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Abstract: Companies actively seek innovative tools and methodologies to enhance operations and
meet customer demands. Maintenance plays a crucial role in achieving such objectives. This study
identifies existing models that combine Lean Philosophy and Industry 4.0 principles to enhance
decision-making and activities related to maintenance management. A comprehensive literature
review on key concepts of Lean Philosophy and Industry 4.0, as well as an in-depth analysis of
existing models that integrate these principles, is performed. An innovative model based on the
synergies between Lean Philosophy and Industry 4.0, named the Maintenance Management in
Sustainable Operations (MMSO) model, is proposed. A pilot test of the application of the MMSO
model on a conveyor belt led to an operational time increase from 82.3% to 87.7%, indicating a notable
6.6% improvement. The MMSO model significantly enhanced maintenance management, facilitating
the collection, processing, and visualization of data via internet-connected devices. Through this
integration, various benefits are achieved, including improved flexibility, efficiency, and effectiveness
in addressing market needs. This study highlights the value of integrating Lean Philosophy and
Industry 4.0 principles to improve maintenance management practices. The proposed MMSO model
effectively leverages these principles, fostering agility, optimized resource utilization, heightened
productivity and quality, and reduced energy consumption. The model not only serves as a tool
for operational optimization and customer demand enhancement but also aligns with sustainability
principles within the energy transition. Its successful application in the pilot test phase further
reinforces its potential as a reliable approach for maintenance management and sustainable operations
in both production and decision-making processes.

Keywords: maintenance; maintenance management; model; Lean Philosophy; TPM; Industry 4.0;
sensors; sustainability; energy transition

1. Introduction

In an increasingly competitive market, companies must focus on improving their
production processes, answering more promptly and effectively to market needs, maintain-
ing product quality, and reducing costs. Consequently, they must actively pursue novel
and innovative management and organizational tools, making efforts in areas spanning
production, maintenance, and beyond to optimize overall operations [1–4].
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Maintenance is one area with the potential to significantly enhance the efficiency of
industrial companies, and, over time, it has gained increasing importance within compa-
nies. Previously, maintenance activities were solely performed in response to equipment
breakdowns, leading many to perceive it as a ‘necessary evil’ to be carried out only when
necessary [5–9].

To be able to keep up with this dynamic and constantly growing environment of the
increasingly globalized market, those responsible for the maintenance area have sought to
insert new tools and methodologies that can support maintenance management, as well
as in each of their technical interventions. Such efforts aim to attain the expected levels
of excellence while ensuring manufactured products meet intended specifications with
utmost quality, thereby broadening customer satisfaction and fostering the attraction of
new clients [10–12].

To enhance competitiveness, numerous companies adopt work methodologies that
guide and steer them toward continuous improvement. In this context, the Lean Philosophy
(LP) is an already tested approach, yielding effective results by aiming to eliminate or
minimize waste, thereby reducing production costs [13–15].

The Lean Philosophy (LP) encompasses several associated tools, one of which is the
Gemba Walk (GW). This practice involves conducting regular visits to the factory floor,
enabling the observation of processes and serving as one of the most effective approaches
for identifying potential safety issues, sources of waste, equipment status, and fostering
dialogue with employees. Consequently, it provides the means for improved control
and oversight of all operations within the factory floor. However, this methodology has
certain limitations arising from inadequate communication between operators and those
responsible for conducting the GW. This communication gap can hinder the collection of
relevant information and, hence, compromise data analysis [16–20].

The continuous evolution and integration of new technologies into production pro-
cesses are revolutionizing industries, requiring companies to constantly seek for and adapt
to differentiation in the increasingly competitive market. To secure enduring competitive
advantages against their rivals, companies are embracing strategies such as Industry 4.0
(I4.0), which has obtained significant prominence. This transformative process combines
and disseminates new technologies and innovations at a faster and more extensive pace
than previous industrial revolutions, enabling the creation of novel virtual and physical
manufacturing systems thereby fostering the development of smart factories. [21–24].

Smart factories, as part of I4.0, are increasingly complex in terms of technological
equipment, maintenance, and control of manufacturing processes in general. The dynamic
environment leads to an adaptation of maintenance processes and almost all organizational
aspects [24–28].

As previously mentioned, the exclusive use of methodologies and tools inherent to
the concepts of Maintenance, LP, and I4.0 are already widely used in an industrial con-
text. Concerning the LP, Arsakulasooriya et al. [29], Gupta et al. [30], Ebeid et al. [31],
Palmeira et al. [32], Pinto et al. [33], Costello et al. [34], Lopes et al. [35] and Hassan et al. [36],
state that the successful application of this philosophy in the area of maintenance allows
achieving better levels of management, as well as improving decision-making, maintenance
interventions and their quality. Moreover, it allows for reducing equipment delivery times,
reducing manufacturing and distribution costs, increasing productivity (obtaining larger
benefits from manufacturing the same products), and improving product quality, as well as
better waste control in manufacturing processes and maintenance interventions. On the
other hand, with the emergence of I4.0, predictive maintenance (PdM) is becoming very
relevant as an alternative to traditional assets maintenance management. This maintenance
strategy makes it possible to have intelligent physical assets, allowing the acquisition and
storing of the history of failures, repairs, and costs. This condition promotes the improve-
ment of maintenance planning accuracy and effectiveness, offsetting the disadvantages
of traditional maintenance management systems. Anh et al. [37], Rousopoulou et al. [38],
Jasiulewicz–Kaczmarek et al. [39], Converso et al. [40], Ahmed et al. [25], Senthil et al. [41],
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and Mey et al. [42] state that the increase in I4.0 allows achieving significant improvements
in the area of maintenance, such as early detection of failure, thereby executing interven-
tions when strictly necessary while extending the useful life of equipment and increasing
the availability of assets. Although the referred models are widely used to fill the gaps in
the traditional maintenance management system, these are mostly developed to carry out
real-time monitoring of the condition parameters related to PdM. However, sometimes, the
data still need to be acquired and recorded in a traditional way (manually), reducing the
efficiency of the maintenance management in the long term. Therefore, it is necessary to
develop new systems that allow the acquisition of related information such as operating
time and repair time, among other indicators, as well as enabling decision-making support
and carrying out more sustainable maintenance interventions, which, to date, are not
bridged with the systems developed in the literature. Thus, the objective of this study is the
development of a new system called Maintenance Management in Sustainable Operations
(MMSO) to support decision-making and all activities inherent to maintenance manage-
ment through sustainable operations. The MMSO aims to generate valuable information
that can contribute to substantially improving maintenance management, as well as to
enable the optimization of production systems, and consequently lead to better and more
efficient decision-making in an environment of sustainable operations in the industry in
general. Hence, the novelty of this study relies on the results that can be used to help the
maintenance management and the productive sector, as well as improve the environmental
performance of the industries.

