
Citation: Liu, H.; Wu, Z.; Yuan, S.;

Wang, Y.; Dong, L. Design and

Implementation of a

Three-Dimensional CAD Graphics

Support Platform for Pumps Based

on Open CASCADE. Processes 2023,

11, 2315. https://doi.org/10.3390/

pr11082315

Academic Editor: Ireneusz

Zbicinski

Received: 2 July 2023

Revised: 20 July 2023

Accepted: 30 July 2023

Published: 2 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Design and Implementation of a Three-Dimensional
CAD Graphics Support Platform for Pumps Based on
Open CASCADE
Houlin Liu, Zhicai Wu *, Shuolei Yuan, Yong Wang and Liang Dong *

Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
* Correspondence: silverlinings2020@163.com (Z.W.); dongliang@ujs.edu.cn (L.D.);

Tel.: +86-153-0820-0524 (Z.W.); +86-183-6288-1311 (L.D.)

Abstract: In the pump industry, designers commonly utilize mainstream three-dimensional computer-
aided design (CAD) software (Unigraphics NX 12.0 and SolidWorks 2023). However, these CAD
packages are generic and not optimized for the specific requirements of the pump industry. This
leads to a lack of flexibility and increased complexity in their usage, as well as higher computational
demands, resulting in elevated learning and operational costs. Additionally, there are concerns about
potential information leaks and software restrictions. In this paper, we studied the organization
architecture of commercial three-dimensional CAD software, and compared and analyzed the geo-
metric kernels and rendering engines of mainstream three-dimensional software. Using the Open
CASCADE geometric kernel and OpenSceneGraph rendering engine, together with the Visual Studio
2021 development environment and Qt interface library, we developed an autonomous copyright
three-dimensional CAD graphics support platform for pumps. Based on the three-dimensional
platform, we tested the commonly used graphics elements and basic algorithms required for pump
modeling, and successfully designed and modeled the impeller and volute casing of a centrifugal
pump. Through computational simulations and experimental verifications, we demonstrated that the
accuracy and precision of the pump model designed on this platform meets the design requirements,
indicating that this platform has practical pump design and modeling capabilities. Compared to com-
mercial three-dimensional CAD software, this platform exhibits superior flexibility and interactivity
in three-dimensional modeling that is specifically tailored for pump products. Consequently, it fully
satisfies the needs for three-dimensional parameterized modeling and visualization of pumps.

Keywords: three-dimensional computer-aided design; geometric kernel; rendering engine; three-
dimensional visualization; centrifugal pump parameterized modeling

1. Introduction

Pumps are general-purpose machines that convert mechanical energy into the kinetic
and pressure energy of the conveyed fluid. They are widely used in various fields such as
agricultural irrigation, water supply and drainage, shipbuilding, and aerospace. In special
sectors like petroleum and chemical industry, centrifugal pumps account for over 70% of
the total pump usage [1]. Currently, in the pump industry in China, designers primarily
use 2D drafting software for manual hydraulic design and 3D modeling software for three-
dimensional representation. This design approach fails to fully leverage the efficiency and
convenience offered by computers. It not only involves substantial engineering calculations
and repetitive work, but also demands significant expenditure on software procurement
and maintenance. Although there have been research efforts on pump CAD technology
in recent years, resulting in the development of excellent pump design software such as
PCAD (Pump hydraulic design software) [2] and PCAD-3D (3D modeling software) [3],
these systems are secondary developments based on commercial CAD software. They often
rely on specific versions of commercial software, necessitating constant updates of the CAD

Processes 2023, 11, 2315. https://doi.org/10.3390/pr11082315 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11082315
https://doi.org/10.3390/pr11082315
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-0678-4382
https://doi.org/10.3390/pr11082315
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11082315?type=check_update&version=1

Processes 2023, 11, 2315 2 of 19

system alongside updates of the commercial 3D systems [4]. Furthermore, commercial
software consumes significant memory during operation, which does not align with the
requirements of lightweight and rapid design. Considering these challenges, this paper
proposes developing a proprietary CAD graphics support platform with independent
intellectual property rights.

