCNN was optimized with the nadam optimizer, cross-
entropy loss function, and an initial learning rate of 10−4. Similarly, VGG13 was optimized
using the adam optimizer, mae loss function, and an initial learning rate of 10−4. The
optimized training and loss curves for TFRCNN and VGG13 are shown in Figure 17. The
convergence rate of TFRCNN was faster than that of VGG13. TFRCNN converged after
20 steps and 80 s, while VGG13 required 150 steps and 180 s.
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Figure 18 shows the prediction accuracy of VGG13 trained with DS4 for 10 repeated
tests. The mean accuracy and standard deviation are shown in Table 7. Figure 19 shows the
mean prediction accuracy of TFRCNN and VGG13 trained with DS4 for each load case.



Processes 2024, 12, 54 22 of 26

Processes 2024, 12, x FOR PEER REVIEW 23 of 28 
 

 

3.4.3. TFRCNN Compared with VGG 

As mentioned above, TFRCNN was optimized with the nadam optimizer, cross-

entropy loss function, and an initial learning rate of 10−4. Similarly, VGG13 was optimized 

using the adam optimizer, mae loss function, and an initial learning rate of 10−4. The 

optimized training and loss curves for TFRCNN and VGG13 are shown in Figure 17. The 

convergence rate of TFRCNN was faster than that of VGG13. TFRCNN converged after 

20 steps and 80 s, while VGG13 required 150 steps and 180 s. 

Figure 18 shows the prediction accuracy of VGG13 trained with DS4 for 10 repeated 

tests. The mean accuracy and standard deviation are shown in Table 7. Figure 19 shows the 

mean prediction accuracy of TFRCNN and VGG13 trained with DS4 for each load case. 

It is obvious that the prediction capability of TFRCNN comprehensively exceeded 

that of VGG13, once again verifying the high accuracy and stability of TFRCNN. 

  
(a) (b) 

Figure 17. Optimized training accuracy and loss curves for TFRCNN and VGG13: (a) optimized 

training accuracy curves; (b) optimized training loss curves. 

 

Figure 18. Accuracy of VGG13 trained with DS4 for 10 repeated tests. Figure 18. Accuracy of VGG13 trained with DS4 for 10 repeated tests.

Processes 2024, 12, x FOR PEER REVIEW 24 of 28 
 

 

  
(a) (b) 

Figure 19. Mean accuracy and error of TFRCNN and VGG13: (a) mean accuracy; (b) mean error. 

3.4.4. Validation with the IMS Dataset 

In order to verify the universality of the models, another experiment dataset from the 

Center for Intelligent Maintenance Systems (IMS), University of Cincinnati, was added to 

evaluate their performance. Like the CWRU bearing database, the IMS bearing datasets 

are also widely used for verifying bearing fault diagnosis methods. These samples were 

acquired from the motor at 2000 rpm under a radial load of 26,695 N with a sampling 

frequency of 20 KHz. Table 8 lists the sample size, category, and label of the IMS dataset. 

Figure 20 shows the prediction accuracy of the models for 10 repeated tests. The mean 

accuracy and standard deviation are shown in Table 9. The experimental results once 

again demonstrate that the model had high prediction accuracy and stability for different 

data sources. 

 

Figure 20. Accuracy of the models for 10 repeated tests. 

Figure 19. Mean accuracy and error of TFRCNN and VGG13: (a) mean accuracy; (b) mean error.

It is obvious that the prediction capability of TFRCNN comprehensively exceeded that
of VGG13, once again verifying the high accuracy and stability of TFRCNN.

3.4.3. Validation with the IMS Dataset

In order to verify the universality of the models, another experiment dataset from the
Center for Intelligent Maintenance Systems (IMS), University of Cincinnati, was added to
evaluate their performance. Like the CWRU bearing database, the IMS bearing datasets
are also widely used for verifying bearing fault diagnosis methods. These samples were
acquired from the motor at 2000 rpm under a radial load of 26,695 N with a sampling
frequency of 20 KHz. Table 8 lists the sample size, category, and label of the IMS dataset.
Figure 20 shows the prediction accuracy of the models for 10 repeated tests. The mean
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accuracy and standard deviation are shown in Table 9. The experimental results once
again demonstrate that the model had high prediction accuracy and stability for different
data sources.

Table 8. IMS dataset specification.

Sample Size Fault Location Source Label

200 × 512 Ball Channel 5, Bearing 3 0
200 × 512 Inner race Channel 7, Bearing 4 1
200 × 512 Outer race Channel 1, Bearing 1 2
200 × 512 Normal Channel 5, Bearing 3 3

Processes 2024, 12, x FOR PEER REVIEW 24 of 28 
 

 

  
(a) (b) 

Figure 19. Mean accuracy and error of TFRCNN and VGG13: (a) mean accuracy; (b) mean error. 