2. Review of Existing Models Combining I4.0 and LP Concepts

Through the bibliographic review conducted by Mendes et al. [43], it was possible
to identify a wide variety of scientific works addressing the continuous improvement of
maintenance management. The following research questions were used as a basis for the
investigation: “Is there an interest among researchers and the academic community in
these concepts, either individually or collectively?”; “Which companies have followed this
trend?”; “What tools, methodologies, or technologies are commonly employed?”; “What
types of work are being done concerning these concepts?”. The search was conducted
within these databases using the keywords Maintenance 4.0, Intelligent Maintenance, Lean
Maintenance, Lean Maintenance Techniques, Lean and Industry 4.0, Lean 4.0, Lean Smart
Maintenance, and Lean 4.0 Maintenance [43].

For the selection of relevant works, the following criteria were established: publica-
tions in journals and conference proceedings available in the specified electronic databases
between 2015 and 2021. It was also established that the works would have to be written
in English, Portuguese, and Spanish, addressing the concepts under study. Conversely,
bibliographic reviews, duplicate publications, studies unrelated to the topic, and works
from platforms other than the specified ones were excluded [43].

The initial search yielded 552 articles from Google Scholar, 643 from B-On, and 501
from Science Direct, resulting in a total of 1696 articles identified. In the following step,
the titles of each work were assessed to determine their relevance and significance. The
evaluation was extended to include reading the titles, abstracts, and keywords. In the
final step, after a refined search process, 68 articles were identified for a more detailed and
comprehensive analysis. The remaining articles were excluded either due to not meeting
the specified criteria or not aligning with the focus of the conducted research [43].

Thus, for the construction of the system, and after analyzing several published scien-
tific articles, 26 models were chosen [43]. Table 1 summarizes the type of research, results,
limitations, and performance of these models in the methodology section. This section
analyzes the interaction of Maintenance (M), LP, and I4.0.
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Table 1. Summary table of the 26 publications analyzed.

Authors Industry Interaction
Concepts LP Tools I4.0 Technologies Type of Study Benefits Limitations

Mayr et al. [44] Electrical/electronics
industry LPI4.0 TPM

Cloud computing
(CC); Condition

monitoring; Sensors;
Graphical use

interface

Model and
case study

It aims at perfection in
all daily activities.

Integration of
employees. Equipment

monitoring.

In addition to technical challenges,
future research should focus on how

to implement lean 4.0 as a holistic
concept. One key area is employee
onboarding to avoid replicating the

failures of the introduction of
computer-integrated manufacturing.

Furthermore, trade-offs and goal
conflicts provide a promising avenue

for future research.

Phuong &
Guidat [45] Textile industry LPI4.0 Value Stream

Mapping (VSM)
Radio Frequency

Identification (RFID) Case study

Visualization of
potential problems in

real time, quantity
produced, number of

stops on the line,
among others.

Studies should be carried out
regarding social and environmental

indicators and their interactions
should be considered when further

developing the proposed scheme. Big
Data (BD) can be used for forecasting
purposes to avoid potential waste in
resource consumption and any harm

to the worker.

Spenhoff
et al. [46]

Transport and
logistics industry LPI4.0

Heijuka; Every
Product Every

Cycle 4.0
(EPEC 4.0)

Cyber-physical
systems (CPS)

Model and
case study

Operate the production
system as flexible and
efficiently as possible.

The presented proposal has not yet
been tested by its implementation in

practice. Even if the proposal has
been validated in the company, it

cannot be considered a general
application solution, despite being a
promising proposal. Utilizing CPS

and moving to I4.0 will require
massive investments in hardware,

software and the associated
information technology infrastructure

wich needs to be aligned with
operations and business strategy.
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Table 1. Cont.

Authors Industry Interaction
Concepts LP Tools I4.0 Technologies Type of Study Benefits Limitations

Rifqi et al. [47]

Facilities
Management and

Maintenance
Company

LPI4.0 Kaizen

Internet of Things
(IoT); Computerized

Maintenance
Management System

(CMMS)

Case study

Reduction rate of
complaints.

Improvement of
operational, social and
economic performance.

Organizational change and acceptance
of this change can be a limitation.

Another limitation has to do with the
fact that employees require a

considerable amount of training and
are involved in continuous

improvement environments.

Ramadan &
Salah [48]

Electrical/electronics
industry LPI4.0

5S; Standard
Work; Poka-Yoke;

DynamicVSM

Information and
Communication

Technologies

Model and
case study

Real-time data
collection. Production

control. Waste
reduction.

In order to improve the proposed, an
intelligent real-time waste system

must be developed to detect the root
causes of the seven types of waste in

real time to anticipate failures in
advance, to avoid them and reduce

their negative impacts on the overall
level of leanness.

Ma et al. [49] Automotive LPI4.0 Jidoka CPS; Internet; IoT;
CC; Function Block

Model and
case study

Considerable
improvement in

production
performance at a global

level. More
decentralized

controllers. Cost
reduction.

New SLAE-CPS tools based on
C-PaaS must be developed to achieve

agile implementation and remote
data analysis.

Other limitation is related to security.
Thus, the general security mechanism
for SLAE-CPS should be considered
such as detection, communication,

actuation control and feedback
security. Further tests should be

carried out to verify the stability of
the system.

Frontoni
et al. [50] Shipping industry LPI4.0 Lean principles RFID Case study

Reduced cost and Lead
Time, with a higher

level of asset security
and a real-time data

sharing policy.

The prediction task, Remaining
Lifetime is often affected by

uncertainty in the presence of
non-linear and

non-stationary conditions.
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Table 1. Cont.

Authors Industry Interaction
Concepts LP Tools I4.0 Technologies Type of Study Benefits Limitations

Ferreira et al. [51] Wood Industry LPI4.0

iLean Define,
Measure,
Analyze,

Improve, and
Control (DMAIC);

Single-Minute
Exchange of Die
(SMED); VSM

- Model and
case study

It helps to solve
problems easily and

accurately. Reduction
of the time required to
change the machine.

One of the limitations is that it
requires specialized personnel to use
and understand the appropriate to
search for problems. As well as it

re-quires that they are able to define
modes of action for their resolution.

Another constraint in-volves the
companies’ resistance to change,
which could be a problem when

applying this methodology. A better
tracking of the gains obtained through

the improvements achieved should
be implemented.

Kostoláni
et al. [52] Automotive MI4.0

Augmented reality
(AR); IoT; BD;

E-maintenance; CC;
Condition monitor

(CM)

Model and
case study

Increased productivity,
efficiency and quality

of processes.
Downtime due to an

unexpected equipment
malfunction has

decreased significantly.

The system must be validated in other
industrial areas to verify its

application flexibility as well as
possible gaps. In addition, it would be
interesting to verify the integration of

AR systems to existing multilevel
control structures and the extension of
the application’s functionalities, such

as visualization without reference,
control of spare parts
and documentation.

