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Abstract: Alzheimer’s disease has been a serious problem for humankind, one without a promising
cure for a long time now, and researchers around the world have been working to better understand
this disease mathematically, biologically and computationally so that a better cure can be developed
and finally humanity can get some relief from this disease. In this study, we try to understand
the progression of Alzheimer’s disease by modeling the progression of amyloid-beta aggregation,
leading to the formation of filaments using the stochastic method. In a noble approach, we treat
the progression of filaments as a random chemical reaction process and apply the Monte Carlo
simulation of the kinetics to simulate the progression of filaments of lengths up to 8. By modeling the
progression of disease as a progression of filaments and treating this process as a stochastic process,
we aim to understand the inherent randomness and complex spatial–temporal features and the
convergence of filament propagation process. We also analyze different reaction events and observe
the events such as primary as well as secondary elongation, aggregations and fragmentation using
different propensities for different possible reactions. We also introduce the random switching of
the propensity at random time, which further changes the convergence of the overall dynamics. Our
findings show that the stochastic modeling can be utilized to understand the progression of amyloid-
beta aggregation, which eventually leads to larger plaques and the development of Alzheimer disease
in the patients. This method can be generalized for protein aggregation in any disease, which includes
both the primary and secondary aggregation and fragmentation of proteins.

Keywords: Alzheimer’s; AD; stochastic modeling; chemical reaction; Gillespie algorithm

1. Introduction and Motivation

Alzheimer’s disease, also abbreviated as AD, is one of the most common forms of
dementia, which is characterized by memory loss and cognitive decline. As of 2023,
6.7 million people are living with AD in United States [1] and over 55 million worldwide [2].
Nearly 60–80% of dementia cases comprise Alzheimer’s [2,3]. There are over 10 million new
cases of dementia each year worldwide [4], which means, on average, 7 million of them are
suffering from Alzheimer’s. And it will only increase each year [1] unless a satisfactory
cure is invented. There are two main hypotheses from which the mathematical models
have emerged. These hypotheses are used to describe the progression of AD. There are
thousands of studies conducted using these hypotheses [5–8]. The first hypothesis is the
amyloid hypothesis [5–7,9–15], which is a neuron-centric model, and the second is the
Warbug hypothesis, which is the neuron-astrocytic model [8,15–17]. The neuron-centric
model suggests that a mutation in the nuclear genome induces the overproduction of (Aβ)
and tau, which become toxic to neurons [8,16,17]. The neuron-astrocytic model contends
that the progression of AD is triggered by defects in the normal energy transduction process,
a condition induced by mitochondrial dysregulation [8,15,17].

Processes 2024, 12, 157. https://doi.org/10.3390/pr12010157 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12010157
https://doi.org/10.3390/pr12010157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0009-0009-4920-5414
https://orcid.org/0000-0002-8088-9772
https://doi.org/10.3390/pr12010157
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12010157?type=check_update&version=1


Processes 2024, 12, 157 2 of 26

According to the amyloid-beta hypothesis, Alzheimer’s is a neuro-degenerative dis-
ease, where the patient’s cognitive function progressively deteriorates, which is character-
ized by the progressive accumulation of amyloid beta called (Aβ) peptides [15,18]. The
major pathological hallmarks in the brain of AD patients are amyloid plaques [5,9–12,18],
and neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau protein [5]. Neu-
rofibrillary tangles (NFT) are pathological insoluble aggregates of hyperphosphorylated tau
proteins, which are microtubule-associated proteins, observed within the neurons of AD
patients [12]. In healthy individuals, normal tau stabilizes the microtubules of the neuronal
cytoskeleton; among their diverse functions, microtubules facilitate the transport of sub-
stances between nerve cell compartments. Aggregated tau filaments cannot be degraded
by the host neurons and gradually accumulate and aggregate into insoluble filaments [11].
Tau pathology is an early feature of AD, and the appearance of tangles correlates with
neuronal loss [19].

Amyloid beta is normally secreted from cells and degraded, and it is produced through-
out one’s life, but in the case of AD patients, it is secreted and aggregated into insoluble
plaques [18,20,21]. Aβ is a proteolytic product of amyloid precursor protein (APP), and
AD neuropathology is characterized by an abnormal metabolism of APP with an excessive
accumulation of Aβ peptides [20,22]. Aβ is believed to be the main reason for initiating the
pathological cascade of the disease [23]. Amyloid plaques are hard, insoluble accumula-
tions of beta-amyloid proteins that clump together between the neurons in the brains of AD
patients [5,9–12,24]. The lesions occur in brain regions involved in learning and memory,
i.e, the hippocampus, the amygdala, and in the association cortices of the frontal, temporal
and parietal lobes [5].

Aβ deposits in senile and neuritic plaques and hyperphosphorylated tau proteins in
neurofibrillary tangles (NFTs) are extracellular and intracellular expressions, respectively,
of the AD neuropathological phenotype, together with selective neuronal loss in the hip-
pocampal and neocortical regions [25]. Figure 1 shows the complex interrelation of amyloid
plaques and NFT and how they cause the loss of neurons. The presence of plaques around
a neuron causes them to die, possibly by triggering an immune response in the immediate
area. Tangles form inside of neurons and interfere with the cellular machinery used to
create and recycle proteins, which ultimately kills the cell [24].

