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Abstract: Drilling hazards can be significantly decreased by anticipating potential mud loss and then
putting the right well control measures in place. Therefore, it is critical to provide early estimates of
mud loss. To solve this problem, an enhanced WOA (Whale Optimization Algorithm) and a BiLSTM
(Bidirectional Long Short Term Memory) optimization based prediction model of lost circulation prior
to drilling has been created. In order to minimize the noise in the historical comprehensive logging
data, a wavelet filtering technique was first used. Then, according to the nonlinear Spearman rank
correlation coefficient between mud loss and logging parameter values from large to small, seven
characteristic parameters were preferred, and the sliding window was used to extract the relevant
data. Secondly, the number of neurons in the first and second hidden layers, the maximum training
time, and the initial learning rate of the BiLSTM model were optimized using the enhanced WOA
method. The BiLSTM network was given the acquired superparameters in order to improve the
model’s ability to predict occurrences. Finally, the model was trained and tested using the processed
data. In comparison to the LSTM model, BiLSTM model, and WOA-BiLSTM model, respectively, the
improved WOA-BiLSTM early mud loss prediction in southwest Chinese oil fields suggested in this
study beat the others, receiving 22.3%, 18.7%, and 4.9% higher prediction accuracy, respectively.

Keywords: lost circulation prior to drilling; prediction model; correlation analysis; improved whale
optimization algorithm; Bidirectional Long Short Term Memory

1. Introduction

Mud circulates from the annulus back to the earth as it travels through the drill
pipe during the drilling operation. Mud is essential for maintaining hydrostatic pressure,
wellbore stability, and bit temperature, in addition to being utilized for suspending cuttings.
As a consequence, the wellbore’s mud circulation does not want to cause mud loss [1].
However, deep drilling in complex geological environments is becoming more common
with increased exploration and development, particularly in the process of drilling “three
high” oil and gas wells, which involves drilling into the cracks of carbonate rocks or
other abnormal pressure geospheres with complex and variable pressure systems [2]. It
is challenging in this situation to precisely assess the ground pressure and geological
conditions, and it is easy to introduce the risk of mud loss. In addition, the amount of mud
loss is different, and the corresponding plugging methods are different. If the mud loss is
detected in advance, it can be solved by adding plugging agents within 48 h to prevent it
from further developing into more serious mud loss [3,4]. Therefore, the purpose of this
study is to train neural networks using historical drilling data and establish a predictive
model capable of forecasting early mud circulation loss. By predicting these early mud
losses, appropriate measures can be taken in advance to prevent or, at the very least,
significantly mitigate early mud loss. This approach aims to address downhole crossflow,
blowout, and wellbore instability incidents in their infancy, thereby achieving safe and
efficient drilling.
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In recent years, several researchers both domestically and internationally have begun
to apply neural network approaches for lost circulation prior prediction. Moazzenii et al.
(2010) built a multilayer feed-forward network learned by backpropagation to forecast lost
circulation events in the Maroun oil field [5]. Jahanbakhshi et al. (2014) created a multilayer
perceptron model to estimate mud loss and demonstrate the impact of geomechanical
factors [6,7]. Aljubran et al. (2017) created many ML and DL models to predict circulation
loss, including RF (Random Forest), ANN (Artificial Neural Network), CNN (Convolutional
Neural Network), and LSTM (Long Short-Term Memory). The CNN model was shown
to be the best [8]. Sabah et al. (2019) created many smart systems to anticipate circulation
loss in the Maroun oil field such as MLP (Multi-Layer Perceptron), RBF (Radial Basis
Function), GA-MLP (Genetic Algorithm Multi-Layer Perceptron, DP (Decision Tree), and
ANFIS (Adaptive Neuro-Fuzzy Inference System). The findings revealed that DT is the
best prediction mode [9–15]. Ahmed et al. (2020) employed artificial neural network
models to foresee lost circulation in both naturally occurring and artificially produced
fractures [16,17]. Mardanirad et al. (2021) used a comparison between different DL (deep
learning) algorithms, CNN (Convolutional Neural Network), GRU (Gated Recurrent Unit),
and LSTM (Long Short-Term Memory) for the classification of mud loss intensity in the
Azadegan oil field, which showed the superior accuracy of the LSTM compared to other DL
algorithms [18–20]. Jafarizadeh et al. (2022) used a fusion of an optimization algorithm and
a modular neural network to address the problem of mud loss. The topology, threshold,
and weight of the neural network were optimized to effectively solve the shortcomings of
the traditional neural network, such as improper setting of hyperparameters and easy to
fall into local optimization [21]. SiamiNamini et al. (2022) carried out depth analysis using
traditional RNN, LSTM, and BILSTM network algorithms in deep water drilling condition
identification. The results showed that the BILSTM network has good performance [22].
Xiang et al. (2022) predicted horizontal in situ stresses by using a CNN-BiLSTM-Attention
hybrid neural network. The verification showed that compared with convolutional neural
networks, LSTM and BiLSTM can extract the autocorrelation characteristics of the dynamic
changes of the comprehensive logging curve and can better predict [23]. Li et al. (2022)
proposed a deep learning method for early mud loss prediction based on the CNN-LSTM
fusion network. They verified that the prediction accuracy of the network structure fused
by the optimization algorithm is better than that of the CNN or LSTM structure alone [24].