Paolanti et al. [53] Cutting Machine MI4.0
PdM; Sensors;

Programmable logic
controller

Model and
case study

Prediction of machine
status with high

precision. Improved
system performance.

In order to verify its applicability, it
should be ap-plied to a more robust
dataset, investigating diverse failure
scenarios, exploring a different set of

resources, particularly in the
frequency domain.
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Table 1. Cont.

Authors Industry Interaction
Concepts LP Tools I4.0 Technologies Type of Study Benefits Limitations

Ghouat et al. [54] - LPI4.0 Lean principles
Cyber Physical

Production Systems;
BD

Model

Real-time data analysis.
Improvement in

decision making and
responsiveness of

the system.

Failure to correctly identify the
indicators can compromise the

effectiveness of the Lean approach
levers. Lean integration needs to be

further studied and validated.

Deuse et al. [55] - LPI4.0 GaProSys 4.0 Joint structure of
Lean and I4.0 Model

Good connection
between Lean and I4.0.
Assist companies in the

evaluation and
selection of approaches

depending on the
structure of the

company

A selection guide should be
developed to assist companies in
evaluating and selecting suitable

approaches, depending on the
structures of the company. The

implication for other lean methods
should also be analyzed.

Itani et al. [56]
Window

manufacturing
company

LPI4.0

Decision-Making
Tool (e.g.,

Just-in-Time (JIT),
VSM, TPM,

SMED)

Simulation Model and
case study

Increased productivity.
Reduction of the

number of employees
in the processes,

waiting time and time
consumed by activities
without added value.

Allows you to
determine the best
resource allocation
scenario to increase

productivity.

The limitations of the study are the
input data for the simulation model,
which is restricted to three days of

production, the sequencing of orders
that can influence productivity and

the operating time which has constant
numbers. An algorithm should also

be developed to an extent which
allows performing line balancing

dynamically utilizing the simulation
model, changing different factors

simultaneously and implementing the
linear line balancing method.
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Table 1. Cont.

Authors Industry Interaction
Concepts LP Tools I4.0 Technologies Type of Study Benefits Limitations

Koenig et al. [57] Aeronautical
industry MI4.0

IoT; CC; Wireless
data transmission;

Sensors
Case study

Effective monitoring.
Detection of failures in

the initial phase.
Improved maintenance

performance.

The application of the system
contributes to improving maintenance

management and its interventions.
however, the use of the sensors after

exhausting the batteries, must be
replaced to enable the system to

function. Replacement that entails a
high number of hours and cost. To be

cost-effective, as well as ideal for
continuous use, the perfect sensor

would have an external power supply,
measure vibration and temperature,

and be configurable for minimal
downtime. the study of a prototype of
a more suitable sensor must be carried

out, as well as the study of the
software, due to its high cost.

Bumblauskas
et al. [58]

Electrical circuit
breakers MI4.0

Smart maintenance
decision support
system; PdM; BD;

Analytical hierarchy
process

Model and
case study

Improved asset
lifecycle. Cost

reduction.
Establishment of

maintenance plans and
remote monitoring.

It would be interesting to add
Industrial CPS, IoT, artificial

intelligence to support
decision-making by

maintenance managers.

Lewandowski &
Olszewska [59] Automotive MI4.0 Automated task

scheduling system
Model and
case study

Reduced maintenance
time. Improved

maintenance quality.
Prioritizes and
selects tasks.

The study does not critically present
the problems related to cybersecurity

and should be explored further.
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Table 1. Cont.

Authors Industry Interaction
Concepts LP Tools I4.0 Technologies Type of Study Benefits Limitations

Ceruti et al. [60] Aeronautical
industry MI4.0 Additive

manufacturing; AR Case study

Improved performance
and maintenance
flexibility. Ease of

learning and
maintenance.

Reduction of errors in
the processes.

One of the limitations stems from the
fact that there is no regulation by the
aeronautical authorities that should
start to address the problems related

to the introduction of this new
technology to allow its wide diffusion

in the aeronautical field. Another
limitation has to do with the need to

develop ergonomic hardware devices
robust enough to support AR, and

software tools capable of dealing with
problems related to different lighting
conditions, object occlusion, among

other problems. Early stage that raises
costs, making it unrealistic to apply
the technology to a high number of

spare parts, requiring consideration of
spare parts availability, component
criticality, manufacturing feasibility

and regulations.

Kolberg et al. [61] - LPI4.0 Kanban CPS; ICT Model

Improvement of the
production process.
Highly customized

products.

However, more lean methods should
be developed, deepened and

combined with existing lean solutions
along with the integration of inferior

CPS work stations of
architectural interface.

Arrascue-
Hernandez
et al. [62]

Textile industry MLP

5 S; VSM;
Ishikawa; SMED;

Hierarchical
Analytical

Process; TPM
(Autonomous
maintenance)

Model and
case study

It allowed to improve
the production line,

reducing the delivery
time of the orders and

the delivery time.
Increased sales.

Presents a model, however this does
not present the implementation

phases in a succinct and schematic
way, having a short description of the
phases, which may raise doubts in the
use of the respective model in another

business area.
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Table 1. Cont.

Authors Industry Interaction
Concepts LP Tools I4.0 Technologies Type of Study Benefits Limitations

Meddaoui [63] Automotive MLP

TPM; Overall
Equipment

Effectiveness
(OEE)

Model and
case study

Performance
improvement of your
operational processes

and OEE. Cost
reduction.

The limitation of the proposed model
is to link and restrict the study of the

maintenance process to two main
processes, preventive and corrective.

Epler et al. [64] - MLP

Technical
Systems for

Special Purposes;
5S; Visual system;

Kanban;
Technical systems

maintenance;
Layout

Model and
case study

Reduction of
maintenance cycle time.

Improvement of
intervention and

maintenance
management.

Increased efficiency
and effectiveness.

The application of the proposed
model must be extended to other

industrial types and sizes to verify its
applicability and verify

possible limitations.

Ramakrishnan &
Nalusamy [65] Industry in general MLP TPM; Kaizen;

Standard Work Case study

Reduced downtime
and runtime.

Improved maintenance
performance.

The authors present a structure,
however it should be more developed
in order to be able to help/show the

order in which they suggest the
implementation of TPM or other

pertinent indications for replication in
other industrial areas.

Wenchi et al. [66] Liquefied Natural
Gas Industry MLP VSM; Kanban Case study

Improvement of the
efficiency of

production processes.
Identification of

activities that do not
add value and waste in
the process. Reduction
of lead time and total

cycle time.

A root cause analysis of the low level
of usage and success in

manufacturing and
non-manufacturing should be done;

building information modeling (BIM).
BIM is a demonstration of the entire

construction lifecycle that allows
redefining the scope of the work and
has been widely used in engineering

(Shou et al. 2014).
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Table 1. Cont.