Figure 1. The presence of amyloid plaques and neurofibrillary tangles in the AD-infected brain versus
the normal human brain. Figure motivated from [24].

One of the main characteristics of cells and tissues made of proteins is the self-assembly
of proteins into filaments of a particular structure [14,26,27]. Cells are sustained by cy-
toskeletal filaments, whereas tissues are sustained by collagen fibrils. Within all eukaryotic
cells, there exists a network of filaments, which is a complex mesh of protein filaments
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and motor proteins that aid in cell movement and stabilize the cell [28]. And cytoskeletal
filaments are equally important in the correct formation of the nervous system and their
various functions [27,28]. Given the importance of the cytoskeleton for neurons, its involve-
ment in neurological disorders (taupathies), including AD, is not surprising, and it can
be in the form of their mutation and changes in their dynamics and the stability of the
cytoskeletal proteins [27].

All of this self-assembly of the proteins, be it functional or dysfunctional, involves
the assembly of elementary units to the ends of the growing structure [9,13,14]. Hence, on
that note, we are interested in studying the early aggregation of monomers forming the
structure, like oligomers and filaments. These filaments are the most toxic structure [13]
and need attention for both understanding the disease and deriving the potential cure.
Studies suggest that the aggregation of a primary structure, such as monomers, into the
intermediate species, such as oligomers and unbreakable filaments, are correlated with
cellular toxicity [13], and such is the case of most amyloid-based diseases, including AD. In
AD, the aggregation of soluble APP, into non-soluble amyloid fibrils is the major cause of
cognitive loss, including NFT [5,9–12].

The law of mass action serves as the foundation for robust kinetic models that effec-
tively define the chemical kinetics of intricate reaction networks controlling the growth
of filamentous protein structures. These models also provide valuable insights into the
complex processes underlying protein aggregation [9]. In that respect, [9,14] established
master equations to treat the aggregation of the amyloid precursor protein towards the
formation of fibrils. They established the criterion for primary nucleation, elongation
and other secondary events, such as secondary nucleation, fragmentation and monomer-
dependent elongation [9,14]. Ref. [13] established another master equation to capture the
stochastic effects in early amyloid aggregation to describe the aggregation of monomers into
oligomers. They used log-normal closure moment method rather than direct simulation.
They also used the Gillespie algorithm to simulate the process of protein aggregation and
compared it with the result from their master equation. Ref. [6] introduced the method of
second stochasticization by introducing random noises into already statistically averaged
equations obtained from moment closure methods. They coupled their study with the
stochastic simulation using the Gillespie algorithm. Ref. [15] used a stochastic mathematical
model to understand the various phases and transitions of AD.

Due to the complexity and the number of aspects involved in the protein aggregation,
although the deterministic mathematical model has given some very good frameworks,
they do not capture the inherent stochastic nature present in the bio-chemical reactions.
From a physical point of view, the stochastic formulation of chemical kinetics is superior
to the deterministic formulation: the stochastic approach is always valid whenever the
deterministic approach is valid, and is sometimes valid when the deterministic approach is
not [29]. Hence, to unravel the complex dynamics preset in the amyloid-beta aggregation,
we make use of the stochastic computational simulation to understand the dynamics of
amyloid growth and the aggregation of monomers towards forming filaments. We study
the formation of filaments from, at most, eight monomers. We treat all possible combina-
tions of monomers forming the filaments of lengths up until eight. Our comprehensive
simulation of reaction kinetics is the main contribution of our work, which sheds light on
the aggregation and formation of no-soluble toxic filaments from soluble protein units.
We experiment with the primary nucleation, followed by aggregation/elongation and
fragmentation, which occur with different propensities. We also simulate the dynamics
on different sets of propensities, using different propensities for different reaction events,
which are not so evident in the studies that we reviewed. With that, we are also able to
see how the individual filament of length i evolved with time, and we also evaluate the
dynamics by introducing different random propensities at different times. Our experiments
show that the evolution of amyloid-beta aggregation can be modeled computationally by
using stochastic modeling techniques of chemical reactions. We evaluate the convergence
by plotting the phase diagram of the evolution of filaments of different lengths, and by also
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plotting the zeroth moment and first moment. We also find that the convergence is highly
correlated with the propensities used for the reaction events, and some events dominate
the overall reactions events that occur during the simulation. And there is a clear difference
in convergence when we use fixed constants for each reaction and different constants for
different reactions. We also evaluate that the initial conditions (the initial population of
pre-existing filaments) affect the final convergence.

Although some 90,000+ research studies have been published since 1990 on AD [25], it
still remains an enigma largely due to the nature of the disease and its complexity [25,30].
Although the amyloid-beta hypothesis has been studied widely and believed to show
the development of disease, it is still very hard to trace the root of the disease, or how,
why and when it develops [19,25,30]. And there is more and more speculation that Aβ
plaques are the result of AD, and not the other way around [30]. But it is clear from
all these studies that Aβ and NFT are well-known markers of AD, and hence are worth
studying further. On that note, we think that there is a space for contribution to be made
in the stochastic nature of the Aβ aggregation, and how they propagate and form the
dysfunctional insoluble filaments. Hence, the main objective of this work is to utilize
the mathematical and computational framework to unravel the stochastic nature of the
elongation, propagation and possible fragmentation of Aβ peptides. We treat this process
as a chemical reaction process and use the chemical kinetics of the intricate reaction, which
is responsible for forming the filamentous protein structure. Our main contribution lies in
conducting detailed simulations and reaction kinetics analyses to understand the stochastic
nature of amyloid-beta aggregation, which includes experimenting with various reaction
propensities and their random switching over time, thus providing a comprehensive model
of amyloid-beta aggregation as a stochastic chemical reaction process, an approach not
extensively explored in previous studies.