In 1964, GM (General Motors) and IBM (International Business Machines) pioneered
the application of CAD technology in industrial design with the development of the
DAC-I system for linear design of automotive windshields. Shortly after, I.E. Sutherland
developed the Sketchpad, which introduced the concept of constraints for creating standard
parts in CAD systems [5,6]. In the 1970s, Gossard and Hilyard [7] presented theoretical
explanations for geometric constraints and the method of variable geometry. From the
1980s onward, with rapid advancements in computer science and significant cost reductions
in computer hardware, smaller CAD firms and even individuals were able to meet the
hardware and software requirements for CAD development. The lower entry barrier
attracted many scholars to engage in CAD research and apply their findings. For example,
Aldefeld [8] proposed representing geometric elements and constraint conditions used in
model creation as sets, providing an abstract representation that facilitates mathematical
reasoning for computing geometric models and topological structures. Konodol [9] further
simplified model creation and modification operations by applying the ideas of constraints
and parametric design. Solano [10] from Spain defined constraint-based parametric design
and created a standard language for defining models, along with mathematical reasoning
methods for these models.

CAD technology has been widely applied in various design fields and has become
an important tool in the engineering industry, including the pump industry. Commonly
used CAD software for pumps includes CFturbo, BladeGen, and TURBODesign. CFturbo
is a product of CFturbo GmbH in Germany [11]. This software can design various types of
rotating machinery, such as pumps, fans, compressors, etc. The design process is convenient
and intuitive. Designers input the design parameters of the rotating machinery, such as
flow rate, head, speed, etc., and CFturbo automatically calculates other key parameters,
providing great convenience to designers. CFturbo also provides many interfaces that
can be connected to most CAD (Unigraphics NX and SolidWorks) and CAE (ANSYS)
software on the market, facilitating model modification and simulation analysis [12]. CFX
BladeGen consists of two modules: BladeGen and BladeGenPlus, which are primarily
used for blade design of rotating machinery. The BladeGen module is used for blade
design, while the BladeGenPlus module performs subsequent grid generation and CFD
calculations. The combination of these two modules allows for predicting the performance
of the blades [13]. TURBODesign is a blade design software for turbomachinery developed
by the Advanced Design Technology (ADT) team. This software is suitable for various
types of turbomachinery blades, including radial, mixed-flow, axial-flow, rotating and
stationary, compressible and incompressible blades [14]. The distinguishing feature of this
software is that it is a three-dimensional design software based on inverse design methods.
Many researchers in inverse design optimization have used this software, indicating that it
has comprehensive and convenient functionality in inverse design [15].

The aforementioned software provides powerful three-dimensional modeling and
design capabilities that can be applied to the three-dimensional modeling of pumps. How-
ever, they are all commercial software which requires expensive annual licensing fees.
Additionally, generic CAD software provides support for graphical element drawing across
various industries, which limits its flexibility [16]. Since the 2000s, Liu et al. from Jiangsu
University [2] developed the PCAD hydraulic design software based on the AutoCAD
platform using Object ARX development tools. This software features accurate design and
high efficiency, and has been widely used in the pump industry in China. Liu et al. [3]
developed the PCAD-3D pump three-dimensional modeling software based on the Pro/E
platform using the Pro/TOOLKIT, establishing data communication between PCAD-3D
and PCAD, thus achieving three-dimensional parametric modeling of pumps. However,

Processes 2023, 11, 2315 3 of 19

these software solutions still rely on commercial CAD software for normal operation, which
undoubtedly increases security risks. Therefore, it is necessary to develop a lightweight
pump three-dimensional CAD graphics support platform with professional characteristics
and independent intellectual property rights to ensure the flexibility and security of the
software.

2. Introduction of Open CASCADE

Open CASCADE, abbreviated as OCC, is an open-source geometric kernel that is
an object-oriented library developed in C++. It aims to provide underlying technological
support for the rapid development of specific engineering applications such as CAD, CAE,
and CAM [4]. As a three-dimensional geometric kernel, OCC offers features including
three-dimensional modeling visualization modules, three-dimensional solid modeling
algorithms, and reading/saving three-dimensional data files [17], fully meeting the require-
ments for constructing a three-dimensional CAD platform for pumps. Figure 1 illustrates
the architecture of Open CASCADE, presenting its functionalities and corresponding
frameworks.

Processes 2023, 11, x FOR PEER REVIEW 3 of 19

toCAD platform using Object ARX development tools. This software features accurate de-

sign and high efficiency, and has been widely used in the pump industry in China. Liu et

al. [3] developed the PCAD-3D pump three-dimensional modeling software based on the

Pro/E platform using the Pro/TOOLKIT, establishing data communication between

PCAD-3D and PCAD, thus achieving three-dimensional parametric modeling of pumps.