Authors Industry Interaction
Concepts LP Tools I4.0 Technologies Type of Study Benefits Limitations

Lacerda et al. [67] Automotive MLP VSM; Kaizen;
SMED Case study

The cycle time in the
assembly sub-process,

the number of
operators, the waste

and the level of
existence have been

reduced and one of the
main bottlenecks has

been eliminated.

The study does not present a structure
to be more easily replicated.

Pombal et al. [68]
Management of

maintenance
workshops

MLP

5S; Kanban;
Visual

management;
Mizusumashi.

Case study

Reduction of waste, in
the time needed to
locate and replace

consumable material.
Better inventory

control and workshop
management.

Despite mentioning the
methodologies to be applied, the

study does not present a structure to
be more easily replicated.

Konstantinidis
et al. [69] Automotive MI4.0

Mobile AR
maintenance

assistance; AR;
Computer Vision

Model and
case study

Support in the
development of

maintenance
technicians. Allows the

visualization of
detailed instructions.

Other test scenarios should be
considered, including different
operators with varying levels

of expertise.
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Subsequently, five models were chosen for a more detailed analysis as they effectively
integrated the concepts of Maintenance, Lean Production (LP), and Industry 4.0 (I4.0). The
selection of these five models was based on various criteria, including their potential for
enhancing production and decision-making processes, monitoring equipment effectively,
driving continuous improvement in processes, optimizing maintenance-related procedures,
enabling smart maintenance practices, and demonstrating flexibility and ease of application.

Kinz et al. [70] developed an intelligent maintenance model for resource and risk
optimization, which aims to improve asset management. The smart component of this
model embodies the efficiency perspective known as Lean Smart Maintenance (LSM),
which emphasizes intelligent maintenance management and continuous improvement. The
Lean aspect of this methodology stems from the principles of Lean Philosophy, wherein
the model seeks to minimize losses at the onset of maintenance management systems, all
the while prioritizing the sustainable utilization of resources. The authors successfully
implemented this model in the steel industry, specifically within a steel rolling mill. For
the successful implementation of the model proposed by Kinz et al. [70] (Figure 1), a
systematic evaluation and classification of assets must be carried out. This evaluation
entails employing a tool that assesses and identifies the critical assets within a production
system. This is an important phase as it ensures that limited resources are effectively
directed toward managing critical assets. The assessment is carried out by a team consisting
of maintenance elements and operators with experience in factory floor assets, using the
Failure Modes and Effects Analysis (FMEA) methodology [70].
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The entire process must be documented, as it will support the knowledge of mainte-
nance management following the LSM. Following the asset evaluation and classification
conducted using MATLAB, risks are grouped using the K-means algorithm. Once the eval-
uation, classification, and risk analysis are completed, the selection of assets for readjusting
maintenance activities takes place. Subsequently, these chosen assets undergo monitoring
and surveillance [70].

The model proposed by Kinz et al. [70] and its subsequent implementation in the
case study revealed several opportunities for improvement. The risk assessment process
significantly enhanced decision-making concerning the management of strategic assets. By
adopting LP principles, the maintenance strategy was adapted, resulting in the reduction
of several risks without necessitating substantial investments. Furthermore, the integration
of I4.0 facilitated the development of a failure prognosis model [70].

Shahin et al. [71] developed a cloud-based Kanban Estimated Actual Total (EAT)
decision support system to showcase the feasibility and benefits of integrating Industry 4.0
technologies (cloud computing) with lean tools (Kanban).

Kanban, while effective in resource management, does present certain limitations when
applied to an enterprise-wide perspective. To address these limitations, Shahin et al. [71]
devised a cloud-based platform that leverages the inherent capabilities of I4.0 technologies.
This platform, when well-implemented, holds the potential to significantly enhance overall
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business management. Shahin et al. [71] developed and implemented this model within a
generic service operations management company.

The structure proposed by Shahin et al. [71] comprises six interconnected elements that
are accessible, expandable, and toggleable from any modern web browser. Each element is
secured with authentication/password, determining its size and scale (Service Plan). The
platform’s database stores essential production information, while a cloud-based server
hosts all web elements. The user interface encompasses various menus, granting access to
authorized employees.

According to Shahin et al. [71], there is a 5-step process for implementing the system.
Step 1 involves building the estimated total value of the work and the individual activities
to be performed. Step 2 entails establishing a timeline for the tasks. Step 3 comprises
simulating the decision support system. Step 4 consists of gathering the actual production
quantities. Step 5 focuses on displaying the work and activity progress based on the Kanban
EAT system, accessible through various internet-enabled devices [71].

Magadán et al. [72] proposed a monitoring system for electric motors based on I4.0.
The developed system serves as the basis for a PdM and operational anomaly detection sys-
tem. To ensure cost-effectiveness, the system was developed using low-cost hardware and
software components, such as multi-sensor and gateway modules, open-source software,
and a free version of the IoT.

The system works through sensors connected to the electrical motors, collecting
the data subsequently transmitted to the gateway. The gateway serves the purpose of
receiving and forwarding the sensor data to the cloud, which can be stored, processed, and
visualized via ThingSpeak. Accessible through both mobile and fixed devices with internet
connectivity, this cloud-based architecture facilitates data management [72].

Figure 2 shows the proposed system, consisting of sensors and other devices in the
first layer, enabling the collection of the desired information, although all data processing
is conducted within this layer.
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This layer comprises a cost-effective multi-sensor module, SensorTag CC2650, equipped
with an ARM Cortex-M3 processor and five integrated sensors, including motion sensors
(MPU9250) and humidity sensors (HDC1000). It also includes an accelerometer, a magne-
tometer, and a gyroscope. The second layer consists of gateways responsible for gathering
data from the various sensors and establishing connectivity with the third and final layer.
The elements that make up the second layer are the gateways, composed of Raspberry Pi
3 Model B+ on-board computers. The last layer enables the storage of the collected data,
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which, in turn, are analyzed and visualized through a storage system and an IoT analysis
service [72].

The model also incorporates the use of the Fast Fourier Transform (FFT) on the
measured motor accelerations. The FFT was calculated on the multi-sensor module and
the gateway. CMSIS DSP V1.10.0 software is used with the module, designed for devices
based on Cortex-M processors. The multi-sensor modules and gateways communicate via
Bluetooth, enabling the transmission of small streams of sensor-collected data. To establish
a connection with the final layer, the gateways transfer the data via HTTP to the ThingSpeak
REST API [72].