The paper is organized as follows: This first section introduces the work, the motiva-
tion behind this study, and the objectives. Section 3 introduces the mathematical theory
behind the chemical reaction and how the stochastic modeling can be performed. Section 4
shows the experiments that we conducted comprehensively. In the last three sections, we
discuss the results, limitations and conclusions.

2. Chemical Reaction Network: Mathematical Theory

The mathematical theory behind modeling chemical reactions with stochastic pro-
cesses involves the use of the chemical master equation, which describes the time evolution
of the probability distribution of the state of a chemical system. The chemical master
equation can be derived from the principle of detailed balance, which states that the rate
of each reaction is balanced by the reverse reaction, ensuring that the system is in a state
of equilibrium.

2.1. Chemical Reaction Networks

Chemical reaction networks (CRNs) involve the interactions of molecular units within
a multi-variable dynamical system. In deterministic modeling, CRNs are represented using
differential equations derived from the fundamental law of mass action. The resulting
system of differential equations is commonly nonlinear and often lacks an exact solution.
The deterministic theory of CRNs was developed in the 1970s by Fritz Horn, Roy Jackson,
and Martin Feinberg [31]. A chemical reaction network is described by the triple {S, C, R},
where S is the species, C is the complexes which are described by a non-negative linear
combinations of the species that describe how the species can interact, and R represents
the reactions.

2.2. Deterministic Model of Chemical Reaction Networks

A chemical reaction network characterizes the reactions of chemical species. In this
regard, consider m different species Xi, i = 1, 2, . . . , m, that participate in n reactions as
follows [31]:
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m

∑
j=1

aijXj
ki−−−−−−→

m

∑
j=1

bijXj, 1 ≤ i ≤ m (1)

aijs and bijs are the stoichiometric coefficients, and they are non-negative integers.
The reaction rates, following the law of mass action, are given by

ri = ki

m

∏
j=1

X
aij
i (2)

By defining the stoichiometric matrix S as

S = (sij) = (bij − aij)

the differential equations are written as

dX
dt

= Sr

2.3. Stochastic Models of the Chemical Reaction Network

The mathematical theory behind modeling chemical reactions with stochastic pro-
cesses involves the use of the chemical master equation, which describes the time evolution
of the probability distribution of the state of a chemical system. The chemical master
equation can be derived from the principle of detailed balance, which states that the rate of
each reaction is balanced by the reverse reaction, ensuring that the system is in a state of
equilibrium [32,33].

dP
dt

= Sr

where P is a vector of probabilities that represents the probability distribution of the state of
the system, t is time, S is the stoichiometry matrix that describes the changes in the number
of molecules of each species as a result of each reaction, and r is the vector of reaction rate
functions that depend on the concentrations of the reactants.

Denoting by P(X(t), t) the probability for the state X(t) = (X1(t), X2(t), . . . , Xn(t)) at
time t,

dP(X(t), t)
dt

=
m

∑
i=1

P(X− Si , t)ai(X− Si)−
m

∑
i=1

P(X, t)ai(X)

Si is the ith row of the stoichiometric matrix S, and ai(X) is the propensity function for
the ith reaction determined by the law of mass action [32,33].

3. Modeling Assumptions

The primary assumption underlying the model is that the aggregation of Aβ proteins
is the leading hypothesis for Alzheimer’s disease.

Cohen et al. [9,14,34] built upon Oosawa’s theory, which was originally developed to
derive analytical results for filamentous growth in primary pathways, and expanded it to
include possible secondary pathways [35]. Figure 2 illustrates the microscopic processes in-
volved, namely primary nucleation, elongation, dissociation, fragmentation, and monomer-
dependent secondary nucleation as described in the master equation.

Primary Nucleation︷ ︸︸ ︷
M1 + M1−→M2 −→ M3︸ ︷︷ ︸

Elongation

Elongation︷ ︸︸ ︷
−→ M4

k+−→ . . .
k+−→ Mn−→ Mn+1 −→ . . .−→Mm + Mj ←→ Mm+j︸ ︷︷ ︸

aggregation/fragmentation

(3)
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Figure 2. Schematic representation of the microscopic processes of Aβ fibril formation and elongation.

Table 1 shows the aggregation process and different types of reactions that can happen,
it is further more illustrated in the Figure 2.

Table 1. Multi-step aggregation process of Aβ.

