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Abstract: The four-way-shuttle-based storage and retrieval system is a recent innovative intelligent
vertical warehousing system that has been widely applied in manufacturing and e-commerce envi-
ronments due to its high flexibility and density. As a complex multi-device cooperative operational
system, this system features the parallel operation of multiple elevators and four-way shuttles. Dur-
ing large-scale-batch inbound operations, the quality of scheduling solutions for inbound-operation
equipment significantly impacts the system’s efficiency and performance. In this paper, a detailed
analysis of the inbound-operation process in the system is conducted, taking into consideration
the motion characteristics of both the elevators and four-way shuttles. Furthermore, we establish
operational time constraints that account for equipment acceleration and deceleration characteristics
and introduce a flexible flow-shop-scheduling model to address the scheduling problem in the system.
Additionally, we propose an improved genetic algorithm based on double-layer encoding to solve this
problem. Comparative experiments with a traditional genetic algorithm and ant-colony algorithm
demonstrate the superior efficiency and accuracy of our approach. Finally, the effectiveness of the
proposed algorithm is validated through comparisons with large-scale practical experiments.

Keywords: four-way shuttle; elevator; job scheduling; improved genetic algorithm; FFSP problem

1. Introduction

In the field of the warehouse and logistics, “technology, intelligent transformation and
flexible leap” have recently emerged as the primary development trend. The old extensive-
management model has not been able to fulfill the demands of the precise management
of warehouse cargo due to the fast development of company size, the increasing kinds
of materials, and the complicated business process. As a result, the transformation of
the cargo-storage system into a three-dimensional, automated, and intelligent method is
unavoidable. A cutting-edge automated warehousing system called the four-way-shuttle-
based storage and retrieval system (FWSBS/RS) is currently available on the market.
Vertical elevators, horizontal four-way shuttles, three-dimensional shelves, together with
additional hardware, and control management software, make up the system [1]. The
benefits of this storage system are its high storage density, adaptable operating pattern,
and quick reaction time. Since it has successfully solved the issues caused by traditional
automated storage equipment’s large area occupation, high energy consumption, low
efficiency, and weak robustness [2], manufacturing companies and internet e-commerce
companies have started to prioritize FWSBS/RS.

Inbound and outbound are the two primary operational modes in FWSBS/RS. During
inbound operations, the system’s elevator runs vertically to move the chosen cargo to the
desired layer and the cargo can be delivered to the desired destination using a four-way
shuttle, which can travel in four directions: forward, backward, left, and right. The system
optimizes the storage position of cargo based on the actual situation during inbound
operations, following a fixed procedure. In contrast, during outbound operations, the
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process is reversed, with a more randomized sequence and batch selection, prioritizing
tasks differently. This paper primarily addresses inbound jobs’ scheduling, specifically
focusing on the characteristics of randomly arriving cargo. For the parallel operation of
both elevators and shuttles, lack of an efficient scheduling mechanism would result in poor
equipment utilization, an increasingly high energy consumption, and a long operating
time, which runs counter to the idea of intelligent and low-carbon development [3].

At present, research in the field of job scheduling focuses on an automated storage and
retrieval system (AS/RS) and a shuttle-based storage and retrieval system (SBS/RS). Due to
these vertical storage systems’ typical reliance on stacker cranes in each aisle for handling
cargo or for transferring cargo from stacker cranes to reciprocating shuttles in corresponding
aisles, their inbound and outbound operations are executed sequentially using respective
devices, lacking the feature of multi-device parallel operations. However, there is relatively
limited research on inbound-job scheduling for FWSBS/RS where multiple elevators and
four-way shuttles serve the entire system in parallel. Owing to the unique characteristics of
FWSBS/RS, existing methods are not directly applicable.

Therefore, this study draws inspiration from mature approaches in flow-shop schedul-
ing and delves into their operational strategies and system performance. We apply an
improved genetic algorithm to provide a more versatile and viable inbound-job-scheduling
solutions for FWSBS/RS. This approach enhances warehousing efficiency, reduces opera-
tional costs, and opens new avenues for research in the scheduling of intelligent vertical
storage systems.

The main contributions of this paper include two aspects. Firstly, a thorough analysis
is conducted on the inbound-job-flow process in FWSBS/RS, and the motion patterns of
both the elevator and four-way shuttles are presented, taking into account the equipment’s
acceleration and deceleration characteristics. Then, a precise inbound-job-scheduling
model is created using a hybrid-flow-shop-scheduling approach to describe the system’s
properties. Secondly, this paper designs an improved genetic algorithm based on double-
layer coding, and introduces the simulated annealing algorithm into the genetic algorithm
to solve the inbound jobs’ scheduling problem for the FWSBS/RS.

The remaining sections of this paper are organized as follows. In Section 2, we review
the relevant literature. Section 3 describes the system layout and job-flow process. In
Section 4, we transform the inbound-job-scheduling problem into a hybrid-flow-shop-
scheduling problem and develop a corresponding model. Section 5 presents DELO-GA.
Section 6 provides simulation experiments. Finally, Section 7 concludes the paper and
discusses future research directions.

2. Literature Review

AS/RS, SBS/RS, and AVS/RS are the principal intelligent storage systems; AS/RS
is the storage and pickup task of the system with the tunnel stacker working in parallel.
AVS/RS and SBS/RS are shuttle vehicles driving along the track, and cooperate with the
elevator to complete cross-layer and cross-roadway storage and pickup tasks. Currently,
the research of FWSBS/RS is limited. Its operational flow is comparable to that of the
AVS/RS and SBS/RS systems because the basis for in-depth study of the two systems can
be inferred using FWSBS/RS.