BiLSTM has a distinct advantage in dealing with the complex mapping relationship
of high-dimensional nonlinear long time series and can fully account for the time effect
and parameter influence of the drilling process, which has good potential in mud loss
prediction, according to research of existing early mud loss prediction models. At the
same time, the network’s prediction accuracy varies substantially according to the effect of
structural characteristics. If the network parameters are not appropriately configured, the
trained model will struggle to obtain the desired result. Furthermore, at the moment, early
mud loss prediction is generally used to forecast whether or not mud loss would occur,
whereas there is little research on mud loss volume prediction. Therefore, it is necessary to
select a suitable neural network method to realize the early prediction of mud loss during
the drilling process so as to guide the drilling operation more effectively.

In order to solve the problems in the existing methods, this paper chooses a two-
layer BiLSTM as the basic neural network. The improved WOA is used to optimize
the number of neurons in the input layer, the number of neurons in the hidden layer,
the maximum training period, and the initial learning rate in the BiLSTM structure [25].
Based on the comprehensive consideration of measurement while drilling parameters,
logging parameters, and fine pressure control drilling parameters, an improved early
prediction model of WOA-BiLSTM of mud loss is constructed. First, textual data are
converted into numerical values. Characteristic parameters are then selected through
Spearman rank correlation analysis. Subsequently, wavelet filtering is applied to mitigate
the impact of noise on the data. The selected characteristic parameters are used. Finally, the
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collected data are partitioned into training sets, test sets, and validation sets for training
and verification purposes.

2. Relevant Theories

Data preprocessing is an important step in building a real model. A good data
preprocessing process includes important steps such as data denoising, data conversion,
and data dimensionality reduction [26].

2.1. Data Denoising

When we talk about real data, noise is an inevitable component, with at least 5% even
under the strictest controls [27]. In this study, the term “data denoising” refers to the use
of filtering to lessen the effect of noise on the data. Data conversion requires the use of
data in multiple units, and the distribution of hyperparameters may be impacted by the
scale disparity, homogenizing the processing. The Spearman rank correlation coefficient’s
correlation analysis is used to determine the order of the influencing factors during data
dimensionality reduction. The main factors are then chosen from a list of parameters
affecting drilling mud loss.

2.2. Data Normalization

At present, the main methods of dimensionless data processing are standardization,
averaging, and standard deviation [28]. Considering that the covariance matrix composed
of the original data after averaging processing can not only reflect the difference in the
degree of variation of each index in the data but also contain information on the degree
of mutual influence of each index, the data in this paper chose the averaging method
to normalize it to the scale range of [−1, 1]. The equation for the data normalization is
given below:

X = 2(
X− Xmin

Xmax − Xmin
)− 1 (1)

where Xmax represents the data maximum; Xmin represents the data minimum.

2.3. Feature Selection

When using the neural network model to train the sample data, we need to consider
the high dimension, which will cause the neural network model to run slowly and consume
hardware. In addition, in the case of large data dimensions, there is the problem of
“dimension disaster” [29]. Therefore, it is necessary to select features of the data to achieve
the purpose of dimensionality reduction. The Spearman rank correlation coefficient, also
called the rank correlation coefficient, is a nonparametric statistic whose value is unrelated
to two groups of variables related to the specific value but only the size of the relationship
between its values. Therefore, it is very suitable for studying the correlation between
nonlinear relations.