However, these software solutions still rely on commercial CAD software for normal op-

eration, which undoubtedly increases security risks. Therefore, it is necessary to develop

a lightweight pump three-dimensional CAD graphics support platform with professional

characteristics and independent intellectual property rights to ensure the flexibility and

security of the software.

2. Introduction of Open CASCADE

Open CASCADE, abbreviated as OCC, is an open-source geometric kernel that is an

object-oriented library developed in C++. It aims to provide underlying technological sup-

port for the rapid development of specific engineering applications such as CAD, CAE,

and CAM [4]. As a three-dimensional geometric kernel, OCC offers features including

three-dimensional modeling visualization modules, three-dimensional solid modeling al-

gorithms, and reading/saving three-dimensional data files [17], fully meeting the require-

ments for constructing a three-dimensional CAD platform for pumps. Figure 1 illustrates

the architecture of Open CASCADE, presenting its functionalities and corresponding

frameworks.

Figure 1. Open CASCADE architecture diagram.

Open CASCADE provides various classes and functions for creating basic geometric

shapes such as cones, cylinders, and tori. It also allows operations on these geometric en-

tities, such as Boolean operations, chamfering, and spatial transformations. Some classes

and functions offer geometric spatial relationship calculations and geometric analysis be-

tween 2D and 3D models. To avoid naming conflicts and duplications, Open CASCADE

organizes classes into packages, prefixing the package name to the class name for differ-

entiation. For example, the class responsible for implementing Bezier surfaces is named

BezierSurface and is grouped under the package Geom. Therefore, its full name becomes

Geom_BezierSurface. The library consists of packages that group together similar func-

tionalities and is further divided into six modules: Foundation Classes, Modeling Data,

Modeling Algorithms, Visualization, Data Exchange, and Application Framework. The

contents of these modules and their relationships are illustrated in Table 1 and Figure 2.

Table 1. Object Libraries modules and their contents.

Module Name Contents Included in the Module

Foundation Clas-

ses
Kernel Classes, Math Utilities

Figure 1. Open CASCADE architecture diagram.

Open CASCADE provides various classes and functions for creating basic geometric
shapes such as cones, cylinders, and tori. It also allows operations on these geometric enti-
ties, such as Boolean operations, chamfering, and spatial transformations. Some classes and
functions offer geometric spatial relationship calculations and geometric analysis between
2D and 3D models. To avoid naming conflicts and duplications, Open CASCADE organizes
classes into packages, prefixing the package name to the class name for differentiation. For
example, the class responsible for implementing Bezier surfaces is named BezierSurface and
is grouped under the package Geom. Therefore, its full name becomes Geom_BezierSurface.
The library consists of packages that group together similar functionalities and is further
divided into six modules: Foundation Classes, Modeling Data, Modeling Algorithms,
Visualization, Data Exchange, and Application Framework. The contents of these modules
and their relationships are illustrated in Table 1 and Figure 2.

Table 1. Object Libraries modules and their contents.

Module Name Contents Included in the Module

Foundation Classes Kernel Classes, Math Utilities

Modeling Data 2D Geometry, 3D Geometry, Geometry Utilities, Topology

Modeling Algorithms Primitives, Boolean Operations, Fillets and Chamfers, Offsets and
Drafts, Hidden Line Removal, Geometry Tools, Topological Tools

Visualization 2D and 3D General Functions, 2D Visualization and 3D
Visualization

Data Exchange IGES and STEP, AP203 and AP214, Extended Data Exchange
Application Framework Data Framework, Data Storage, Application Desktop

Processes 2023, 11, 2315 4 of 19

Processes 2023, 11, x FOR PEER REVIEW 4 of 19

Modeling Data 2D Geometry, 3D Geometry, Geometry Utilities, Topology

Modeling Algo-

rithms

Primitives, Boolean Operations, Fillets and Chamfers, Offsets and

Drafts, Hidden Line Removal, Geometry Tools, Topological Tools

Visualization 2D and 3D General Functions, 2D Visualization and 3D Visualization

Data Exchange IGES and STEP, AP203 and AP214, Extended Data Exchange

Application

Framework
Data Framework, Data Storage, Application Desktop

Foundation Classes

Modeling Data

Modeling Algorithms

Visualization

Application Framework

Data Exchange

Draw

Figure 2. Relationship between Open CASCADE modules.