Many researchers are currently studying the scheduling of AVS/RS and SBS/RS.
The primary concerns are the optimization of storage space [4,5]; the order-sequence-
optimization problem [6,7]; and path planning [8,9].

Using conceptualizing tools, Malmborg and his team [10–12] established a method-
ology for estimating system performance. The functional link between predicted access
time and key system parameters was provided through modeling important properties of
a three-dimensional storage system, such as storage capacity, shelf configuration, number
of automated cars, number of elevators, etc. The storage–retrieval-cycle time, system
utilization, and throughput are all estimated using the state equation model, which of-
fers theoretical support for the technical selection and performance-feasibility decision
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of AS/RS and AVS/RS systems. In order to examine how the quantity of elevators and
shuttles affected the effectiveness of the AVS/RS system, Marchet et al. [13] developed a
simulation model and established a formula for evaluating throughput. Kuo et al. [14] de-
veloped a computationally efficient periodic time model for estimating resource utilization
in AVS/RS. They analyzed 12 different scenarios to demonstrate the model’s performance.
Despite the model displaying some significant errors, it can provide accuracy in estimating
vehicle usage and systems’ costs.

It has recently been popular to use the queuing-network model to determine the
operation time and waiting time more correctly in the three-dimensional storage system.
The queueing-network model (QN), initially suggested by Malmborg’s team [15], was used
to model vehicle flow in various situations and assess the performance of various system
characteristics. Their method offers the groundwork for further study and applications
while offering an efficient way to conceive tools for AVS/RS systems. The sorting effec-
tiveness of the system under a single instruction cycle and a double instruction cycle was
also taken into account by Fukunari’s team [16,17]. They also provided an iterative calcula-
tion approach for the queuing model under a random storage strategy and calculated the
operation time of the instructions. In addition, a closed-queuing-network (CQN) model
was put forth to fix the state-equation model’s computational flaws in determining the
system’s equipment-utilization rate. By using dynamic data from shuttle and elevator
operations as input for the discrete service-time distribution of the queuing network and
taking into account various system factors and variables, Martin et al. [18] presented a
discrete-time open-queueing-network approach. The system’s performance metrics, such
as the arrival rate, service rate, queue length, etc., were analyzed. In their initial research,
Heragu et al. [19] researched different automated-warehouse-storage and -retrieval systems
(AS/RS) and autonomous vehicle storage and retrieval systems (AVS/RS), and through
viewing them as open queuing networks (OQN) and analyzing job cycle times using tools
from existing manufacturing-system-performance analyzers (MPA) AVS/RS and AS/RS’s
performance is compared and examined.

Open-loop queuing networks (OQNs) and closed-loop queuing networks (CQNs) are
now the two most used modeling techniques for AVS/RS systems. The actual case cannot
be adequately described using CQN or OQN models because they overlook the device
waiting time and task waiting time, respectively. A semi-open-loop queuing network
(SOQN) is, therefore, more appropriate for the operating scenario of a three-dimensional
storage system when taking into account the mutual waiting process during the actual
operation of the system. The semi-open queuing-network (SOQN) model was created for
the first time by Roy et al. [20,21], and the analysis-task completion time was solved using
the decomposition-based method (DM). However, the impact of the lifting mechanism was
disregarded. The effect of the stationing strategy on system performance is investigated
and just one shelf operation range is taken into account. In order to account for the effect
of lifting mechanisms in the three-dimensional warehouse system, Ekren et al. [22,23]
constructed a semi-open queue-network (SOQN) model. They then used approximation
methods to examine the system’s task-completion time, waiting time, and other indicators.
The topic of maximizing the number of warehouse cars under specified system parameters
is examined using the matrix-geometric method (MGM). To assess the performance of
the multi-layer AVS/RS system, Cai et al. [24] created a semi-open queue-network model,
represented the vehicle travel time of AVS/RS as the service time of the service node in
SOQN, and utilized the matrix-geometry approach for analysis.

The study mentioned above is mostly based on the queuing-network model, which
primarily assesses system performance and efficiency and takes task arrival rate, service
rate, and task dependence into account. However, it becomes challenging to represent
and solve the scheduling problem when the queuing-network model is used to analyze a
vast and intricate three-dimensional storage system. Currently, most researchers typically
use intelligent optimization algorithms, such as the ant-colony algorithm [25], genetic
algorithm [26], particle swarm optimization algorithm [27], etc., to solve the scheduling
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issues of large-scale three-dimensional storage systems. These algorithms can handle more
complex scheduling issues and typically have the qualities of global search and adaptability.
To address the order of single-access cargo operation, Cao et al. [28] used a technique
similar to TSP, developed the appropriate mathematical model, and showed that this tech-
nique may shorten the hoist’s operating time. To solve the scheduling issue of four-way
shuttles in three-dimensional storage, Song et al. [29] proposed a scheduling optimiza-
tion model based on the genetic algorithm coupled with cross-mutation operators. They
demonstrated through simulation experiments that the optimized route scheduling could
increase the operating efficiency of the system. In order to solve the scheduling problem
for the four-way shuttle, Li et al. [30] took into account the randomness of storage and
retrieval in the three-dimensional storage system, established a mathematical model for the
equipment in FWSBS/RS, proposed a gray wolf optimization algorithm, and demonstrated
the superiority of the proposed algorithm by comparing it to the outcomes of the genetic
algorithm and particle swarm optimization algorithm. In order to overcome the problem
of task scheduling, Wang et al. [31] developed a sequential mathematical model of task
operation based on the features of parallel shuttle picking and serial elevator operation in
three-dimensional storage systems.