Chemical Reactions Reaction Rate Explanation

(1) M1 + M1−→M2 kn Primary Nucleation
(2) Mi + M1−→Mi+1 k+ Elongation, i ≥ 2
(2) Mi + M1←−Mi+1 koff Dissociation, i ≥ 2
(3) Mi + Mj−→Mi+j k+ aggregation, 2 ≤ i < ∞
(4) Mi + Mj←−Mi+j k2 Fragmentation, 2 ≤ i < ∞, 2 ≤ j ≤ i

3.1. The Structural Organization of Amyloid-Beta Peptides and Amyloid Precursor Protein (APP)

Amyloid beta peptide is a 36–43 amino acid peptide and derives from precursor
protein, amyloid-beta precursor protein (APP) enzymatic proteolysis, a physiologically
produced protein that plays important roles in brain homeostasis [36,37]. In Aβ, peptides
are generated with a predominance of the 40 amino acid from (Aβ40) followed by 42 (Aβ42).
Aβ42 is more prone to aggregation than Aβ40. Immune histochemical analysis indicates
that Aβ42 is initially deposited and found at a higher concentration in the amyloid plaques
observed in AD patients [36]. It is believed that the over-expression of APP results in an
increase in cerebral Aβ peptides and consequently in their deposition.

Some cases of early onset familial Alzheimer’s disease are linked to mutations in
three genes—amyloid precursor protein (APP) on chromosome 21, presenilin 1 (PSEN1)
on chromosome 14, and presenilin 2 (PSEN2) on chromosome 1, with mutations in PSEN1
being the most frequent cause of autosomal dominant Alzheimer’s disease [37]. For the
more detailed treatment of the structure and organization of the Aβ, we refer the readers
to [36,37].

3.2. Master Equation in Deterministic Form

Following [9,14,34], Equation (4) represents the master equation, which is derived
based on the kinetics of these microscopic processes and their impact on the concentration
changes of chains of length j over time, represented by f (t; j). Equation (5) depicts the
temporal variation of the free monomer concentration, denoted as m(t):

∂ f (t, i)
∂t

= 2m(t)k+ f (t, j− 1)− 2m(t)k+ f (t, j) + 2m(t)ko f f f (t, j + 1)− 2m(t)ko f f f (t, j)

− k−(j− 1) f (t, j) + 2k−
∞

∑
i=j+1

f (t, i) + k2m(t)n2
∞

∑
i=j+1

i f (t, i)δj,n2 + knm(t)nc δj,nc

(4)

dm(t)
dt

= − d
dt

[
∞

∑
j=nc

j f (t, j)] (5)

Defining the first and second moments as
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P(t) =
∞

∑
i

f (t, i), M(t) =
∞

∑
i

i f (t, i)

the differential equations that govern these moments are as follows [9,14]:

dP(t)
dt

= k−[M(t)− (2nc − 1)P(t)] + k2m(t)n2 M(t) + knm(t)nc (6)

dM(t)
dt

= 2[M(t)k+ − koff − k−
nc(nc − 1)

2
]P(t) + k2m(t)n2 M(t) + ncknm(t)nc (7)

Following [9,14], in these equations, nc is the number of proteins that participate in
the nucleation. The average length of the filaments is given by

µ =
M(t)
P(t)

3.3. Stochastic Modeling of the Aβ Aggregations

The complete kinetics are provided in Tables S1 and S2 of the Supplementary Material.
In our analysis of filaments up to length eight, we denote free proteins as M1, while filaments
with a length of eight are represented as M8. Specifically, x1, x2, x3, x4, x5, x6, x7, and x8 corre-
spond to M1 to M8. The chemical master equation for the model, describing the probability
evolution of the system, is formulated as outlined in [13]. Below are two sample equations for
the reactions M1 + M1 → M2 and M1 + M2 → M3. Similar expressions for other reactions
follow the same structure, though we refrain from detailing them here for brevity:

dP(x1, x2, x3, x4, x5, x6, x7, x8, t)
dt

=kn(x1 + 2)2P(x1 + 2, x2 − 1, x3, x4, x5, x6, x7, x8, t)+

k+(x2 + 1)(x1 + 1)P(x1, x2 + 1, x3 + 1, x4 − 1, x5, x6, x7, x8, t)+

. . .

(8)

Given the substantial number of constants involved—54 in total—during the modeling
of both the aggregation and fragmentation, our analysis primarily centers on stochastic
simulations. It is worth noting that we refrain from explicitly delving into the numerical
solutions of the master equation, keeping our focus squarely on the stochastic simulation.

4. Computational Simulation Results

We use the Gillespie algorithm [29], which is a seminal method for simulating the
stochastic processes, and we use it to simulate the aggregation and fragmentation processes
of amyloid beta. We use Monte Carlo simulation on top of the Gillespie algorithm and
average out the results to reduce any anomalies that may be present in a single simulation.
The general framework of the Gillespie algorithm lies in randomly picking up the next
reaction time, and the next reaction event that can occur from the set of possible events.
The pseudo-code for the Gillespie algorithm that we used is given in Algorithm S2 of
Supplementary Material. We wrap the Gillespie function with Monte Carlo simulation
and derive the average simulation results over the number of simulations. The pseudo-
code for the Monte Carlo simulation is provided in the additional materials. We utilize
Python to simulate the reaction processes and conduct Monte Carlo simulations. The initial
experiments were performed using the Jupyter Notebook on a standard notebook/desktop,
with 16 GB of memory.