The advent of Open CASCADE has provided CAD software developers with a new

design approach, allowing users to conveniently and rapidly develop customized three-

dimensional CAD platforms. Numerous researchers have explored and utilized the func-

tionalities of Open CASCADE, including its modeling algorithms, file management capa-

bilities, and visualization implementation. These efforts, combined with programming

languages such as C++ and platforms like Qt, have resulted in the successful development

of various three-dimensional modeling platforms based on the OpenCASCADE geomet-

ric kernel. For instance, Yuan et al. [18] leveraged Open CASCADE’s modeling algo-

rithms, file management, and visualization implementation to develop a three-dimen-

sional modeling platform using C++ programming language and the OCC geometric ker-

nel. Niu et al. [19] focused on studying the OCAF file management framework of Open

CASCADE, utilizing the Open CASCADE class library to create basic models, test funda-

mental operations, and handle CAD model files’ loading and rendering. Meanwhile, Yuan

et al. [20] assessed the feasibility of combining Open CASCADE and Qt in developing

complex entity modeling software within the Qt environment. In addition, Ding et al. [21]

delved into the characteristics of the Open CASCADE geometric kernel library and pre-

sented a general method for constructing CAD systems using the Open CASCADE plat-

form. They successfully built a small-scale three-dimensional CAD system that encom-

passed basic modeling, operations, and data conversions. Yang [22], on the other hand,

extensively studied the fundamental workings and development processes of the Open

CASCADE geometric kernel library, utilizing ODBC database technology to establish a

model parts library. This library management system, developed through combined MFC

interface libraries and Open CASCADE programming, facilitated the display of two-di-

Figure 2. Relationship between Open CASCADE modules.

The advent of Open CASCADE has provided CAD software developers with a new
design approach, allowing users to conveniently and rapidly develop customized three-
dimensional CAD platforms. Numerous researchers have explored and utilized the func-
tionalities of Open CASCADE, including its modeling algorithms, file management capa-
bilities, and visualization implementation. These efforts, combined with programming
languages such as C++ and platforms like Qt, have resulted in the successful development
of various three-dimensional modeling platforms based on the OpenCASCADE geometric
kernel. For instance, Yuan et al. [18] leveraged Open CASCADE’s modeling algorithms, file
management, and visualization implementation to develop a three-dimensional modeling
platform using C++ programming language and the OCC geometric kernel. Niu et al. [19]
focused on studying the OCAF file management framework of Open CASCADE, utilizing
the Open CASCADE class library to create basic models, test fundamental operations, and
handle CAD model files’ loading and rendering. Meanwhile, Yuan et al. [20] assessed
the feasibility of combining Open CASCADE and Qt in developing complex entity mod-
eling software within the Qt environment. In addition, Ding et al. [21] delved into the
characteristics of the Open CASCADE geometric kernel library and presented a general
method for constructing CAD systems using the Open CASCADE platform. They success-
fully built a small-scale three-dimensional CAD system that encompassed basic modeling,
operations, and data conversions. Yang [22], on the other hand, extensively studied the
fundamental workings and development processes of the Open CASCADE geometric
kernel library, utilizing ODBC database technology to establish a model parts library. This
library management system, developed through combined MFC interface libraries and
Open CASCADE programming, facilitated the display of two-dimensional plane diagrams,
three-dimensional model diagrams, and model attribute information. Furthermore, Zhou
et al. [23]. developed MCNP-assisted modeling software based on OpenCASCADE’s ge-
ometry engine. This software not only incorporated standard functionalities expected from
three-dimensional modeling software but also enabled seamless conversion between CAD
models and MCNP models. Similarly, Yin et al. [4]. established a casting process CAD sys-
tem for cast steel parts using Open CASCADE and wxWidgets. The system encompassed
standard element modeling techniques, composite modeling approaches, parameterized de-
sign methods, and personalized positioning capabilities. With extensive research conducted
by experts, scholars, and developers, three-dimensional modeling software based on the
open-source geometric kernel, Open CASCADE, has emerged. Among them, FreeCAD
stands out as an open-source CAD modeling software utilizing Open CASCADE, capable

Processes 2023, 11, 2315 5 of 19

of running on both Windows and Linux systems, effectively addressing the fundamental
needs of industrial design applications. However, it suffers from drawbacks such as an
ambiguous software architecture and subpar code readability. Its suitability lies primarily
in the creation of uncomplicated and streamlined three-dimensional models, while falling
short in the domain of pump CAD three-dimensional modeling research and development.
To address this limitation, this paper presents the development of a three-dimensional
CAD graphical support platform for pumps, leveraging the Open CASCADE geometric
kernel. Subsequently, the platform successfully achieved the modeling of centrifugal pump
impellers, blades, and volutes, duly substantiating the viability and effectiveness of the
proposed three-dimensional support platform.