Ashjaei and Bengtsson [73] proposed a system to improve maintenance management.
The first layer is composed of physical resources: factories, machines, tablets, operating
rooms, and other devices for storing and processing data. The primary function of the
latter is to establish connections and filter the data collected from the factory, machines,
and equipment, sending it to the second layer. The last layer, the cloud layer, is composed
of a data processing and storage unit. Communication between the two layers is possible
through the local network. However, the system can support data coming from outside
through the long-distance network also existing in the system. The operation of the system
consists of collecting data through sensors that are coupled to the physical resources.
Subsequently, the collected data are processed and transmitted to the monitoring room and
mobile devices, enabling real-time monitoring of the status of the physical resources. Both
the local and long-distance networks facilitate control and monitoring, and in the event of
detecting parameters outside the established range, the system issues an alert.

Islas et al. [74] developed a system dedicated to the continuous monitoring of alu-
minum melting furnaces. Given the critical significance of temperature control in the
casting process for product transformation, the system enables the monitoring of furnace
operations within the temperature range of 600 ◦C and 620 ◦C.

The system uses XBee technology to establish a wireless sensor network. The network
controller is responsible for transmitting the collected furnace operation data to a Local
Area Network (LAN) via the internet [74].

The wireless sensor network is responsible for measuring the electric current in the
furnace and transmitting the data to the coordinator. Serving as the network manager, the
coordinator receives the data and identifies the origin of each data stream. Once the data
are stored and processed, they become accessible for visualization through a web server.
Through an IoT platform, maintenance services can access or receive an alert by email [38].
For the implementation of the prototype proposed by Islas et al. [38], some software and
hardware are required, including X-CTU software, Xbee Pro S2B modules designed with
the Zigbee protocol, XBee shield, Arduino Uno, Raspberry Pi, power supply, transformer,
local area network, IoT, Dashboard, among others [74].

Identification of Advantages and Limitations of Selected Models

Although the five selected models address some of the concepts of interest to the
present study and have some similarities, such as real-time monitoring of the condition of
physical resources, they show some specific advantages and limitations.

Although the LSM model addresses the three concepts of Maintenance, LP, and I4.0, as
intended, it is not specific at all stages of its implementation. For instance, the asset moni-
toring phase is not thoroughly described, leaving uncertainties regarding the hardware and
software components used and the approach taken for monitoring selected assets. Another
limitation lies in the fact that the proposed model has only been implemented in an industry
characterized by high-cost assets and a production chain system with high failure costs,
raising questions about its replicability in small or medium-sized companies. Moreover,
risk assessment within the LSM model is a time-consuming process. Even with the creation
of a criteria assessment tool, it was not possible to assess all the important objectives.

The system developed by Shahin et al. [71] effectively addresses two of the three
concepts, LP and I4.0, not addressing the concept of Maintenance. The system’s primary
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advantage lies in its ability to offer real-time visualization of the production process, in-
cluding metrics such as the actual quantity produced, hours of work used, the number of
items with poor quality, and the occurrence of line stops. The proposed system contributes
to improving the production system and obtaining important indicators of it, allowing
better decision-making. Although the system is described, it lacks a detailed description
of the constituents needed to compose the system (hardware and software), as well as the
implementation phase. A more detailed description of these aspects would be beneficial in
understanding the system’s technical and operational aspects, facilitating potential replica-
tion or adaptation in other contexts. To enhance the applicability and understanding of the
proposed system, future studies should focus on providing a more thorough account of its
components and implementation process. This would allow researchers and practitioners
to gain valuable insights into the system’s practical deployment and potential benefits in
various manufacturing settings.

The system proposed by Magadán et al. [72] involves the concepts of Maintenance
and I4.0, presenting itself as a straightforward and cost-effective solution for the industrial
environment. Although economically appealing, it still needs to be further developed to be
more complete. The areas for improvement include the creation of an automatic anomaly
detection system, proper labeling of all received and stored data in the cloud, and the
development of a predictive model to estimate the probability of electrical motor failure.
By addressing these aspects, the system can effectively contribute to reducing maintenance
costs and provide a more robust and reliable solution for industrial applications.

Ashjaei and Bengtsson [73] propose a system that integrates the concepts of Mainte-
nance and I4.0. The primary focus of this system is to address challenges related to the
speed of data transmission and data security. This system enables vibration monitoring,
offering the capability to implement certain actions remotely, such as adjusting rotation
speed to mitigate vibrations. This feature significantly contributes to vibration reduction
and improves overall operational efficiency. Moreover, the system facilitates commu-
nications through both the local network and the long-distance network, extending its
capabilities to interact with external elements. This integration with external devices brings
added advantages, as it enables efficient communication between internal and external
devices, fostering enhanced system functionality and broader applicability across various
operational scenarios.

The system proposed by Islas et al. [74], which is designed to monitor furnaces’
temperature, can improve maintenance performance. This system exhibits versatility,
making it applicable in various domains and adaptable to monitor different parameters.
However, it should be noted that the system does not address the concept of LP. Despite
this limitation, its potential for expansion and diversification in monitoring various aspects
renders it valuable for maintenance optimization and potential integration with other
frameworks that may include LP principles.

Thus, the five systems address some of the three targeted concepts, with the model pro-
posed by Kinz et al. [70] encompassing all three. However, it is worth noting that this model
is more complex compared to the others. The system proposed by Shahin et al. [71] in-
volves the LP and I4.0 concepts but does not include the Maintenance concept. On the other
hand, the architectures presented by Magadán et al. [72], Ashjaei and Bengtsson [73], and
Islas et al. [74] are based on Maintenance and I4.0 without incorporating LP in their respec-
tive models. Integrating the LP philosophy into these systems would bring forth numerous
advantages, fostering enhanced performance and continuous improvement both in the
production system and the maintenance department. By incorporating LP principles, these
systems could optimize resource use, streamline processes, and promote efficiency and
flexibility in both production and maintenance activities. This synergy of concepts would
contribute to a more comprehensive and effective approach to industrial management,
ultimately leading to improved overall operational performance and competitiveness.

The five proposed systems have some similar limitations. One limitation shared
among these models is the maximum distance constraint between various devices, which
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can vary depending on factors such as sensor type, communication protocol, and gateway
specifications. If the maximum connection distance is exceeded, data transmission becomes
challenging, resulting in a reduced amount of collected data. Another limitation concerns
the volume of data to be collected and analyzed. The complexity of data collection further
compounds this issue. While one of the proposed systems considers enhancing system
security, all analyzed systems still present certain gaps in this aspect. Addressing these
limitations would be important in optimizing the performance and efficiency of the systems.
Overcoming the distance constraint through improved communication protocols and gate-
way designs would facilitate data transmission. Moreover, devising strategies to handle and
analyze large and complex datasets effectively is relevant for gaining meaningful insights
and making informed decisions. Enhancing system security would also be indispensable
for ensuring data integrity and protection against potential threats, promoting the overall
reliability and trustworthiness of the systems. By addressing these common limitations, the
proposed systems can be refined and made more robust, contributing to their successful
implementation and yielding valuable results across various industrial settings.