2.4. LSTM Principle of Neural Network

LSTM neural network is another neural network algorithm improved on the basis
of RNN neural network to solve time series problems [30,31]. The structure is shown in
Figure 1. The shaded areas represent the previous and next moments, while the non-shaded
area represents the current moment. By adding three control units, forgetting gate, memory
gate, and output door, the network can alleviate the problem of RNN being prone to
gradient explosion and gradient disappearance with a special way of storing “memory”
and setting gradient range threshold. The main operation flow of LSTM is as follows:
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(1) Use the forgetting door, as shown by the red arrow in Figure 1, combined with the
output of the previous moment Ht−1, to cellular information Ct−1 filtering; purposefully
screen out the cell information that has influence on this moment. The mathematical
expression is as follows:

ft = σ(W f ·[Ht−1, xt] + b f ) (2)

where Ht−1 represents the last moment output; ft represents the output of the forgetting
door; xt represents the input at the current moment; σ represents the sigmoid function; W f
and b f , respectively, represent the weight coefficient and offset of the linear relationship.

(2) The memory gate, as shown by the green arrow in Figure 1, is used to retain the
effective information of the cell information Ct−1 combined with the output Ht−1 of the
previous moment. The mathematical expression is as follows:

it = σ(Wi·[ht−1, xt] + bi) (3)

ct = tanh(WC·[ht−1, xt] + bc) (4)

Ct = ft × Ct−1 + it × ct (5)

where it represents the put of the first part; ct represents the put of the second part; Wi, bi,
and Wc represent the corresponding weight coefficient and offset, respectively; Ct represents
the state of the updated cells.

(3) The output door, as shown by the orange arrow section in Figure 1, combined
with the output of the previous moment Ht−1 and current cell information Ct after the
calculation, input to the neural network for operation. The mathematical expressions are as
follows:

ot = σ(WO[ht−1, xt] + bo) (6)

ht = ot × tanh(Ct) (7)

where ot represents the state of the upper hidden layer; the value of ht−1 and xt is computed
by the sigmod function.

2.5. BiLSTM Principle of Neural Network

The basic principle of BiLSTM neural network is composed of two LSTM neural
networks [32], and the training sequence can be transmitted forward and backward. It
can achieve a more complete analysis of the characteristics and laws of the data. Below,
Figure 2 shows the structure of a single-layer BiLSTM neural network expanded over
time. The shaded areas in the diagram represent the previous and next moments, while
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the non-shaded areas represent the current moment. At the same time, the blue arrows
represent forward propagation, and the yellow arrows represent backward propagation,
thus achieving bidirectional propagation. x is the input value of the neuron. The hidden
layer of the bidirectional convolutional neural network needs to save two values, “A”
participates in forward calculation, and “A*” participates in backward calculation. The
final output value y depends on both “A” and “A*”.
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2.6. Principle of Optimization Algorithm
2.6.1. Whale Optimization Algorithm (WOA)

WOA is a metaheuristic swarm intelligence optimization algorithm which mainly
includes three steps: randomly searching for prey, encircling target prey, and preying on
selected prey [33].

(1) Finding the solution to a problem is the process of finding prey by a herd of whales,
choosing a prey at random, and the process can be translated into the following:

D =|X(t)− CXrand(t)| (8)

X(t + 1) = Xrand(t)− AD (9)

where Xrand(t) represents randomly selected position vectors from the current population
of whales; X(t) represents the position vector of the individual; t represents the current
iterations; A and C represent the coefficient and are calculated as follows:

A = 2a·r1 − a (10)

C = 2r2 (11)

a = 2− 2t/Tmax (12)

where r1 and r2 are random vectors belonging to the interval [0, 1]; a is linear reduction
from 2 to 0 during iteration; Tmax is the maximum number of iterations.

(2) The best candidate solution is the target prey or a near optimal solution. After the
optimal solution is found, the other candidate positions will move closer to the target prey,
surround the prey, and update its position. The mathematical model is as follows:

D = |X(t)− CX∗(t)| (13)

X(t + 1) = X∗(t)− AD (14)

where t represents the current iterations; A represents the coefficient; X*(t) represents the
current best position; X(t) represents the current location.

(3) Humpback whales update their positions by spiraling up to hunt selected prey.
The mathematical model is as follows:

X(t + 1) = D′·ebl · cos(2πl) + X∗(t) (15)
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D′ =
∣∣X∗ − X(t)

∣∣ (16)

where b represents the constant; l represents a random number in the interval [−1, 1]. In
the Formula (16), D′ represents the distance between the best whale individual in the t
iteration and the current whale.

In order to achieve this simultaneous behavior, it is assumed that there is a 50% chance
to choose whether to shrink the encirclement mechanism or the spiral model to update the
position of the whale in the optimization process. The mathematical model is as follows:

X(t + 1) = { X∗(t)− A·D p < 0.5
X∗(t) + D′·ebl · cos(2πl) p ≥ 0.5

(17)

where p represents a random number in the interval [0, 1].