In conclusion, FWSBS/RS offers significant flexibility, and it is challenging to apply
a scheduling model to other kinds of storage systems. Few relevant studies have been
conducted on the cooperative scheduling of four-way shuttles and elevators. The majority
of studies focus on the scheduling analyses of one kind of equipment. The pertinent research
for the three-dimensional storage system’s equipment makes the assumption that it moves
at a constant speed and does not take into account the effects of acceleration and direction
change during the four-way-shuttle scheduling process, which makes it challenging to
adapt the research to the three-dimensional storage system’s actual operating conditions.

For the multi-elevators’ and four-way shuttles’ parallel operation in the system, the
allocation and optimization of jobs between different parallel devices for inbound opera-
tions of cargo constitute a typical NP-Hard problem [32]. The exponential computational
complexity arises from determining optimal job sequences and machine selection for the
interdependent transporting and storing subtasks between elevators and four-way shuttles.
To address this, this paper draws from well-established research on flow-shop-scheduling
problems [33]. The flexible flow-shop-scheduling problem (FFSP), which is challenging to
solve using exact algorithms, is an NP-Hard issue, as Wang et al. [34] have demonstrated.
Greedy algorithms are typically employed to address issues with little computational
complexity. Intelligent optimization techniques like the genetic algorithm and particle
swarm optimization algorithm are typically employed to handle large-scale and difficult
issues. This work introduces the FFSP issue to answer the inbound scheduling problem of
FWSBS/RS because the FFSP problem contains the dual features of flow-shop scheduling
and parallel machines.

3. Layout and Presumptions of FWSBS/RS
3.1. Layout Description

Vertical elevators, four-way shuttles, three-dimensional shelves, cargo pickers, as well
as other machinery, and control-management software, make up FWSBS/RS. More than
one elevator and one four-way shuttle are coordinated when the system handles inbound
operations. The elevator is in charge of moving cargo from the bottom of the inbound
picking station to the buffer zone of the target layer. The four-way shuttle is in charge of
moving the cargo from the buffer zone to the target storage location on that layer. It travels
down the horizontal main aisles and longitudinal sub-aisles. We investigate the scheduling
of a single inbound operation in FWSBS/RS, since a three-dimensional storage system is
characterized by small numbers, numerous categories, and great flexibility.

Figure 1 depicts the layout of FWSBS/RS. In the system, the layout of each layer is
the same. The main aisles are those that run above and below the storage area, and the
sub-aisles are those that run through the storage space. It is presumed that the elevator
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runs in the Z direction; the main aisle and the longitudinal sub-aisle are in the X and Y
direction, respectively. When there is cargo to be stored in the system, the shuttle with the
cargo can run along the main aisle to the sub-aisle and then to the target position When
the four-way shuttle has finished the inbound operation, it returns to the buffer zone to
prepare the next operation.
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3.2. Inbound-Operation Flow

The inbound operation flow in FWSBS/RS is listed as follows:

1. The system requests scheduling of the elevator when the inbound operation is initiated.
If there is an idle elevator, let it pick up the cargo at the I/O station;

2. If there is not, the task must wait. The elevator transports the cargo in a vertical
direction to the cargo buffer on the target layer, releases the cargo, and then returns to
the I/O station to wait for the next operation;

3. The system checks to see if there is an idle shuttle at the present layer, and, if there is,
the four-way shuttle moves to the buffer zone to pick up cargo, but, if there is not, the
task must wait;

4. After picking up cargo, the four-way shuttle runs along the main aisle to the sub-aisle
where the target storage position is located; when the shuttle arrives at the destination,
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it releases the cargo and then returns to the buffer along the shortest path to wait for
the next task.

The inbound-process flow chart of FWSBS/RS is illustrated in Figure 2.
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3.3. Presumptions and Parameters

To make the system closer to the real operating conditions and to reduce idle-equipment
time while satisfying constraints on the sequence of inbound jobs, the following presump-
tions are made which facilitate the modeling and research of FWSBS/RS:

1. The four-way shuttle with cargo can only move along the main aisles and sub-aisles;
2. The four-way shuttle without cargo can also run below cargo compartments besides

the main aisle and sub-aisle;
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3. Since the single-pick time for all cargo on the picking machine varies only slightly, it
can be assumed as a constant value;

4. The storage system’s space occupancy state is determined before executing the in-
bound tasks, and all target spaces are unoccupied;

5. During operation, the four-way shuttle and elevator can only move a single load at a
time, and they are not allowed to interrupt before finishing the current task;

6. The four-way shuttle follows the POSC (Point of Service Completion) dwell strategy [14];
that is, they will stay at the position where the last task ended and wait for the
next task;

7. Requests for the idle shuttle and elevator obey the FCFS (First Come First Service)
rules [35];

8. The shelves and compartments in the whole storage system are identical, as is the
width of each aisle.

In order to facilitate subsequent modeling and computations, the parameters and their
meanings for the FWSBS/RS model are defined as presented in Table 1.

Table 1. The parameters of FWSBS/RS.