3. Proposal for a Lean Maintenance Methodology in an Industry 4.0 Environment

Upon analyzing existing architectures, it becomes evident that there are several models
and systems designed to enhance the management of maintenance services, with most
of them being comparatively more complex in terms of implementation. Among the
analyzed architectures, some stood out for their system simplicity and versatile applicability.
However, none of these models integrated all three concepts simultaneously. The model
presented in this work introduces a monitoring system that combines I4.0 and TPM with
Lean methodologies. The development of this monitoring system drew inspiration from the
approach presented by Magadán et al. [72]. By integrating these concepts, our model aims
to create a comprehensive and streamlined system that facilitates efficient maintenance
management and supports continuous improvement in the company’s operations.

The MMSO was developed following a thorough analysis of various existing models
in the literature, tailored to align with the primary objective of this study. During its design,
it was determined that the system would be built upon the I4.0 concept. This decision
was driven by the ease and flexibility that the I4.0 concept offers in continuous monitoring
through sensors and other devices. This capability enables the system to collect, process,
and store a large amount of data in real-time, facilitating the accurate collection of crucial
parameters. Through careful analysis of these data, the system contributes to enhanced
decision-making in the management domain, leading to improved resource management
and utilization.

I4.0 brings with it significant advantages for companies, and the maintenance sector is
no exception, benefiting from the newfound capabilities of remote controls and access, as
well as the automation of processes and devices. The increase in technologies facilitated by
I4.0 leads to enhanced data collection and analysis of important data such as downtime,
cycle time, and repair time, among others. These advancements yield several benefits,
such as minimizing unscheduled downtime, continually improving production efficiency,
mitigating risks, enhancing safety, and promoting environmental sustainability.

To exploit the advantages offered by I4.0 and to enhance the existing systems analyzed
alongside the one developed by Magadán et al. [72], LP was integrated. This strategic
management methodology, combined with I4.0, enables the attainment of continuous
improvement in both the production system and the maintenance department. Maintenance
plays a crucial role in the production process of any industry, and the introduction of LP
contributes significantly to the enhancement of this department, not only in terms of
management but also in the quality of its interventions.

The MMSO was developed to be implemented in the production and maintenance
areas. Its simple and expedient configuration allows for easy application. Moreover, the
system is composed of cost-effective elements, turning it into a highly versatile and eco-
nomical solution for monitoring machines and equipment. This adaptability promotes its
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replication and deployment across other industrial sectors of the companies. By adopting
I4.0 and LP, the organization can achieve multiple benefits, including significant reductions
in energy consumption and a smoother transition towards energy-efficient practices. These
methodologies enable an organized, efficient, and optimized production process, allowing
for better energy management, identification of energy wastage, and more sustainable
operational practices. Moreover, continuous improvement driven by I4.0 and LP can lead to
the implementation of energy-saving measures and the adoption of innovative technologies
that support the organization’s energy transition goals. In this way, the combined appli-
cation of I4.0 and LP not only enhances production and maintenance but also contributes
significantly to the organization’s energy efficiency and sustainability initiatives.

Figure 3 shows the developed model, which comprises three distinct layers. The first
layer is composed of physical resources that constitute the factory floor. In the second
layer, communication components provide the connection between the various layers and
other devices like switches, smartphones, and tablets, among others. The third layer, the
cloud, is composed of an IoT platform service and a data storage and processing system.
While the model encompasses real-time monitoring capabilities, there is scope for further
enhancement through the implementation of Total Productive Maintenance (TPM). By
integrating TPM into the existing framework, the system can achieve a more comprehensive
approach to maintenance, fostering improved equipment reliability, efficiency, and overall
production performance.
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Figure 3. Model proposal that integrates the 3 concepts under study to improve maintenance
management.

It must be highlighted that the MMSO was based on maintenance management and
its corresponding indicators. Furthermore, this approach has the potential to yield valuable
insights that can significantly enhance the management of production processes. The
integration of maintenance-related data into the overall production management strategy
can lead to more informed decision-making, increased operational efficiency, and optimized
resource allocation.

3.1. Description of the Operation of the Proposed Methodology

To enable communication between the different components comprising the system,
various solutions such as Wi-Fi, Global System for Mobile (GSM), or Bluetooth Low Energy
(BLE) can be explored. For inter-component communication, the BLE technology was
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selected, as it offers wireless connectivity with reduced energy consumption in devices
that do not require the transmission of extensive data. This makes it an ideal choice for
applications with limited energy capacity, ensuring efficient and extended operation while
conserving valuable resources [75].

The monitoring of machines and equipment, as well as the total number of parts
produced with or without defects, is carried out using wireless sensors that collect and
transmit data to the gateway (Figure 4). If a stop occurs, the operator can classify the
type of stop using a tablet, smartphone, or device connected to the internet. The stoppage
classification is carried out by accessing the ThingSpeak internet platform, where it is
possible not only to enter the stoppage classification but also to provide comprehensive
visibility into all associated machine indicators and other relevant data. The gateway
bridges the gap between physical resources and the cloud through sensors that collect
and send data (Figure 4a). This processes the data sent by the sensors, which, in turn, are
transmitted to the cloud (Figure 4b).
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In the last layer, the processor stores all the information and works as an interface for
data visualization through a free version of ThingSpeak. This setup enables aggregation,
analysis of data flow, and on-demand visualization through various devices such as com-
puters, tablets, dashboards, touchscreens, and smartphones, among other devices. Figure 5
schematically and succinctly describes how the proposed model operates.

3.2. Description of the Proposed Hardware

Sensors are the components responsible for collecting and transmitting data to the
gateway. The selected sensors for this system are the April USB Beacon 306 and the
TCRT5000 infrared sensor module. The AprBrother’s April USB Beacon 306 BLE sensor
is USB powered, based on nRF52820, with an external antenna that has a range of up to
100 m, frequency 2.402 GHz to 2480 GHz, secure simple pairing and AES-128, ensuring
effective machine monitoring and equipment. To account for items produced with or
without defects, the TCRT5000 infrared sensor module can be utilized. This module serves
as a counter, accurately determining the number of well-produced parts and/or defective
items. The optical sensor module, LM393, has high accuracy in detecting obstacles and
can identify an object up to 12 mm away. It has digital and analog output modules with
working voltage from 3.3 V to 5 V. It has a comparator output with strong driving ability
for more than 15 mA; adjustable precision potentiometer to adjust sensitivity; output form
digital switch output (0 and 1); small board PCB size: 3.1 cm × 1.4 cm. However, for this
accounting to be possible, the TCRT5000 sensor must be connected to the Arduino Nano
33 BLE microcontroller, thus allowing the design of devices at a short distance using the
BLE protocol.
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The gateway has the function of receiving the signals transmitted by the sensors.
For this purpose, the Raspberry Pi 3 Model B+ was chosen, as it possesses the capability
to receive BLE signals. This device features 1 GB of RAM, 1 HDMI port, and 4 USB 2.0
ports, along with CSI and DSI ports that enable connectivity to cameras and touch screens.
Additionally, the device supports Ethernet rates of up to 100 Mbps and may establish
communication through both Wi-Fi and BLE protocols.
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On the cloud layer, a free version of ThingSpeak is implemented, as previously men-
tioned. This platform enables data aggregation, as well as visualization and analysis of
data flow through the information transmitted by the gateways (Figure 6).
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4. Discussion