Different initial conditions are used for different simulations; similarly, we experimented
with different reaction rates, e.g., different aggregation rates and fragmentation rates. Firstly,
we only simulated the aggregation process, and later added the secondary events such as
fragmentation. The monomers are labeled as M1, and when they aggregate they can take the
form of filaments of length i, such as Mi. M1, the population of free proteins, can be interpreted
as amyloid precursor protein (APP), the primary nucleation which produces the oligomers, then
the rest of the population can be interpreted as the aggregation of Aβ42 into toxic filaments.
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4.1. Modeling the Aggregation Events

To model the monomer aggregation, we first define the kinetics of aggregation, listing all
possible reactions that can occur and defining their aggregation rates/constants. The table of
the kinetics of amyloid-beta aggregation in the appendix shows the possible reactions that we
model in this study. Mi represents the filament of length i, whereas the reaction rate ki represent
the reaction rate for that particular reaction. For example, k1 represents the aggregation rate of
M1 and M2, blending together to form M3. In the table of reaction kinetics, there are a total of
27 different types of aggregation reactions, producing filaments of different length i.

We use the stoichiometry matrix given in the Supplementary Material Section S2.3.1,
Equation (S1) derived for a total of 27 possible aggregation events for the filaments of
length up until eight. The stoichiometry matrix is derived using the reaction kinetics
given in Table S2.1 of Supplementary Material. In this matrix, each column represents
M1, M2, . . . , M8, while each row describes the actual reactions. For example, two M1 make
M2; hence, in the first row of the matrix, M1 has a corresponding value −2, and M2 has
a value 1. This is essentially saying that from the total population of M1, two M1 were
lost to create one new M2. For the reaction rates, we start the rate from a certain constant,
for example, 0.00001, which is used for the result presented in Figure 3. k0 starts from this
initial value 0.00001; k1 is the exact half of k0, k2 is the exact half of k1 and so on, and thus
the last reaction constant k26 is half of k25. The rationale behind choosing such a reaction
rate is that, the greater the length of the filaments, the lower the likelihood of blending
with others, and similarly, the propensity of, let us say, M1 + M1 = M2 is much higher than
M2 + M2 = M4, and the propensity of forming the filament of length eight (M8) from the
aggregation event M1 + M1 + M2 + M4 = M8 is the least likely. These complex reactions
are assumed to be less likely than two monomers joining together.

(a) The evolution of free monomers (free proteins). (b) The evolution of the filament of length 2.

(c) The evolution of the filament of length 3. (d) The evolution of the filament of length 4.

Figure 3. Cont.
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(e) The evolution of the filament of length 5. (f) The evolution of the filament of length 6.

(g) The evolution of the filament of length 7. (h) The evolution of the filament of length 8.

(i) The evolution of the zeroth moment P(t). (j) The evolution of the first moment M(t).

Figure 3. The evolution of amyloid beta aggregations, Condition 1 with the initial population of free
proteins M1 = 10,000, and Condition 2 with the initial population of free proteins M1 = 5000. The ini-
tial condition for each population except M1 is the same, 100, 60, 50, 20, 10, 5, 5 for M2, M3, . . . , M8,
respectively. The starting reaction rate k0 = 0.00001.

Figure 3 shows the time evolution of monomers and filaments of lengths up to eight,
as we can see that there is smooth evolution of filaments of a length of six. We run 100 Monte
Carlo simulations, and the average and standard deviation among the multiple simulations
are shown in the shaded area. The simulation uses the matrix representation of the reaction
as given in the extra materials. The essential difference in Figures 3 and 4 is the initial
population of different lengths of the filaments. Our experiments for fixed constant rates
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with different initial conditions are in the extra material’s section, called “Aggregation
of Filaments with Fixed Constant Rates”. It shows how keeping the constants fixed but
changing just the initial conditions leads to different convergence.

(a) The evolution of free monomers (free proteins). (b) The evolution of the filament of length 2.

(c) The evolution of the filament of length 3. (d) The evolution of the filament of length 4.

(e) The evolution of the filament of length 5. (f) The evolution of the filament of length 6.

Figure 4. Cont.
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(g) The evolution of the filament of length 7. (h) The evolution of the filament of length 8.

(i) The evolution of the zeroth moment P(t). (j) The evolution of the first moment M(t).

Figure 4. The evolution of amyloid-beta aggregations, Condition 1 with the initial population of
free proteins M1 = 10,000, and Condition 2 with the initial population of free proteins M1 = 5000.
The initial condition for each population except M1 is the same, 1, 1, 1, 1, 1, 1, 1 for M2, M3, . . . , M8,
respectively. The starting reaction rate k0 = 0.00001.

4.2. Modeling the Aggregation and Fragmentation Events

In this section, we show the experiments conducted in different initial conditions and
reaction rates, with both aggregation as well as secondary events, such as fragmentation.
In Section 4.1, we only considered the aggregation events; here, we add the fragmentation
events and form a different kinetics and stoichiometry matrix. The kinetics and stoichiom-
etry matrix are provided in the Supplementary Material’s Table S2.2 the Equation S2.3.2
respectively.

In Figure 5, we take the initial population of M2, . . . , M8 to be 100, and in Figure 6, we
keep it to be 1. We can notice the difference in convergence when we use the same reaction
probabilities for the events while taking a different initial population.
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(a) The evolution of free monomers (free proteins). (b) The evolution of the filament of length 2.