2.6.2. Improved Whale Optimization Algorithm (WOA)

The original WOA still has some disadvantages similar to other swarm intelligence
optimization algorithms [34], such as low solution accuracy, slow convergence speed, and
easy to fall into local optimization. In order to overcome these shortcomings, this paper
will improve WOA from two aspects: location update strategy and prevention of falling
into local optimization [35].

(1) Nonlinear convergence factor

As the WOA Formula (9) knows, the global and local exploration abilities of the
algorithm mainly depend on the parameters A as setting a larger A in the early stages of
the iteration can speed up the algorithm. The algorithm’s ability to perform local searches
is enhanced by lowering parameter A in later iterations. By Formulas (10) and (12), it is
known that the value of the parameter A mainly depends on the convergence factor a. In
this research, a nonlinear convergence factor a is proposed because the linear variation of
convergence factor a cannot demonstrate its searching ability. The mathematical model is
as follows:

a = 2− 2 sin(µ
t

Tmax
π + ϕ) (18)

where t is current iterations; Tmax is maximum iterations.

(2) Adaptive weight strategy and random difference variation strategy

In order to keep the diversity of the population and jump out of the local optimization
in time, Yao Ning proposes an adaptive weight strategy and a random difference mutation
strategy [31]. The mathematical expression of the adaptive weight strategy is as follows:

w(t)i = {
w1 − w2−w1

Tmax
· f (t)i− f (t)min

f (t)max− f (t)min
f (t)i < f (t)avg

w1 − w2−w1
Tmax

· f (t)i− f (t)min
f (t)max− f (t)min

f (t)i > f (t)avg

(19)

where w(t)i represents the weight of the search i in the iteration t; Tmax represents the
maximum number of iterations; w1 represents the initial minimum weight; w2 represents
the initial maximum weight; f (t)avg represents the average adaptation value of the popu-
lation after the current iteration of t times; f (t)min and f (t)max represent the minimum and
maximum fitness values after the iteration of t times, respectively. The position update
strategy expression occurs when the improved prey is formed by substituting the Formula
(19) into (17) is as follows:

X(t + 1) = { w(t)gX∗(t)− AgD p < 0.5
w(t)gX∗(t) + D′gebl g cos(2πl) p ≥ 0.5

(20)
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The mathematical expression of the random difference variation strategy is as follows:

X(t + 1) = r1 × (X∗(t)− X(t)) + r2 × (X′(t)− X(t)) (21)

where r1 and r2 are random numbers within the range of [0, 1]; X′(t) is randomly selected
individuals from a population.

2.7. Improved WOA-BiLSTM Prediction Model of Early Mud Loss

The selection of structural parameters of the BiLSTM prediction model has a great
influence on the final prediction ability of the model. In order to find the optimal superpa-
rameters of the early mud loss prediction model, the WOA is used to optimize the number
of units in the hidden layer (L1, L2), the maximum cycle period (T), and initial learning
rate of the cycle (Ir). Taking these four key hyperparameters as the characteristics of op-
timization, the WOA algorithm is used to adjust and optimize the LSTM model to make
the network structure model more compatible with the characteristics of comprehensive
logging data. The main implementation steps are shown in Figure 3. Firstly, the yellow
flowchart represents the computational process of BiLSTM. The initial steps involve in-
putting historical well data and conducting correlation analysis on the data. Subsequently,
training is performed using a predictive model with conventional parameter settings to
select highly correlated predictive parameters. Then, the selected parameters are subjected
to wavelet filtering for noise reduction. After identifying the four hyperparameters that
need optimization, the blue flowchart illustrates the process of optimizing these param-
eters using the training error of the BiLSTM model as the fitness value. Finally, an ideal
predictive model is obtained through training.
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3. Experimental Study
3.1. Input Data

The data used for the comprehensive recording of wells came from three oil and gas
wells located in the Sichuan Basin in the southwestern region of China, named respectively
as A, B, and C. A full set of drilling data was collected and integrated in the drilling
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conditions of the three wells within 5 h prior to the loss of sludge, including PWD (Pressure
While Drilling) underground pressure and surface microflow monitoring data during
drilling. The extracted data were stacked together to form a sample data set. The interval
between each set of data collected was 20 s, the data within 10 min were selected as a
time sequence and the length of the sequence was 30 time steps [34]. The integrated
data consisted of 144,000 sets of data. The 115,200 (80%) groups of data were modeled
as data A and the remaining 28,800 (20%) groups were modeled for data B validation.
Some of the primary historical data collected include drilling parameters as shown in
Figure 4. Figure 4A–H offers an in-depth depiction of the drilling process, showcasing
the fluctuations in crucial parameters such as well depth, casing pressure, hook weight,
torsion moment, standpipe pressure, drilling pressure, inlet flow, and total pool volume.
The substantial variations in the hook weight’s load and torque are particularly striking,
underscoring the dynamic nature of the drilling operation.
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Figure 4. Partial logging data.