The proposal of the presented model designated by MMSO presents a few similar-
ities in its basic function with the monitoring systems proposed by Magadán et al. [72]:
real-time monitoring of parameters, ease of application, and cost-effectiveness. However,
the developed model was specifically designed to offer enhanced performance in various
industrial areas and dimensions. This model stands apart from the ones previously pre-
sented and analyzed due to its innovative combination of the three targeted concepts and
its primary focus on acquiring data related to maintenance and production management
rather than solely monitoring condition parameters like temperature, vibration, and noise.
The presented model can be easily adapted (with proper adaptation and programming) to
remotely monitor the condition parameters of machines and equipment, as presented by
Magadán et al. [72].

The integration of the model’s components into machines occurs non-intrusively,
facilitating its implementation in both older and newer machines while also fostering
effective communication between them. The wireless communication between the devices
renders the system modular and cost-effective.

The use of this model in companies brings several benefits both in terms of mainte-
nance management and production, significantly enhancing overall performance. It enables
an efficient and real-time exchange of information between these areas, empowering better
and more informed decision-making processes.

The cost-effectiveness of the model is influenced by the communication range between
its various devices. As the distance between them increases, communication quality
diminishes. Nonetheless, this challenge can be addressed by altering the communication
protocol and opting for different devices such as [76–78], though this choice would impact
the implementation cost of the architecture.

As mentioned, the model lacks the implementation of Total Productive Maintenance.
This methodology, when combined with the monitoring system, can yield numerous
benefits for the company, involving and engaging various employees and technicians in
day-to-day operations. It contributes to improving several key indicators, such as Overall
Equipment Effectiveness, while ensuring machines are maintained in an ideal state to
prevent unexpected breakdowns, losses in speed, and service quality. Furthermore, it
reduces the occurrence of defects with the introduction of Autonomous Maintenance. By
integrating Total Productive Maintenance, the model can enhance its potential impact
across maintenance, production, and other operational areas, fostering continuous im-
provement within the company. The developed model offers significant benefits in terms
of energy consumption reduction and energy transition. Considering as an example the
food industry, the electrical energy consumption is very high due to continuous processes
using conveyors for product movement and refrigeration to maintain the safety and quality
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of the perishable food products [79–83]. By enabling real-time monitoring of machines
and equipment, the model helps identify inefficiencies and optimize energy usage. It
allows companies to track energy-intensive processes, detect anomalies, and implement
energy-saving measures promptly. Through the integration of IoT technologies and I4.0
principles, the model facilitates remote monitoring and control of machines, leading to more
efficient energy utilization. By remotely accessing and analyzing data on energy consump-
tion patterns, companies can identify areas of high energy usage and implement targeted
energy-saving strategies, thereby reducing overall energy consumption. Achouch et al. [84]
and Abidi et al. [85] developed a system that integrates I4.0 to support decision-making,
as well as to enable strictly necessary maintenance actions to reduce the number of inter-
ventions and, consequently, maintenance costs, along with reduced material waste and
contributing to the development of sustainable operations in the area of maintenance.

Susto et al. [86] developed a multiple-classifier machine learning methodology for
PdM. This PdM approach allowed the implementation of dynamic decision rules for
maintenance management. Furthermore, it was used to handle sensor data and high-
dimensional data. The efficiency of this model was demonstrated through simulation in
the standard semiconductor manufacturing industry.

Zenisek et al. [87] developed a model to identify wear as well as subsequent failure
by examining real-time condition monitoring data reported by machines equipped with
sensors. These developments demonstrated the possibility of reducing material and time
costs, preventing failures, and improving performance.

Moreover, the model’s focus on TPM further contributes to energy efficiency. TPM em-
phasizes preventive maintenance and optimal machine conditions, which reduces energy
waste resulting from unexpected breakdowns or suboptimal operating states. Additionally,
the real-time data provided by the model enables companies to make data-driven deci-
sions to optimize energy-intensive processes and improve energy efficiency. This allows
for continuous improvement in energy consumption practices, contributing to long-term
energy transition goals. By promoting a culture of energy awareness and efficient resource
management, the model can foster a more sustainable and environmentally friendly ap-
proach to manufacturing. It aligns with broader energy transition objectives by helping
companies reduce their carbon footprint and mitigate environmental impacts. Thus, the
model’s ability to monitor, analyze, and optimize energy consumption in real-time, com-
bined with its emphasis on preventive maintenance and energy-efficient practices, offers
tangible benefits in terms of energy consumption reduction and supports the transition
towards more sustainable energy practices.

In addition to the benefits mentioned above, there are other benefits to traditional
maintenance management. Traditionally, after completing a maintenance intervention,
each operator records the services that were carried out, thus establishing the history of
failures and interventions, as well as storing the repair time. Each person responsible for
the maintenance area must check every compliance of the procedure, time, and materials,
among other aspects, and designate the performer of a certain intervention. In this sense,
using the MMSO model, at each stop of a given asset, the operator, using a tablet, inserts
information, such as: “Before stopping, there was a huge noise”; “The system lighting
sometimes goes down when starting the equipment”. Through this information, which can
be accessed on the platform, those responsible for maintenance can issue more accurate
work orders. On the other hand, one of the components for measuring the efficiency
of maintenance management is availability. It is calculated by dividing the Mean Time
Between Failures (MTBF) by the sum of the MTBF and Mean Time to Repair (MTTR). How-
ever, the availability of equipment depends on several factors that can often be associated
with the material, conditions of use, and wear and tear, among other factors. In this sense,
the MMSO model allows obtaining this information in real time through a fixed or mobile
device that has internet access. Therefore, the information can be analyzed quickly and
intuitively by reading a graph. Thus, the average operating time of the respective asset
can be easily checked. The MTTR is also determined, helping to identify which type of
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asset and the predicted intervention time, helping maintenance managers to take action to
reduce the repair time. Related to sustainable interventions by maintenance, the correct
identification of spare parts promotes the correct management of stocks. On the other hand,
through TPM, the culture of continuous improvement, autonomous maintenance, as well as
the respective training of operators, including maintenance personnel, will enable a signifi-
cant improvement in the reduction of machine and equipment stops. It will also advance
employee management and the production of fewer parts with defects, contributing to the
waste reduction of raw materials, natural resources used, and energy. The Lean Philosophy
and its associated methodologies were not initially designed to improve issues related to
the sustainability of companies. Their objectives were to enhance production processes,
eliminate or reduce waste, and eliminate or reduce parts with defects or rework, among
other objectives. Alves and Alves [88], Samadhiya et al. [89], Díaz-Reza et al. [90], and
Bakri et al. [91] state that there are several environmental benefits linked to this philosophy.