3. Preparatory Work

The development process of the platform mainly includes four parts: requirement
analysis, platform design, programming, and platform testing. The requirement analysis
includes requirement investigation and feasibility analysis before platform development.
Based on the results of the requirement analysis, the overall functions of the platform are
summarized, and each function is implemented and tested through programming. This is
illustrated in Figure 3.

Processes 2023, 11, x FOR PEER REVIEW 5 of 19

mensional plane diagrams, three-dimensional model diagrams, and model attribute in-

formation. Furthermore, Zhou et al. [23]. developed MCNP-assisted modeling software

based on OpenCASCADE’s geometry engine. This software not only incorporated stand-

ard functionalities expected from three-dimensional modeling software but also enabled

seamless conversion between CAD models and MCNP models. Similarly, Yin et al. [4].

established a casting process CAD system for cast steel parts using Open CASCADE and

wxWidgets. The system encompassed standard element modeling techniques, composite

modeling approaches, parameterized design methods, and personalized positioning ca-

pabilities. With extensive research conducted by experts, scholars, and developers, three-

dimensional modeling software based on the open-source geometric kernel, Open CAS-

CADE, has emerged. Among them, FreeCAD stands out as an open-source CAD model-

ing software utilizing Open CASCADE, capable of running on both Windows and Linux

systems, effectively addressing the fundamental needs of industrial design applications.

However, it suffers from drawbacks such as an ambiguous software architecture and sub-

par code readability. Its suitability lies primarily in the creation of uncomplicated and

streamlined three-dimensional models, while falling short in the domain of pump CAD

three-dimensional modeling research and development. To address this limitation, this

paper presents the development of a three-dimensional CAD graphical support platform

for pumps, leveraging the Open CASCADE geometric kernel. Subsequently, the platform

successfully achieved the modeling of centrifugal pump impellers, blades, and volutes,

duly substantiating the viability and effectiveness of the proposed three-dimensional sup-

port platform.

3. Preparatory Work

The development process of the platform mainly includes four parts: requirement

analysis, platform design, programming, and platform testing. The requirement analysis

includes requirement investigation and feasibility analysis before platform development.

Based on the results of the requirement analysis, the overall functions of the platform are

summarized, and each function is implemented and tested through programming. This is

illustrated in Figure 3.

Requirement

analysis

Platform

design

Program

code

Platform

testing

Demand

research

Feasibility

Analysis

Overall functional

design

Function

modularization

Main window

design

Platform

development

Platform testing

Figure 3. Development process of platform.

By studying the organizational structure of commercial 3D CAD software, it is con-

cluded that the 3D support platform mainly includes three main components: geometric

kernel, rendering engine, and graphic user interface. The main framework is shown in

Figure 4. The geometric kernel provides the necessary geometric data structure and mod-

eling algorithms for three-dimensional modeling, including basic primitive generation

(such as cubes, spheres, cylinders, etc.), basic operation algorithms (such as extrusion, fit-

ting, Boolean operations, etc.), as well as reading and saving functions for three-dimen-

sional data [19], which is the core layer of the 3D platform. The rendering engine primarily

renders, displays, and stores loaded or generated three-dimensional geometric modeling

data storage formats, serving as the foundation of the platform’s 3D visualization. The

Figure 3. Development process of platform.

By studying the organizational structure of commercial 3D CAD software, it is con-
cluded that the 3D support platform mainly includes three main components: geometric
kernel, rendering engine, and graphic user interface. The main framework is shown in
Figure 4. The geometric kernel provides the necessary geometric data structure and model-
ing algorithms for three-dimensional modeling, including basic primitive generation (such
as cubes, spheres, cylinders, etc.), basic operation algorithms (such as extrusion, fitting,
Boolean operations, etc.), as well as reading and saving functions for three-dimensional
data [19], which is the core layer of the 3D platform. The rendering engine primarily
renders, displays, and stores loaded or generated three-dimensional geometric modeling
data storage formats, serving as the foundation of the platform’s 3D visualization. The
graphical user interface is mainly used to implement user-friendly human–machine inter-
action functions, providing a visual window for the platform, which is the top layer of the
3D platform.