From Figure 4A,H, it can be clearly seen that at approximately 3902 m, a significant
turning point is observed in the total volume of the mud pool. This decrease suggests a
possible mud loss incident prior to this depth. This critical observation underscores the
importance of continuous monitoring and analysis in identifying potential issues during
drilling operations. In addition to these findings, it’s also crucial to consider other factors
that may influence these parameters. Therefore, we conducted a correlation analysis on
multiple drilling parameters to identify the most sensitive key parameters, in order to
better establish a predictive model.

3.2. Correlation Analysis

The occurrence of mud loss will be demonstrated by comprehensive drilling recording
parameters. The characteristic parameters for extracting the state of mud loss from large
amounts of data are a key step in predicting well loss using the BiLSTM neural algorithm.
The actual drilling process at the site is mostly used to observe the changes in the total pool
volume as a judgment criterion for the mud loss. Therefore, in this article, the amount of
change in the total pool volume is used as a “reference value”, by analyzing the Spearman
rank correlation coefficient to evaluate the depth of the well, the steering pressure, the
measurement of the pipe pressure and set the piping pressure, the position of the flow
valve, suspension, drilling pressure, pumping, input flow, input density, meter drilling
time, working current, height, speed, torque, and the degree of association of mud loss.
This article provides an analysis based on relevance. From Figure 5 it can be seen that the
surface pressure pump correlation is the highest at 0.865, followed by torque correlations of
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0.657. According to the correlation values of the feature parameters, the feature parameters
are sorted from high to low. The sorted parameters are shown in Table 1.
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Figure 5. Grey relational degree comprehensive evaluation.

Table 1. Values of the gathered parameters drilled in Southwest Chinese Oil fields.

Xn Parameter Unit Min Max Mean

X1 Surface Pressure Pump MPa 10.02 29.98 20.00
X2 Torque KN.m 0 1.73 0.86
X3 Casing Pressure MPa 0 8.77 4.39
X4 Hook Weight KN 0 774.4 387.2
X5 Inlet Flow L/min 0 49.03 24.51
X6 Inlet Density g/cm3 0 2.52 1.26
X7 Measured Depth m 810.00 5540.00 3175.00
X8 Overpull KN 210.80 1000.00 605.40
X9 Tripping in h 0.89 2.98 1.93
X10 Choke position m 13.23 95.03 54.13
X11 Rotational speed rpm 12.00 70.00 41.00
X12 Traveling block height m 10.00 30.00 20.00
X13 Pore pressure MPa 8.65 72.45 40.55
X14 Fracture pressure MPa 13.58 93.83 53.71
X15 Drilling time min/m 0.94 10.00 5.47

Based on extracted feature parameters, it is observed that within the same block, mud
loss events in oil and gas wells typically occur within a specific range of measurement
depths. This phenomenon arises due to variations in reservoir pressure, differing rock
properties at various depths, and discrepancies in inlet flow rates and densities. These
factors reflect distinct drilling conditions, thereby influencing the incidence of mud loss.

The recorded changes in casing pressure reflect fluctuations in annular pressure, while
variations in mud density affect the pressure differential between the wellbore and the
formation. During mud loss incidents, drilling pressure, annular casing pressure, and
torque also undergo changes in response to subsurface conditions. When mud loss occurs,
drilling pressure decreases, annular casing pressure diminishes, and concurrently, drill bit
speed increases, resulting in an upsurge in inlet flow rates. In contrast, during wellbore
overflow events, mud density decreases, and with the overall increase in mud pit volume,
annular casing pressure reduction occurs gradually. This, in turn, leads to a decrease in the
impact of buoyancy on downhole fluids as mud density decreases, ultimately resulting in
an increase in hook load.

Considering the on-site testing accuracy of engineering parameters and the compu-
tational efficiency of the prediction model, we determined the order of sorted drilling
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parameters based on correlation analysis to increase the number of input neurons in the
BiLSTM model, denoted as ‘n’. The criterion for selecting the number of input parameters
is based on the prediction model’s error. From Figure 6, it is evident that when the number
of input neurons reaches 7, the error reaches its minimum. With 8 neurons, there is a slight
increase in error, after which the error remains relatively stable. Therefore, to conserve
computational resources and optimize the efficiency of the prediction model, we chose
7 drilling parameters as input neurons.
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Figure 6. Feature parameter extraction.