(c) The evolution of the filament of length 3. (d) The evolution of the filament of length 4.

(e) The evolution of the filament of length 5. (f) The evolution of the filament of length 6.

Figure 5. Cont.
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(g) The evolution of the filament of length 7. (h) The evolution of the filament of length 8.

(i) The evolution of the zeroth moment P(t). (j) The Evolution of the first moment M(t).

Figure 5. The evolution of amyloid-beta aggregations and fragmentation when the rate constants are
different for different reactions, e.g., k0, . . . , k53 are different, Condition 1 with the initial population
of free proteins M1 = 10,000, and Condition 2 with the initial population of free proteins M1 = 5000.
The initial condition for each population except M1 is the same, 100, 100, 100, 100, 100, 100, 100 for
M2, M3, . . . , M8, respectively. The starting reaction rate k0 = 0.00001 for aggregation and starting rate
for fragmentation k1 = 0.00001/2.

(a) The evolution of free monomers (free proteins). (b) The evolution of the filament of length 2.

Figure 6. Cont.
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(c) The evolution of the filament of length 3. (d) The evolution of the filament of length 4.

(e) The evolution of the filament of length 5. (f) The evolution of the filament of length 6.

(g) The evolution of the filament of length 7. (h) The evolution of the filament of length 8.

Figure 6. Cont.
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(i) The evolution of the zeroth moment P(t). (j) The evolution of the first moment M(t).

Figure 6. The evolution of amyloid-beta aggregations and fragmentation when the rate constants
are different for different reactions, e.g., k0, . . . , k53 are different, Condition 1 with the initial pop-
ulation of free proteins M1 = 10,000 and Condition 2 with the initial population of free proteins
M1 = 5000. The initial condition for each population except M1 is the same, 1, 1, 1, 1, 1, 1, 1 for
M2, M3, . . . , M8, respectively. The starting reaction rate k0 = 0.00001 for fragmentation and starting
rate for fragmentation k1 = 0.00001/2.

Figure 7 shows how this changes when we keep the reaction rates constant (one for
elongation, second for all aggregation events and third constant for fragmentation events).
We denote the reduction in the overall population of filaments of length 2, . . . , 8. Also,
they are converging slower than in Figure 5, where we used different propensities for
different events.

In Figure 5, different aggregation and fragmentation rates are used. The starting
reaction rate for aggregation starts from k0 = 0.00001, and the subsequent aggregation
event, as listed in Table S2 (aggregation and fragmentation kinetics) in the extra material,
will be exactly half of the previous one and so on. And similarly for the fragmentation, the
reaction rate starts from k1 = 0.00001/2, and each subsequent fragmentation reaction rate
such as k3 = 0.00001/4 and so on.

(a) The evolution of free monomers (free proteins). (b) The evolution of the filament of length 2.

Figure 7. Cont.
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(c) The evolution of the filament of length 3. (d) The evolution of the filament of length 4.

(e) The evolution of the filament of length 5. (f) The evolution of the filament of length 6.

(g) The evolution of the filament of length 7. (h) The evolution of the filament of length 8.

Figure 7. Cont.



Processes 2024, 12, 157 17 of 26

(i) The evolution of the zeroth moment P(t). (j) The evolution of the first moment M(t).

Figure 7. The evolution of amyloid-beta aggregations and fragmentation when the rate constants are
constant for all reactions except from k0 = 0.0000001, e.g., k1, . . . , k26 = 0.0000000002 and k27, . . . k53 =
0.0000000002/2; Condition 1 with the initial population of free proteins M1 = 10,000; and Condition
2 with the initial population of free proteins M1 = 5000. The initial condition for each population
except M1 is the same, 100, 100, 100, 100, 100, 100, 100 for M2, M3, . . . , M8, respectively.

From Figure 8, it is clear that certain reaction events dominate the overall dynamics
of the process. This observation is critical in understanding the inherent behavior of the
system under study. Subsequently, in Figure 9, we introduce a modification to the Gillespie
algorithm by incorporating random selection of reaction rates. This adaptation involves
randomly choosing a reaction rate from the original set and applying it to a reaction event.
We implement this change for 10% of the time, allowing for the possibility of any reaction
propensity to be randomly selected. When we reduce this randomness to only 1% of the
time, the results increasingly resemble those obtained without introducing randomness.
Further reduction of the randomness leads to results that closely align with those from the
original algorithm, demonstrating more uniform convergence. The impact of using random
switching of reaction probabilities is evident in the results; specifically, introducing random
propensities tends to decrease the converged population, thereby reducing the filament
formation. This effect becomes even more apparent when we examine the evolution of
individual populations.