Parameters Meaning Parameters Meaning

H Shelf-layer height Ci Sub-aisle number
L Cargo-location length Cxyz Aisle of destination for inbound cargo

WC Cargo-location width S0 Running-distance limit
Wm Main-aisle width ts Time for cargo picking
Ws Sub-aisle width tC1

C Time for a four-way shuttle in main-aisle
T Number of sub-aisles ty1

y Time for a four-way shuttle in sub-aisle
M Number of layers tz1

z Time for an elevator in the vertical direction
N Number of columns per layer TSn1 Picker single-job time
P Number of storage positions per column TEn2 Elevator single-job time
aR Four-way-shuttle acceleration/deceleration tE Elevator loading/unloading time

vRmax Maximum speed of four-way shuttle TRn3 Four-way-shuttle single-job time
aE Elevator acceleration/deceleration tR Four-way-shuttle loading/unloading time

vEmax Maximum speed of elevator Tk Individual-cargo inbound-job-completion time
Hk Vacant-cargo locations Tsum Batch inbound-jobs-completion time

4. Scheduling Modeling of Inbound Jobs for FWSBS/RS
4.1. Description of the Problem

The scheduling issue for flexible flow shops in production systems is characterized
by parallel machines and flow-shop scheduling, and is best explained as follows: there
are mi(mi ≥ 2) machines at stage i; n workpieces are continually processed on the c(c ≥ 2)
stages; and there is at least one stage with many machines.

A batch of inbound jobs for FWSBS/RS involves picking with the picking machine,
and transportation with the elevator and the four-way shuttle. The inbound workflow
for a batch of goods can be divided into three phases: goods picking, goods lifting, and
goods transportation to the target location. The different incoming goods can be viewed as
workpieces awaiting processing, and their handling by different equipment can be seen as
different processing steps for these workpieces. The picking equipment, elevator, and four-
way shuttle can be considered as parallel production equipment. Therefore, the scheduling
problem for FWSBS/RS can be viewed as a flexible flow-shop-scheduling problem, and the
scheduling goal is to minimize the total-job-completion time for this batch of inbound jobs
and determine the order of inbound jobs.

4.2. Establishment of FWSBS/RS Model

Assuming that there are M layers in FWSBS/RS, each layer of shelves has N columns
of shelves and T sub-aisles, and there are P compartments in each column. The co-
ordinates of the cargo space located in row y, column x of layer z, can be written as
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{(x, y, z)|x ∈ (1, 2, . . . , N), y ∈ (1, 2, . . . , P), z ∈ (1, 2, . . . , M)}. The set of empty cargo spaces
in the system is Hk =

{(
xk

i , yk
i , zk

i

)
|k = 1, 2, . . . , n

}
. The set of the sub-aisle in the system

is noted as Ci = {(C1, C2, C3, . . . , CN/2)|i = 1, 2, . . . , n}; the aisle C1 is defined as the space
between the first and second columns of shelves, while aisle CN/2 is defined as the space be-
tween column N and column (N − 1) of shelves. The coordinates of the storge destination
are (x, y, z); the sub-aisle in which the destination bay is located is Cxyz, Cxyz =

⌈ x
2
⌉
.

4.3. Equipment-Operating-Time Analysis

The main equipment in FWSBS/RS are four-way shuttles and elevators, which ac-
celerate and decelerate during the stationary-to-stop operation. In practical operational
scenarios, their operational processes are regarded as a combination of uniformly acceler-
ated, decelerated motion, and constant linear motion [36]. To minimize collisions while
maximizing equipment efficiency, it is essential to impose reasonable acceleration and
deceleration constraints, considering adequate acceleration and deceleration distances
within the limited travel range of the equipment. The motion process can be divided
into two patterns: (a) stationary–uniform, acceleration–uniform, deceleration–stationary;
(b) stationary–uniform, acceleration–uniform, motion with maximum speed–uniform,
deceleration–stationary. Figure 3 depicts the two patterns.
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Figure 3. Motion–time relationship of the equipment: (a) equipment not running at maximum speed;
(b) equipment at maximum speed.

According to the principle of kinematics, when the distance is greater than the critical
distance, the motion state of the equipment changes from pattern (a) to pattern (b); the
limit distance is shown in Formula (1).

S0 =
v2

max
a

(1)

The operating time of the equipment is divided into the running time of the four-way
shuttle in the horizontal direction and the running time of the elevator in the vertical
direction. The running time of the four-way shuttle is divided into the time tc1

c running
from the buffer to the sub-aisle where the cargo position is located along the x direction,
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and the time ty1
y running from the main aisle entrance to the target cargo position along

the Y direction, and the running time of the elevator is the time tz1
z running from the

bottom I/O station to the target-cargo-position layer. The time for each stage is shown in
Formulas (2)–(4).

tC1
C =

2
√

|C−C1|(2Wc+Ws)
aR

, |C − C1|(2Wc + Ws) ≤ S0
|C−C1|(2Wc+Ws)

vRmax
+ vRmax

aR
, |C − C1|(2Wc + Ws) > S0

(2)

ty1
y =

2
√

|y−y1|L+Wm
aR

, (|y − y1|L + Wm) ≤ S0
|y−y1|L+Wm

vRmax
+ vRmax

aR
, (|y − y1|L + Wm) > S0

(3)

tz1
z =

2
√

|z−z1|H
aE

, |z − z1|H ≤ S0
|z−z1|H

vEmax
+ vEmax

aE
, |z − z1|H > S0

(4)

4.4. Inbound Jobs’ Scheduling Model

The problem of inbound scheduling for FWSBS/RS can be described as that, to ac-
complish inbound scheduling, n cargos to be inbound are assigned to mj four-way shuttles
and mi elevators. The set of cargo to be stored is expressed as H = {H1, H2, H3, . . . , Hn};
the elevator set is represented as E = {E1, E2, E3, . . . , En}; the set of four-way shuttles is
marked as R = {R1, R2, R3, . . . , Rn}; and the inbound time to complete a cargo can be
expressed as follows:

TSn1 = ts (5)

TEn2 = 2tz1
z + tE (6)

TRn3 = tC1
C + ty1

y + tR (7)

Tk = TSn1 + TEn2 + TRn3 (8)

In the above formulae, Formula (5) represents the first process, which is the pick-
ing time of the picking equipment, determined by the quantity of goods to be picked.
Formula (6) stands for the second process, comprising the operation time of the elevator
and the loading/unloading time of the elevator. Formula (7) denotes the operating time
for the third process, involving the operation time of the four-way shuttle, including the
time it takes for the four-way shuttle to travel to the main aisle where the goods are located,
the time it takes to traverse the sub-aisle to the target location, and the time taken for
loading/unloading of cargo at the location. Formula (8) represents the total time required
for each job to complete the warehousing process.