In the process of oil drilling, the movement of the previous period of time affects the
next movement. Therefore, in the tag construction, the 8 drilling parameters selected by the
feature over the length of the time series are used as the multidimensional variable X. The
change in total pool volume after the time series length is used as a regression prediction
of mud loss (label Y). In this paper, a time series matrix with time series length of 30 is
constructed by using the time window sample structure method. Select the time series
matrix using the form of window slide, and the time step of each slide is 1. The drilling
data within the first 10 min are used to predict the mud loss at the next moment, achieving
the purpose of predicting 10 min in advance, as shown in Figure 7. The red box represents
the matrix of the first sample data input, while the green and blue boxes represent the
input of sample data for the next and the following moments, respectively, proceeding in
an orderly manner.
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Figure 7. Time window matrix extraction.

3.3. Wavelet Filtering

Data processing involves hard thresholding, soft thresholding, and fixed threshold-
ing. Common indicators for evaluating the effect of wavelet threshold denoising include
Signal-to-Noise Ratio (SNR), Root Mean Square Error (RMSE), smoothness, and correlation
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coefficient. In this study, we use SNR and RMSE to evaluate the effect of wavelet threshold
denoising. SNR is defined as the ratio of the energy of the original signal to the noise signal.
The higher the SNR, the better the denoising effect. RMSE is the square root of the variance
between the original signal and the denoised signal. The smaller the RMSE value, the better
the denoising effect.

As shown in Figure 8, the green line, blue line, and red line represent denoising
methods using hard thresholding, soft thresholding, and fixed thresholding respectively.
From Figure 8A, it can be seen that when using hard thresholding and soft thresholding,
the SNR values are similar, but overall lower than the noise reduction effect of using a
fixed threshold. This indicates that filtering with a fixed threshold is better. Similarly, from
Figure 8B, it can be seen that when using a fixed threshold, the RMSE values are overall
lower than those obtained using hard thresholding and soft thresholding methods. This
again proves the superiority of filtering with a fixed threshold. Therefore, in our research,
we chose to filter with a fixed threshold.
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Figure 8. Wavelet noise reduction ratio and square error.

The 8 data after feature selection are displayed by wavelet filtering. Figure 9A–H
represent measured depth (MD), surface pressure pump (SPP), torque (TQ), casing pressure
(CP), weight on bit (WOB), inlet flow rate, outlet flow rate, and total pool volume (TPV)
respectively. the black line represents the original data before filtering, and the red line
represents the data after wavelet filter denoising.
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Figure 9. Wavelet Filtering.

Figure 9H illustrates two significant events in the change of total pit volume. At
approximately 500 min, there is a decrease in total pit volume, indicating mud loss occurring
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around a drilling depth of approximately 3902 m. Around 890 min, the total pit volume
first increases and then decreases, signifying an occurrence of mud overflow followed by
mud loss around a drilling depth of approximately 3910 m. We can observe noticeable
fluctuations in inlet density, inlet flow rate, torque, drilling pressure, and casing pressure
before and after these events, indicating their correlation with changes in total pit volume.
This suggests that these parameter variables can be used to establish a predictive model.

3.4. Improved WOA Optimization Algorithm Parameter Design

Selecting the appropriate number of hidden layer neurons and the right initial learning
rate is a crucial decision in neural network design. Typically, this requires experimentation
and validation to determine the optimal configuration that meets the specific task require-
ments, while ensuring the network possesses excellent performance and generalization
ability. Increasing the number of hidden layer neurons can expand the network’s capacity
and generalization capabilities, enabling it to better fit complex data patterns and functional
relationships. However, if there are too many neurons, it may lead to overfitting the training
data, thereby reducing generalization performance.

The choice of learning rate is equally critical. Smaller learning rates usually demand
more training epochs because each weight update has a smaller magnitude, while larger
learning rates can result in rapid model changes, requiring fewer training epochs. Inap-
propriate learning rate settings can lead to the model converging quickly to suboptimal
solutions. Due to the lack of mature theoretical guidance, this study relied on existing
research results to determine these key parameters [36,37].