Figure 8. The evolution of amyloid-beta aggregations and fragmentation events and their occur-
rence dynamics with different initial conditions and reaction rates. The average reaction dynamics
corresponding to Figure 5, with M1 = 10,000 and M2, . . . , M8 = 100.
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Continuing this analysis, Figure 10 shows that the introduction of random switching
of probabilities does not significantly alter the dominance of certain reaction events in the
overall dynamics. This observation indicates that, despite the random elements introduced
in the reaction propensities, the core characteristics of the process are largely maintained.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Cont.
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(g) (h)

Figure 9. Comparison of P(t) and M(t) with and without random switching of probability. (a) The
zeroth moment P(t) over time, all constants are same as in Figure 4. (b) The zeroth moment P(t)
over time with random probability switching, all constants are the same as in Figure 4. (c) The first
moment M(t) over time, all constants are the same as in Figure 4. (d) The first moment M(t) over time
with random probability switching, all constants are same as in Figure 4. (e) The zeroth moment P(t)
over time, all constants are same as in Figure 6. (f) The zeroth moment P(t) over time with random
probability switching, all constants are same as in Figure 6. (g) The first moment M(t) over time,
all constants are same as in Figure 6. (h) The first moment M(t) over time with random probability
switching, all constants are same as in Figure 6.

Figure 10. The evolution of amyloid-beta aggregations and fragmentation events and their occurrence
dynamics with different initial conditions and reaction rates. The average reaction dynamics with
M1 = 10,000 and M2, . . . , M8 = 1 and random switching with dynamic constant rates as in Figure 6.

In Figure 11, we plot the phase diagram, X-axis showing the time (t), Y-axis showing
the first moment M(t) and Z-axis showing the zeroth moment (P(t)). It is evident that,
without the random switching of the probabilities, the dynamics tend to aggregate more
filaments of different lengths than in the case of using the random switching of probabilities.
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(a) (b)

Figure 11. The phase diagrams of zeroth moment P(t) and first moment M(t) over time using same
initial population but different reaction probabilities. (a) The phase diagram of P(t), M(t) over time
using initial condition M1 = 5000 and M2, . . . , M8 = 1 and constant rates as in Figure 6. (b) The phase
diagram of P(t), M(t) over time using initial condition M1 = 5000 and M2, . . . , M8 = 1 and constant
rates as in Figure 7.

4.3. Comparison with Other Studies

In this section, we compare our results with that of [6,13]. Both of these methods
implement the moment-closure method for the stochastic modeling of the aggregation
of proteins in amyloid disease. First we try to model the work of [13] using their own
stoichiometry but with different probabilities for the reaction events than were originally
used in their work.

In Figure 12, we use random probabilities instead of the ones given in [13]. We can
notice a sharp decline in the free protein, whereas ours has a gradual decline. Overall,
the results are comparable, but one thing that we can instantly realize is that for our
configuration to converge, we need to run the simulation for a longer time. In Figure 13,
we run the simulation for longer time, and we can see that M2, M3, and M4 first increase
and then decrease. The highest convergence is in the filament of length six. The above
results are obtained when we use their stoichiometry but using random propensities for
the events instead of their fixed propensities. To produce these results, we use the starting
probability or the probability of the occurrence of the first event elongation to be 0.0001,
then each subsequent event on the kinetics will have exactly half the probability than the
one it preceded.

When we use our stoichiometry, which consists of 54 different possible reactions along
with different propensities, although the filaments are not distributed comparably, their
trajectories look similar. The result of this is given in the extra materials, the corresponding
figures are Figures S7 and S8 of Supplementary Material.

We further compare our work with [6], and as can be seen in Figure 14, we obtain a
comparable result.
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Figure 12. The evolution of different lengths of the filaments, one in the configuration of [13] and the
other in our configuration. The M0 here is 2000, and the time end is 10,000 s.

Figure 13. The evolution of different lengths of the filaments, one in the configuration of [13] and the
other in our configuration. The M0 here is 2000, and the time end is 10,000 and 20,000 s, respectively.

In Figure 14, there are two separate simulations: one uses the parameters of [6],
whereas the other uses ours. Since [6] uses different units for time and the protein mass,
we cannot compare them exactly, so we changed the parameters a little bit to make them
comparable. Even though the probability used is not exactly the same, the output looks
comparable in terms of convergence. However, it should be noted that we used our own
stoichiometry matrix, as the author of [6] did not provide the stoichiometry used for their
stochastic simulation.
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(a) (b)

Figure 14. Comparison of stochastic simulation of [6] and ours. (a) Comparison of zeroth moment
P(t) of aggregation of filaments with [6]: the red color denotes the reproduction of [6] and blue color
represents our simulation. The initial population of free proteins M1 = 500 and the time end 1000.
(b) Comparison of first moment M(t) of aggregation of filaments with [6]: the red color denotes
the reproduction of [6] and the blue color represents our simulation. The initial population of free
proteins is M1 = 500, and the time end is 1000.

5. Discussion and Results

5.1. Initial Conditions and System Dynamics

Our research delves into the complex interplay between the initial conditions and their
eventual impact on system convergence. Specifically, the initial number of species serves as
a critical determinant in shaping the system’s trajectory. This phenomenon is vividly illus-
trated in Figures S3–S6 of Supplementary Material. where varying the initial populations
result in distinct convergence patterns. Notably, initial populations of 1 and 5 yield similar
convergence behaviors, but a shift to 10 aligns the convergence pattern more closely with
that observed at an initial population of 100. This shift underscores a nonlinear relationship
between the initial population sizes and system behavior, suggesting a threshold effect,
where beyond a certain population size, the system dynamics alter significantly.