4.4.1. Objective Function

The optimization goal is to minimize the maximum operational time while scheduling
a batch of cargo for storage; the objective function can be written as Formula (9).

Tsum = min(max(Tk)), 1 ≤ k ≤ n (9)

4.4.2. Constraint Conditions

The following constraint conditions are put in place in FWSBS/RS to guarantee the
continuation of scheduling a batch of arriving cargo, the continuity of equipment operation,
and the cooperative operation of multiple pieces of equipment.

tn < tn+1 (10)

P =

{
T(1, n) < T(2, n) < T(3, n), P(n) = 1, 2, 3
Gn ∈ Hk

n
(11)
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E(i) =


argmin(|D(i)− T|) , ∀E(i) = 0
1 , ∃E(i) = 0
0 , ∀E(i) = 1

(12)

tEn ≥ TE(n−1), tRn ≥ TR(n−1) (13)

Formula (10) shows that the inbound time for each load must be increased in the order
of inbound; Formula (11) shows the uniqueness constraint on the equipment’s time as well
as the target cargo position; Formula (12) restricts the choice of elevator; Formula (13) limits
the operating times of a single elevator and the four-way shuttles for each layer.

5. Design of a Solution Approach for FWSBS/RS Inbound Jobs’ Scheduling

FWSBS/RS’s inbound-scheduling problem has a large number of solutions, making it
difficult to solve using an exact method. The search for optimal solutions using the genetic
algorithm (GA) is based on the laws of evolution that govern the biological world. For
the inbound-scheduling problem of FWSBS/RS, this paper improves the GA’s local-search
capability and prevents it from accidentally hitting the local optimum, by using the double-
layer encoding method to create the chromosome and integrating the simulated annealing
algorithm into the GA’s process. The following are our improvements to the traditional
genetic algorithm to overcome its premature convergence and weak local-search ability.

5.1. Construct Individuals and Initialization

The double-layer encoding method applied to represent the chromosome segments of
equipment and cargo for FWSBS/RS inbound-operation scheduling, augments the search-
space dimensions, thereby enhancing the algorithm’s parallel search capabilities. Figure 4
is an example of the method. There is an order-sorting (OS) layer and machine-sorting
(MS) layer in a chromosome. In the OS layer, the genes (1, 2, 3, 4) indicate the amount of
cargo to be inbound; in the MS layer, the genes (1), (2, 3) (4, 5, 6) indicate the number of
pickers, elevator numbers, and four-way-shuttle numbers, respectively. The sequencing of
cargo arrival and task completion by equipment can be depicted, since each chromosome
corresponds to a specific scheduling scheme.
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The initial population is produced utilizing the random-generating and greedy-
initialization methods following the completion of the encoding [37]. For the random-
generation approach, the initial population is created by randomly permuting the MS-
section numbers and their corresponding OS-section numbers while following the given
constraint conditions. For the greedy-initialization strategy, the device with the quickest
current completion-of-operation time is chosen in the device-selection portion of the MS
section, and random-ordering generation is used to produce the final initial population in
the OS section.

5.2. Decode Method

In order to determine the start and stop times for the devices involved in warehous-
ing the cargo, the double-layer encoded chromosome must be decoded. The current
inbound cargo is scheduled at the earliest opportunity, and the cumulative calculation of
the completion time of the last inbound cargo is carried out to obtain the scheduling time
corresponding to the chromosome [38]. A semi-active scheduling decoding strategy is used
for decoding. When the constraints are satisfied, the inbound order of the double-layer
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encoded OS is traversed sequentially and corresponds to the order of the equipment in the
MS section.

5.3. Adaptation Function and Selection Operation

Formula (14) illustrates the aim in this study, which is to minimize the operation time
for finishing a batch jobs which are inbound. The fitness function is set to be the inverse
of the objective function, where f (q) indicates the q-th chromosome’s fitness value. In
the selection process, the fitness of the population’s members is first standardized. The
normalized value of fitness P is shown in Formula (15), and a roulette wheel method is
used to generate a random-probability value based on the normalized fitness value of
individual i, and where fi denotes the fitness value of individual i, and fmax and fmin
denote the maximum and minimum values of fitness in the population, respectively. The
individual is chosen as the parent, and the selection procedure is repeated until a sufficient
number of parent people have been chosen if this probability value is smaller than the
individual’s p value. The population as a whole becomes more fit thanks to this strategy,
which keeps fitter individuals around and enhances the likelihood that they will be chosen
in future generations.

f (q) =
1

Tsum
(14)

P =
fi − fmin

fmax − fmin
(15)

5.4. Crossover Operation

The POX crossover operator suggested in the literature [39] is used to make sure that
the individual after cross-operation is still a workable solution. The steps for POX based on
double-layer encoding are as follows:

Step
1.