It is only possible to quantify the importance of maintenance by monitoring the
performance parameters of equipment and the maintenance process [92]. The importance
of the parameters depends on the situation and the peculiarities of the system/company
itself. It is important to point out that an indicator used by one company is not necessarily
used by another. It all depends on the area of activity and type of business organization,
among other aspects. Each indicator/parameter expresses the level of performance that
was achieved, helping to directly and transparently compare management objectives and
results obtained, simplifying a situation that would otherwise be relatively complex. Many
parameters can be used to quantify maintenance performance. These can be equipment
performance measures (for example, availability, reliability), cost performance measures
(for example, cost of labor, material, maintenance), and process performance measures
(for example, rate of planned and unplanned work, schedule compliance). Although
reported above, three measures of equipment performance, such as cost and processes,
equipment performance is one of the most relevant to support maintenance management.
The performance of the equipment is related to the results of maintenance. These results
can be obtained and crossed with various parameters such as availability, average time to
failure, frequency of breakage, average time to repair, good operation time, and production
rate, which allows maintenance managers to also perceive the frequency of scheduling and
the respective time of each scheduling, intensity/criticality of the failure relating to the
time required for intervention and the impact it had on the production system, turnover
of the service order, compliance with the schedule and backlog of tasks. The MMSO was
designed to support the activities of collecting data related to equipment performance, to
support decision-making based on analyzing the data acquired in real-time, and to help
maintenance managers in their tasks of planning and preparing maintenance activities.
The structure of a maintenance performance parameter needs to be viewed from several
angles; therefore, the Specific Measurable Attainable Realistic Timely (SMART) test can
be used to verify the attributes of the indicators [93]. Maintenance indicators must be
assessed for the objects being analyzed at a given time, and the analysis of the results
can focus on the absolute values of this indicator or the trend it shows. Concerning the
uncertainty in obtaining data using wireless sensors, these can have a high probability of
noise, sensitivity, measurement range, resolution, and accuracy as characteristics associated
with the sensors. However, the aspect more critical is the transmission/communication
uncertainty class [92].

The MMSO test phase was conducted on a conveyor belt. The data analyzed before
the implementation of the MMSO, referring to a 5-day work week, in which each working
day corresponds to 7 h (less all scheduled stops), indicated that the belt conveyor operated
about 82.3% of the expected execution time. With the implementation of the MMSO, the
conveyor belt operated about 87.7% of the expected operating time during a work week,
which represents an operating time increase of approximately 6.6%. The collection of
data over time, as well as the refinement of actions by operators and the application of
autonomous maintenance and preventive maintenance plans, will allow for more significant
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improvements in the medium to long term regarding the performance of the MMSO and
its impact on the sustainability of maintenance activities and the production system.

Uhlmann et al. [94] presented a method to investigate and visualize offline information
from various sources. Data collected from three sensors were used. The sensors showed
typical machine tool operations and three fault conditions. The proposed method reduced
failures by 15% to 20%, with the possibility of also reducing costs and, consequently,
improving sustainable performance.

Zhou and Yin [95] presented a maintenance model to derive optimal maintenance
plans for various turbine components under different climatic and operating load con-
ditions based on continuous asset monitoring. The Lean Time of maintenance had a
significant weight in the annual cost of maintenance. Through the model’s application, it
was possible to reduce maintenance costs by 32% to 39% compared to traditional mainte-
nance management.

5. Conclusions

For companies to thrive in the increasingly globalized and competitive market, all
the departments that constitute them must be aligned with the general objectives and
maintenance policies, with none of them being an exception. Thus, maintenance is a
determining and essential factor for any company.

In this way, the people responsible for maintenance have to search for and implement
innovative tools and methods that can contribute to improving the production system.
Therefore, effective maintenance management plays a crucial role in achieving optimal
asset management and enhancing the performance of the production system, ultimately
leading to customer satisfaction.

Regular visits to the factory floor or maintenance area have been used to collect impor-
tant data, such as cycle time, downtime, and waste identification. However, this manual
approach may suffer from communication gaps and inaccuracies, hindering the full po-
tential of maintenance improvement. Although this methodology contributes significantly
to improving the performance of the production and maintenance system, sometimes it
is not properly applied, whether due to poor communication between those responsible
for the GW and the operators or in the collection of times. To address this, a novel model
combining the three concepts under study, denominated MMSO, was developed, enabling
real-time monitoring of machines and equipment. This model allows for the collection
of various critical data, such as repair time, operational uptime, and mean time between
failures, empowering maintenance decision-making and efficient production management.

The model comprises sensors that gather data and transmit them to the gateway,
which, in turn, forwards the data to the cloud for storage and processing through a free IoT
application. This not only facilitates data processing but also enables real-time visualization
and other valuable insights.

While the model is easy to apply, flexible, and cost-effective, it has some communi-
cation limitations if the recommended distance between the various constituents of the
system is not respected. These limitations arise from the range of communication capabili-
ties among the devices, potentially impacting data acquisition. Additionally, implementing
Total Productive Maintenance, a crucial aspect of the model, requires dedication and train-
ing from top management and maintenance technicians to educate operators for better
performance and autonomous maintenance tasks.

Moving forward, the implementation, testing, and validation of the proposed model
will be pursued to evaluate its effectiveness and potential benefits. Despite the ongoing
development and few limitations, the model holds promising potential for significantly
improving maintenance and production management processes.

In conclusion, the integration of the three concepts—Industry 4.0, Lean Philosophy,
and Total Productive Maintenance—presents a powerful opportunity for companies to opti-
mize their production and maintenance processes, leading to significant benefits related to
energy consumption reduction and energy transition. By combining real-time monitoring
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through Industry 4.0 technologies with the waste reduction and continuous improvement
focus of Lean Philosophy and the systematic maintenance approach of TPM, companies
can achieve higher efficiency, better asset management, and improved overall performance.
Through the proposed model, companies can monitor critical indicators related to mainte-
nance management and production systems in real-time, easing timely decision-making
and enhancing communication between different departments. This enhanced communi-
cation and collaboration may also lead to a better understanding of energy consumption
patterns, allowing for targeted improvements and reductions. Moreover, the versatility and
low-cost nature of the model make it a valuable tool that can be easily adapted to various
domains and industries, promoting its widespread adoption and applicability. Overall,
the integration of Industry 4.0, Lean Philosophy, and Total Productive Maintenance not
only fosters sustainable practices but also enhances overall organizational performance,
customer satisfaction, and competitiveness. Companies that embrace this transformative
approach can achieve a compatible balance between operational excellence and sustainable
management through these synergies.
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