5.2. Role of Reaction Rates in System Convergence

When exploring the influence of constant reaction rates on the system, especially in
the context of primary nucleation (as seen in Figures S4 and S5 of Supplementary Material,
we observe a reduced rate of convergence. This finding indicates the sensitivity of the
system to the reaction rate parameters, emphasizing the importance of these parameters
in predictive modeling. The consistency of the final convergence at filament length six
across various scenarios also points to an inherent bias in the system towards certain states.
The predominance of specific reaction events—namely, primary nucleation, elongation,
and aggregation with monomer-dependent secondary nucleation—suggests an intrinsic
propensity of the system towards these pathways. While the higher probability of primary
nucleation is expected, the regular occurrence of monomer-dependent secondary nucle-
ation and aggregation in every simulation warrants further examination to uncover the
underlying mechanisms.

5.3. Impact of Secondary Events and Random Variability

Another notable finding is the minimal impact of secondary events, such as fragmen-
tation, on the final convergence of the filament lengths. Conversely, introducing random
variations in the probability of different reaction events significantly altered the final con-
vergence as illustrated in Figure 9. Interestingly, even with this randomness, reactions
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predominantly converged towards M6. This could suggest the dominance of certain events
over others. The extent of change in convergence was directly proportional to the probabil-
ity of these random switches; a higher probability led to a lower final P(t) and M(t), but as
this probability approached zero, its impact diminished.

5.4. Statistical Consistency and Determinism in Stochastic Simulations

Our aggregation and analysis of reaction events across multiple simulations revealed
a statistically consistent pattern, with primary nucleation, elongation, and aggregation with
monomer-dependent secondary nucleation being the most frequent. This consistency, even
in the face of stochastic variability, highlights an underlying determinism in the system.
The results of 100 Monte Carlo simulations further strengthen this notion, showing minimal
variation in the population of different filament lengths.

5.5. Comparison with Other Studies

A crucial aspect of our study is the comparison of our stochastic simulation results
with established models in the field, specifically those reported in [6,13]. This comparison
validated our findings, indicating a close alignment between the outcomes of our stochastic
simulations and those derived from not only from stochastic models, but also from de-
terministic models like the moment closure method [13] and the second-stochastization
method [6]. Such validation not only reinforces the reliability of our methods but also
contributes to a deeper understanding of the dynamic behaviors of biological systems
under varying conditions.

5.6. Limitations and Future Works

While our research provided valuable insights, it is important to recognize certain
constraints that frame our findings. One notable limitation is the absence of realistic
numbers of soluble protein extended-duration simulations. Ideally, longer simulations
would offer a more realistic representation of the biological processes under study. However,
the substantial computational resources required for such extensive kinetic simulations
of reaction processes pose a significant challenge. We anticipate addressing this aspect in
future research, leveraging advancements in computational capabilities to explore longer
timeframes. Another area that was not within the ambit of our current investigation is
the mathematical analysis of the system’s stability and convergence. While this analytical
approach was beyond the scope of our present work, it represents a promising avenue for
future exploration. A mathematical framework could provide a deeper understanding of
the underlying dynamics and enhance the predictive power of our models. Furthermore,
a direct comparison of our simulation results with experimental data would have enriched
our study. Unfortunately, challenges in accessing relevant experimental data limited our
ability to perform this comparison. Moving forward, we aim to integrate empirical data
into our analysis, as this would not only validate our simulation results but also offer a
more comprehensive perspective on the biological phenomena we are examining.

6. Conclusions

Our study underscores the crucial role of stochastic modeling in capturing the nu-
ances of biological processes, particularly in scenarios where deterministic models fall
short. Deterministic approaches, while effective in representing the average dynamics
of macroscopic experiments, often fail to encapsulate the inherent stochastic fluctuations
that are especially pronounced in microscopic cellular processes. To bridge this gap, we
employed stochastic modeling to simulate the dynamics of amyloid-beta aggregation in
Alzheimer’s disease, a process fraught with randomness and complexity. The findings
from our stochastic models yielded significant insights. We observed that the evolution of
amyloid-beta filaments of varying lengths is intricately tied to the specific reaction rates
employed in the model. This link underscores the sensitivity of the aggregation process
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to these rates, paving the way for a deeper understanding of the mechanisms driving
amyloid-beta aggregation.

A particularly striking observation is the tendency of the system to converge towards
filaments of a specific length, in our case, length six. This convergence suggests a dominance
of certain reaction events over others, an aspect that could be pivotal in understanding the
progression of Alzheimer’s disease at a molecular level. Moreover, the influence of reaction
probabilities on the system’s final convergence and stability was evident, reinforcing the
importance of these parameters in the aggregation process. Additionally, our exploration
of random reaction propensities revealed marked differences in convergence patterns,
highlighting the impact of stochastic variability on the system’s behavior. This aspect of
our study points to the potential of stochastic models to reveal subtleties that deterministic
models might overlook.

In conclusion, our comprehensive stochastic simulations not only enhance our current
understanding of amyloid-beta aggregation but also set the stage for future research.
They open new avenues for employing sophisticated stochastic modeling techniques to
unravel the intricate dynamics of amyloid-beta aggregation. This comprehensive simulation
could be instrumental in understanding and developing more effective strategies for
combating diseases, such as Alzheimer’s, which are directly or indirectly related to the
protein aggregation process by providing a more detailed understanding of the underlying
molecular processes.
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