Randomly divide the n jobs in the OS layer into two non-empty complementary
subsets I1, I2;

Step
2.

Copy the genes that belong to I1 from parent P1 to child C1 in the same location.
Reposition the parts from I1 in parent P2 location in child C2;

Step
3.

Copy the remaining elements in parent P2 to the remaining empty positions in child C1
in order. Copy the remaining elements in parent P1 to the remaining empty positions
in child C2 in order.

The resultant child individual is always a workable solution since the device number
of the MS layer at the crossover time is replicated together with the cargo number of the
related OS layer to the corresponding child individual.

5.5. Mutation Operation

To maintain population diversity, different variants of the bilayer code are used to
increase chromosome diversity and the ability to explore the search space.

By selecting two cargo numbers at random, a, and b, and discovering all of the positions
of a, b in the chromosomes, positional variation was applied to the chromosomes in the OS
layer of the cargo selection. The new chromosomes were obtained by swapping the OS in
the chromosomes of a, b with the MS at the same time position.

For the MS layer of the device selection, the chromosomal genes are operated by
single-point mutation. Using this approach, the population is mutated when the MS code
corresponding to the OS code fulfills the machine selection-order constraints.

5.6. Simulated Annealing Strategy

After the above selection, crossover, and mutation operations to generate a new
population of P′ =

{[
S′

1
]
, [S′

2], · · · , [S′
n]
}

to improve the algorithm’s optimization of search



Processes 2024, 12, 223 12 of 21

ability, the fitness function is used as the objective function of the simulated annealing
operation, and the annealing increment is calculated as

∆ f = f itness(Si)− f itness
(
S′

i
)

(16)

exp(−∆ f /Ti) (17)

In Formula (16), accept chromosome S′
i in the population of the following generation

if ∆ f < 0; otherwise, accept chromosome S′
i with the probability given in Formula (17). The

simulated-annealing-temperature updated rule is Ti+1 = λTi, where Ti is the simulated
annealing temperature and λ is the cooling rate.

6. Simulation Experiment and Verification
6.1. Algorithm Effectiveness Analysis
6.1.1. Analysis of Small-Scale Inbound Jobs

The single-depth FWSBS/RS is used as an example in this paper, and the initial system
parameters are shown in Table 2. Three algorithms, namely, ant-colony optimization
(ACO), genetic algorithm (GA), and the proposed double-encoded local optimization
genetic algorithm (DELO-GA), are applied to validate the results for small-scale instances.
The key parameters for these three algorithms are set as shown in Table 3, with some
parameters of the ACO being adapted from the literature [40].

Table 2. Initial-system-parameters configuration.

Parameters Value Unit Parameters Value Unit

H 0.8 m P 12 -
L 1 m ts 10 s

WC 1 m tE 2 s
Wm 1 m tR 2 s
Ws 1 m aR 2 m/s2

T 5 - vRmax 2 m/s
M 6 - aE 1 m/s2

N 10 - vEmax 2 m/s

Table 3. Parameter settings for the three algorithms.

Algorithms Parameter Name Value

ACO

Ant-colony size 50
Pheromone-evaporation coefficient 0.8

Information heuristic factor 1
Expectation heuristic factor 5

Degree of acceptance of random search 0.2
Iteration count 400–1000

GA/DELO-GA

Initial population size 200
Crossover probability 0.8
Mutation probability 0.08

Iteration count 400–1000
Initial temperature 100
Cooling coefficient 0.92

Small-scale instances (SI) are generated using a random approach, resulting in 10 sets
of jobs, each comprising 10 cargos for inbounded, and the three algorithms are run on
each set of data 30 times. The results are shown in Table 4, where ‘Times’ represents the
completion time obtained using the enumeration method (EM) for each set of tasks; ‘Avg’
indicates the average completion time for each set of jobs; ‘Best’ denotes the best completion
time achieved for each operation set; and ‘Nun_opt’ indicates the number of times the
optimal solution was achieved using the algorithms.
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Table 4. Comparison results of three algorithms for 10 small-scale instances.

SI
EM ACO GA DELO-GA

Times/s Avg/s Best/s Num_opt Avg/s Best/s Num_opt Avg/s Best/s Num_opt

1 144.80 146.74 144.80 26 145.13 144.80 25 144.80 144.80 27
2 136.80 137.71 136.80 25 138.80 136.80 24 137.13 136.80 29
3 111.31 115.04 111.31 14 113.53 111.31 23 111.95 111.31 28
4 131.28 134.10 131.28 19 132.50 131.28 22 132.03 131.28 26
5 149.46 150.84 149.46 18 150.54 149.46 25 149.87 149.46 27
6 162.41 162.75 162.41 26 163.08 162.41 22 162.50 162.41 29
7 147.07 149.28 147.07 23 149.58 147.07 21 147.92 147.07 26
8 168.31 171.19 168.31 22 169.98 168.31 25 168.98 168.31 28
9 114.83 120.61 118.66 17 120.06 118.66 23 114.83 114.83 30

10 151.63 153.44 151.63 24 152.96 151.63 26 152.29 151.63 28

Due to the fact that 10 instances are small-scale instances, an exhaustive enumeration
method is employed to find the optimal solution for each group of jobs. As shown in
Table 4, comparing the results of the enumeration method, ACO, GA, and the DELO-GA
algorithm proposed in this paper, we observe that ACO and GA match the enumeration
method in 9 sets but struggle to find the optimal solution in the 9th instance, being trapped
in low efficiency and the local optimum. In contrast, the DELO-GA algorithm consistently
discovers the optimal solution for all 10 instances.