The parameter settings for the WOA optimization algorithm are as follows: a popula-
tion size of 100, with a maximum weight of 0.9 and a minimum weight of 0.2. Additionally,
the whale algorithm is configured with a population size of 50 and a maximum iteration
count of 30. Considering the need to optimize four parameters, each corresponding to a
dimension, constraints were applied within a limited parameter search space, as outlined
in Table 2. Simultaneously, the number of neurons in the first and second layers of the
neural network was set within a range of 10 to 50, the initial learning rate was within the
range of 0.001 to 0.01, and the maximum cycle count was within the range of 50 to 200.

Table 2. Bi-LSTM optimizing parameter range table.

Parameter L1 L2 T Ir

scope 10~50 10~50 0.001~0.01 50~200
step size 2 2 0.0005 5

According to the parameters and constraints set above, the genetic algorithm, the
particle swarm optimization algorithm, and the improved whale optimization setting
parameters are shown in Table 2 (WOA maximum weight, 0.9; minimum weight, 0.5;
population size, 50; the maximum number of iterations, 100).

The weight of WOA-BiLSTM tends to be stable at about 63 generations and the best fitness
value is 0.022. Compared with the genetic algorithm and the particle swarm optimization algo-
rithm, the convergence speed is faster and the error value is the smallest. Select the population
optimal solution when the number of iterations is 100, [L1, L2, T, Ir] = [9, 12, 16, 0.03, 100], as
the combined value of the parameters to be optimized for the Bi-LSTM structure.

4. Model Evaluation

Figure 10A,B illustrate the comparison between the predicted results of four models
and the actual values from randomly selected test data sets. The black line represents our
prediction target, which is the total pool volume change (i.e., mud circulation loss). The
green line shows the prediction results obtained using the LSTM model, the dark blue line
shows the prediction results obtained using the BiLSTM model, the purple line shows the
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prediction results obtained using the WOA-BiLSTM model, and the red line shows the
prediction results obtained using the improved WOA-BiLSTM model.
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In Figure 10A, real drilling data from a measurement depth range of 3900 m to 3901.5 m
are used, while in Figure 10B, data from a measurement depth range of 4710 m to 4712 m
are employed. The objective is to predict the change in total pool volume 10 min in advance
to assess the occurrence of mud circulation loss, as indicated in Figure 10A for potential
mud circulation loss and in Figure 10B for potential drilling fluid overflow, in the respective
depth ranges.

Through comparative analysis, it was observed that LSTM and Bi-LSTM models with
random parameters exhibited significant disparities between their training and testing sets.
These models displayed fluctuations and deviations from the target values throughout the
training process, indicating overfitting and resulting in suboptimal test results. Conversely,
the WOA-BiLSTM and the improved WOA-BiLSTM models did not exhibit overfitting
and demonstrated a more accurate performance. The research findings underscore the
substantial impact of hyperparameter configurations on BiLSTM neural network models.

The statistic that measures goodness of fit is the coefficient of determination, also
known as the coefficient of certainty (R2), with a maximum value of 1. The closer the
value of R2 is to 1, the better the regression line fits the observed value. In addition,
RMSE is also an evaluation index to measure the fitting performance with the target value,
and the smaller the RMSE, the smaller the error. After 4320 groups of data verification,
the comparison results are shown in Table 3. It can be found that the BiLSTM neural
network prediction model shows better prediction performance than LSTM. At the same
time, the realization of LSTM and BiLSTM in the training set and test set is very different,
and the overfitting phenomenon appears. The prediction model optimized for BiLSTM
neural network parameters by the WOA optimization algorithm shows relatively stable
regression fitting performance, which also indicates that for different regression problems,
the superparameter setting of LSTM and BiLSTM has a great impact on the performance of
the neural network. Improper setting makes it easy to fall into the local optimal solution
and has poor generalization ability. The swarm intelligent optimization algorithm can solve
the problem of improper setting of superparameters. At the same time, prediction accuracy
can be improved by improving the WOA optimization algorithm.

Table 3. R2 and RMSE values.