3.4.4. Validation with the IMS Dataset 

In order to verify the universality of the models, another experiment dataset from the 

Center for Intelligent Maintenance Systems (IMS), University of Cincinnati, was added to 

evaluate their performance. Like the CWRU bearing database, the IMS bearing datasets 

are also widely used for verifying bearing fault diagnosis methods. These samples were 

acquired from the motor at 2000 rpm under a radial load of 26,695 N with a sampling 

frequency of 20 KHz. Table 8 lists the sample size, category, and label of the IMS dataset. 

Figure 20 shows the prediction accuracy of the models for 10 repeated tests. The mean 

accuracy and standard deviation are shown in Table 9. The experimental results once 

again demonstrate that the model had high prediction accuracy and stability for different 

data sources. 

 

Figure 20. Accuracy of the models for 10 repeated tests. Figure 20. Accuracy of the models for 10 repeated tests.

Table 9. Mean accuracy and standard deviation.

Model Mean (%) Standard Deviation

TFRCNN 100 0
TSRCNN 99.87 0
FSRCNN 100 0
VGG13 99.87 0

Table 10 lists the bearing fault diagnosis methods used in this work alongside other
classical and CNN methods for comparison.
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Table 10. Comparison of different diagnostic methods.

Study Method Accuracy (%)

[29] Zero-crossing + ANN 91.5–97.1
[30] CWT + CTKSVM 96.23
[31] CWT + SVD + KMCSVM 95.34
[32] Wavelet + K * classifier 92.50
[33] TF + MDAE + SAMB + NN 96.65
[34] SSL + CNN 96.00

Present work TSRCNN 98.08–99.63 *
FSRCNN 98.50–99.67 *
VGG13 97.73–99.61 *

TFRCNN 98.88–99.92 *
* Prediction accuracy of models trained with mixing dataset DS4.

The prediction accuracy of TFRCNN, FSRCNN, TSRCNN, and VGG13 was signifi-
cantly higher than that of the other methods [29–34], due to the ability of deep convolution
and pooling to adaptively extract the bearing fault features and achieve efficient recognition
through deep integration with a classifier. However, for the other methods, the feature
selection required professional signal processing technology and was subjected to personal
experience preference, insufficient feature extraction of shallow networks, overfitting of
fully connected networks, etc.; thus, the capability of diagnostic accuracy, robustness,
stability, and generalization was restricted.

Among them, TFRCNN with a double branch had the highest prediction accuracy,
ranging from 98.88 to 99.92%, demonstrating good stability and generalization with a small
fluctuation, while FSRCNN, TSRCNN, and VGG13 with single branches had room for
further improvement in performance.

Based on the above comparison and analysis, the results of TFRCNN are clarified in
detail as follows:

1. The prediction accuracy of the models under specific load (see Figure 14) indicates that
TFRCNN with a double-branch structure of time and frequency domains has better
performance of robustness, generalization, high prediction accuracy, and stability
than FSRCNN and TSRCNN with a single structure.

2. The prediction accuracy of the models trained with training set DS4 (see Figures 15e
and 19) shows that TFRCNN is further proven to have stronger robustness, wider
generalization, and higher prediction accuracy than FSRCNN, TSRCNN, and VGG13
trained with the same mixing load data.

3. Compared with the classical methods (see Table 10), TFRCNN is once more verified to
have significantly higher prediction accuracy, with little fluctuation and high stability.

4. Conclusions

The proposed TFRCNN aimed to take advantage of CNN in the integration of deep
feature extraction for big data and fault classification, enhance anti-interference ability by
extracting the time and frequency domain features of the bearing state signals, and use
residual structure to prevent the degradation of the deep network, so as to improve the
diagnosis ability.

The study mainly discusses the effectiveness of TFRCNN under five changeable loads
and two different kinds of dataset sources. TFRCNN trained with mixing loads had better
prediction accuracy and generalization ability than the other conditions. It is expected that
TFRCNN can ultimately be transplanted to different factory environments through further
research and improvement.

The major conclusions are drawn as follows:

1. The experimental results show that the prediction accuracy of TFRCNN reached
98.88–99.92%, which is higher than that of the other methods.
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2. Compared with single-branch FSRCNN, TSRCNN, and VGG13, the double-branch
structure of TFRCNN for extracting time and frequency features can enrich and im-
prove feature expression from the raw data sources, thereby ensuring the
prediction effect.

3. The residual structure of TFRCNN can resolve the contradiction between the in-
creasing network layers and learning degradation, and the global average pooling
improves the sparsity of the model as well.

4. Compared to the other models, TFRCNN has more advantages in prediction accuracy,
convergence, robustness, sparsity, and generalization ability.

With the increasing demands of big data feature extraction for rotating machinery, the
findings in this paper certainly promote the exploration and innovation of deep learning
methods such as CNN to achieve multi-perspective deep feature extraction and highly
efficient diagnosis.
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