As shown in Figure 5, the number of optimal solutions obtained using the DELO-GA
algorithm is more than seven times that of the ACO and GA. Figure 6 shows that the
difference between the average operating time and the optimal operating time of the 10 sets
obtained is less than 2 s, validating the effectiveness of the algorithm proposed in this paper.
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6.1.2. Analysis of Three Algorithms for FFSP Benchmark Instances

This paper investigates the inbound-scheduling problem of the FWSBS/RS by trans-
forming it into a flexible flow-shop-scheduling problem. Due to the absence of standard
benchmark instances for inbound scheduling in such systems, this study conducts compar-
ative experiments using Taillard benchmark instances [41] to evaluate three proposed algo-
rithms, and the website of these instances is: http://mistic.heig-vd.ch/taillard/problemes.
dir/ordonnancement.dir/ordonnancement.html (accessed on 20 December 2023). Addi-
tionally, the effectiveness of these algorithms is validated through comparative analysis
with results obtained by Wei et al. [42].

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
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For effective comparison, we utilized the optimal solutions of three scales of Taillard
benchmark instances provided by Wei et al. [42] as the benchmarks for evaluating the
effectiveness of our proposed algorithms. Each algorithm was applied to solve each case
30 times. ARPD represents the average relative percentage deviation between the results
obtained using the algorithm and the optimal values. Here, Cxi denotes the solution
of algorithm x on instance i, and COpti stands for the optimal solution provided by the
referenced literature. The calculation of ARPD can be completed using the Formula (18):

ARPD =
1
n

n

∑
i=1

∣∣∣∣∣Cxi − COpti

COpti

∣∣∣∣∣× 100% (18)

The three algorithms proposed in this paper were individually executed 30 times
on each benchmark instance. Table 5 presents the problem size (jobs × machines) for
each instance, along with the best solution obtained using each algorithm, their respective
maximum values, and the ARPD.

Table 5. Comparison of results for three algorithms on benchmark instances.

Instances PS (J × M) COpti
ACO GA DELO-GA

Best Max ARPD Best Max ARPD Best Max ARPD

Ta001 20 × 5 1324 1339 1357 2.51% 1357 1364 3.43% 1322 1360 1.26%
Ta011 20 × 10 1698 1713 1775 4.02% 1761 1812 5.92% 1658 1680 2.35%
Ta031 50 × 5 2731 2834 2979 5.19% 2879 3106 6.13% 2723 2799 3.98%

As analyzed from the data in Table 5, compared to GA and ACO, the DELO-GA
algorithm has smaller deviations between the obtained solution and the optimal, with
an ARPD less than 4% for larger scale problems (e.g., Ta031). These results indicate that
DELO-GA has better robustness in addressing this problem as the size increases. Moreover,
transforming the FWSBS/RS’s inbound scheduling into an FFSP verifies the applicability
and validity of DELO-GA in solving this type of scheduling problem.
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6.2. Comparative Analysis of Three Algorithms on Various-Scale Storage Systems

To validate the applicability of the three proposed algorithms to storage systems with
different layouts, 18 cases are configured as shown in Table 6, varying in the number of
layers (M), sub-aisles (T), and storage positions per column (P).

Table 6. Layout parameters of different storage systems.

M 4 6 8

T 3 5 9

P 10 12

As indicated in Table 7, 50 random inbound jobs are generated for each layout. The
three algorithms are executed 30 times, respectively, to solve each case, and the mean
deviation (MD) of each algorithm is calculated to verify their applicability in inbound-
scheduling operations for storage systems with various scales. The calculation of MD is
defined using Formula (19).

MD =
1
n

n

∑
i=1

|xi − x| (19)

Table 7. Mean deviation of three algorithms for various-storage-system layouts.

Instances
Layouts MD

M T P ACO GA DELO-GA

1 4 4 10 2.90 3.10 2.23
2 4 4 12 3.59 4.50 3.59
3 4 5 10 4.36 4.78 3.65
4 4 5 12 4.11 5.20 3.78
5 4 8 10 4.64 5.03 3.52
6 4 8 12 4.00 4.82 3.56
7 6 4 10 2.82 3.93 2.37
8 6 4 12 2.97 3.90 2.88
9 6 5 10 2.90 3.76 2.35

10 6 5 12 2.12 2.19 1.91
11 6 8 10 3.19 2.85 2.48
12 6 8 12 3.48 4.01 2.92
13 8 4 10 3.41 3.22 2.23
14 8 4 12 2.77 3.67 2.59
15 8 5 10 2.58 3.06 2.16
16 8 5 12 2.62 3.34 2.02
17 8 8 10 2.48 2.96 2.56
18 8 8 12 2.71 3.46 2.36

From Table 7 and Figure 7, it is evident that the DELO-GA algorithm proposed in
this paper consistently maintains a mean deviation of less than 4 across 30 independent
tests while solving inbound operations for 18 layouts of the FWSBS/RS. Notably, for the
10th layout, all three algorithms produced minimal and closely aligned results. Therefore,
further comparative analyses of increased batch quantities for inbound jobs are conducted
in Section 6.3, focusing on Instance 10 (M = 6, T = 5, P = 12).
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6.3. Comparative Analyses of Three Algorithms for Large-Scale Jobs

For larger scale instances, including 20 or more inbound-operation jobs [43], the exact
solution cannot be found using the enumeration method. Three algorithms, ACO, GA, and
DELO-GA, are used to solve each group of inbound operation with the number of jobs
of being 20, 40, 60, 80, and 100, respectively, and each group of jobs is solved using the
three algorithms for 30 times. The three algorithms are programmed in Python, and are run
and tested on a Windows 11 computer configured with Intel(R) Core(TM) i9-9900K CPU
@3.60GHz and 32 GB RAM.