LSTM BiLSTM WOA-BiLSTM Improved-WOA-BiLSTM

Training RMSE 0.365 0.315 0.254 0.206
Training R2 0.821 0.908 0.942 0.996

Test RMSE 0.448 0.412 0.271 0.225
Test R2 0.783 0.823 0.932 0.984
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Furthermore, the improved WOA-BiLSTM model achieved the best performance
in predicting mud loss on the test dataset, with an RMSE (Root Mean Square Error) of
0.225 and an R2 (Coefficient of Determination) of 0.984. When compared to the three
models mentioned above, this model demonstrated significantly closer alignment with
actual values in both trends and accuracy. As shown in Figure 11, the graph illustrates
the absolute error between the predicted and actual values. Figure 11A presents the error
when predicting mud loss, with the absolute error primarily concentrated around ±0.2.
When the absolute error of predicting mud loss is less than 0.2, the prediction accuracy can
reach up to 90.8%. On the other hand, Figure 11B displays the error when predicting mud
overflow, where the prediction accuracy can reach 88.3% if the absolute error of predicting
mud overflow is less than 0.2. These results indicate that this model performs excellently in
terms of fitting accuracy, stability, and predictive performance, and can effectively predict
mud circulation loss. The output during the training phase shows that in the early stages
of mud loss prediction for all models, the predicted values lag behind the actual values,
which may be due to the time window function we used. At the same time, we found
that the accuracy of predicting mud circulation loss is higher than that of predicting mud
overflow. The reason for this may be that there are more sample data sets where mud loss
occurs in the training sample data, so the training effect is better.
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5. Discussion

The primary innovation of this study lies in the amalgamation of historical drilling
data with an improved WOA-BiLSTM. This fusion resulted in the development of a mud
loss circulation prediction model. This model, by utilizing a time window matrix, is
capable of forecasting changes in the total pool volume ten minutes in advance, thus
replacing the conventional manual recording of the total pool volume. The application of
this predictive model indirectly accomplishes the prediction of mud circulation loss, with
the potential to assist in early risk identification and the implementation of corresponding
well control measures, ultimately mitigating the risk of blowouts at an early stage. Key
aspects highlighted by our research include:

(1) The research underscores the critical role of the time window matrix in data
processing. Through the incorporation of the time window matrix during the training
process, we have successfully achieved early predictions of total pool volume changes.
This method provides a new avenue for applying artificial neural networks to predict other
drilling data and highlights the critical role of the time window matrix in data processing.
It enables early predictions of total pool volume changes, opening possibilities for applying
neural networks to other drilling data.
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(2) Using the improved WOA for hyperparameter selection enhances predictive accu-
racy, offering valuable guidance for handling complex drilling datasets.

(3) While our study has made significant strides, limitations remain. It focuses on spe-
cific block wells, necessitating validation across different blocks for mud circulation loss pre-
diction efficacy. Limited dataset size and quality may constrain model performance. Future
research should consider expanding data diversity and quantity to enhance capabilities.

6. Conclusions

The upgraded WOA-BiLSTM neural network is the foundation for the early mud loss
prediction model used in this study. The model primarily makes use of the upgraded WOA
to overcome the challenge of configuring the parameters of the conventional BiLSTM neural
network and raise the model’s prediction accuracy. The following are the main findings:

(1) According to the size of the linked coefficients, extracted characteristic parameters
are sorted using Spearman rank-related coefficients. The outcomes of WOA optimization
reveal that seven criteria can be used to obtain extremely good accuracy. Therefore, these
seven traits were tested in the modeling of the BiLSTM neural network algorithm: total
pool volume (TPV), inlet flow rate, inlet iensity rate, weight on bit (WOB), surface pressure
pump (SPP), torque (TQ), casing pressure (CP), and measured depth (MD).

(2) In this study, the maximum cycle, the initial learning rate, and the number of
units in hidden layers 1 and 2 of the Bi-LSTM neural network structure are all optimized
using the enhanced WOA. Based on this, the three prediction models LSTM, BiLSTM, and
WOA-BiLSTM are compared with the early prediction model of WOA-BiLSTM of mud loss.
There has been an increase in prediction accuracy of 22.3%, 18.7%, and 4.9%, respectively.
The findings demonstrate that the enhanced WOA-BiLSTM model is more accurate in
estimating early mud loss.

(3) The model can estimate changes in the total pit volume 10 min in advance, thereby
predicting loss circulation with a high degree of accuracy. This precise forecasting con-
tributes significantly to taking timely countermeasures, reducing the adverse effects of mud
loss on drilling operations. For on site operators, this functionality is crucial as it allows for
better work planning and management, resulting in increased production efficiency and
reduced environmental risks.

(4) The research addresses a critical research gap in the field of petroleum drilling.
To date, there have been relatively limited methods for predicting and managing mud
loss events, and the model offers an efficient approach to addressing this issue. This is of
great significance in ensuring the smooth progress of drilling operations and minimizing
unnecessary downtime. Additionally, it underscores the potential of machine learning and
deep learning in the petroleum engineering field y introducing advanced computational
methods into traditional drilling processes. This will contribute to accelerating the digital
transformation of petroleum engineering, improving industry efficiency, and sustainability.
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