Table 8 shows the completion times for batch inbound jobs obtained by running three
algorithms. The optimal-job-completion times are 210.83 s, 411.31 s, 613.83 s, 811.31 s, and
1013.83 s for five different scales, respectively. When comparing the results produced by the
ACO and the conventional GA, the suggested DELO-GA algorithm’s average optimization
efficiency is 2.28% and 2.11%, respectively.

Table 8. Comparison of three algorithms for large-scale instances.

Scales Algorithms CPU Times/s Avg/s Best/s MD

20
ACO 17.38 221.89 217.83 2.39
GA 14.85 219.72 217.66 1.66

DELO-GA 12.81 212.54 210.83 1.18

40
ACO 31.27 436.88 422.83 8.28
GA 27.92 434.46 422.83 6.89

DELO-GA 24.93 417.05 411.31 1.78

60
ACO 74.62 641.17 626.49 7.51
GA 65.62 635.85 620.49 6.23

DELO-GA 57.41 616.89 613.83 1.78

80
ACO 103.08 841.94 827.00 5.73
GA 98.78 840.36 822.00 7.65

DELO-GA 75.95 818.98 811.31 2.81

100
ACO 146.22 1063.31 1026.83 13.62
GA 135.94 1075.83 1035.14 14.86

DELO-GA 92.25 1021.95 1013.83 2.78

To analyze the results of 30 independent tests for each job group, standardization of
the results is performed due to significant variations in average job times among different
groups. Therefore, this paper employs a standardization procedure for the results of each
group, computed using the following Formula (22):
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µ =
1
n

n

∑
i=1

ti (20)

σ =

√
1
n

n

∑
i=1

(ti − µ)2 (21)

Zi =
ti − µ

σ
(22)

where µ represents the mean of a set of test results; σ stands for the standard deviation
of a set of test results; Zi denotes the standardized value of test i; and the boxplot of
standardized values for all sets is depicted in Figure 8.
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The mean-deviation (MD) index is proposed to compare the stability of the solutions
generated using the three algorithms. As depicted in Table 8 and Figure 8, as the scale of
FWSBS/RS’s inbound operation increases, the solution stability of DELO-GA for large-
scale-operation instances is superior to that of the other two algorithms, and the optimal
operation time obtained is shorter compared to the optimal solution time of the other two
algorithms. Further evidence of the superiority of the algorithm proposed in this study can
be observed in the increasing improvement of its optimal result as the operation size grows,
in contrast to the other two algorithms.

To comprehensively analyze the convergence rates of the ACO, GA, and DELO-GA
when solving problems of different job sizes, we have plotted the iterative convergence
curves of the three algorithms using the optimal solutions obtained, as shown in Figure 9.
It is observed that, for job sizes of 20 and 40, the ACO exhibits a similar search capability
as the GA. However, the ACO has a slower convergence rate compared to the GA. When
solving problems with 60 and 80 jobs, the ACO is more prone to premature convergence,
resulting in poorer optimal solutions. Notably, when dealing with 100 jobs, the GA quickly
falls into a local optimum.

An analysis of the optimization results shows that the ACO and GA have average
solution errors of 2.51% and 2.40%, respectively. In contrast, the DELO-GA exhibits an
average solution error of 0.88%. Furthermore, the DELO-GA demonstrates faster conver-
gence rates for all five job sizes, requiring less time to find the optimal batch inbound-job
schedule. It can also escape the local optimal time more efficiently. Therefore, this study
confirms the superior overall performance of the proposed algorithm, making it suitable
for solving large-scale FWSBS/RS’s inbound-scheduling problems.
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7. Conclusions

At the core of this paper lies the examination of equipment’s parallel-operation char-
acteristics, inbound-job-scheduling modeling, and performance evaluation for FWSBS/RS.

Theoretically, we model the inbound-job-scheduling problem of FWSBS/RS as an
FFSP model with the object of minimizing the maximum job-completion time, thereby
enhancing the overall system efficiency and performance. By meticulously analyzing the
inbound-job processes, considering the motion patterns of the elevators and four-way
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shuttles, and introducing job time constraints accounting for equipment acceleration and
deceleration, we further enhance the model’s precision.

Methodologically, to address the inbound-job-scheduling problem in FWSBS/RS, we
propose an improved genetic algorithm based on double-layer encoding, termed DELO-GA.
Experiment results demonstrate that when handling large-scale inbound jobs, DELO-GA
reduces computational time by 26.6% and 18.4% compared to the ACO and traditional
GA, confirming its superiority in terms of computational efficiency and accuracy. The
introduction of this algorithm not only reduces batch inbound-job-completion times but also
exhibits superior optimization capabilities and faster convergence rates, thereby enhancing
the overall system performance. This contribution furnishes modern warehousing systems
with a potent tool and methodology.

There are still areas for potential improvement in this study. Firstly, further consid-
eration of practical constraints and factors such as equipment maintenance and failures
are warranted to better reflect real-world operational conditions. Secondly, exploring more
complex multi-objective optimization problems to balance different performance metrics is
an avenue for future research. Lastly, validating the algorithm’s applicability and robust-
ness across a broader spectrum of warehousing systems is essential. Subsequent research
could delve deeper into the application of artificial intelligence and deep-learning technolo-
gies in warehouse-system scheduling, and environmental sustainability, to optimize energy
utilization and reduce environmental impact, could be an important focus area.
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