3.1. Choice of 3D Geometric Kernel

To develop a 3D CAD platform autonomously, the first step is to determine the founda-
tional support of the CAD system, namely the geometric kernel. Currently, commonly used
three-dimensional modeling software in the CAD design field corresponds to geometric
kernels, as shown in Table 2 [24–26].

Processes 2023, 11, 2315 6 of 19

Processes 2023, 11, x FOR PEER REVIEW 6 of 19

graphical user interface is mainly used to implement user-friendly human–machine inter-

action functions, providing a visual window for the platform, which is the top layer of the

3D platform.

Geometric kernel

(status bar)

(tool bar)

File Project Edit About (menu bar)

Rendering Engine

Graphical user interface

Figure 4. Sketch map of 3D platform.

3.1. Choice of 3D Geometric Kernel

To develop a 3D CAD platform autonomously, the first step is to determine the foun-

dational support of the CAD system, namely the geometric kernel. Currently, commonly

used three-dimensional modeling software in the CAD design field corresponds to geo-

metric kernels, as shown in Table 2 [24–26].

Table 2. Geometry kernel for mainstream 3D modeling.

Products Country Developed by Geometric Kernel

AutoCAD United States AutoDesk ShapeManager

ZW3D China ZWSoft ACIS

CATIA France Dassault Systems
Convergence Geo-

metric Modeler

Creo(Pro/E) United States
Parametric Technology

Corporation
Granite

SolidWorks United States, France Dassault Systems Parasolid

SolidEdge
United States, Ger-

many
Siemens PLM Software

Parasolid (previous

versions used ACIS)

Siemens NX
United States, Ger-

many

Siemens Digital Industries

Software
Parasolid

BAZIS System Russia BAZIS Center C3D

4MCAD Intelli-

CAD
Greece 4M S.A. Open CASCADE

FreeCAD FreeCAD
Open CASCADE,

Coin3D

The 3D geometric kernels listed in Table 2 embody comprehensive and mature geo-

metric algorithms that can achieve various complex modeling functions. Among them,

Parasolid is primarily developed using C language oriented towards procedural program-

ming, which can fully utilize computer performance and achieve faster modeling and

modification speeds. ACIS, on the other hand, is developed based on object-oriented pro-

gramming [27], making full use of the features of inheritance, encapsulation, and poly-

morphism, rendering it more secure. Currently, most mainstream 3D modeling software

Figure 4. Sketch map of 3D platform.

Table 2. Geometry kernel for mainstream 3D modeling.

Products Country Developed by Geometric Kernel

AutoCAD United States AutoDesk ShapeManager
ZW3D China ZWSoft ACIS

CATIA France Dassault Systems Convergence
Geometric Modeler

Creo(Pro/E) United States Parametric Technology
Corporation Granite

SolidWorks United States, France Dassault Systems Parasolid

SolidEdge United States,
Germany Siemens PLM Software Parasolid (previous

versions used ACIS)

Siemens NX United States,
Germany

Siemens Digital
Industries Software Parasolid

BAZIS System Russia BAZIS Center C3D
4MCAD IntelliCAD Greece 4M S.A. Open CASCADE

FreeCAD FreeCAD Open CASCADE,
Coin3D

The 3D geometric kernels listed in Table 2 embody comprehensive and mature geo-
metric algorithms that can achieve various complex modeling functions. Among them,
Parasolid is primarily developed using C language oriented towards procedural program-
ming, which can fully utilize computer performance and achieve faster modeling and
modification speeds. ACIS, on the other hand, is developed based on object-oriented
programming [27], making full use of the features of inheritance, encapsulation, and poly-
morphism, rendering it more secure. Currently, most mainstream 3D modeling software
in the CAD field is based on these two geometric kernels, which have high stability and
computing speeds. However, both ACIS and Parasolid involve relatively high commercial
costs, and there are no publicly available learning materials in China, making it difficult for
scholars to study and master them. Open CASCADE, just like ACIS, uses an object-oriented
design method. Although it is less mature and stable, it has fully functional capabilities,
open-source code, specialized maintenance and updates each year, and a better learning en-
vironment, making it more suitable for CAD program developers to study and research [21].
Considering available development resources and design principles, Open CASCADE has
been selected as the geometric kernel for the 3D support platform of this project.

3.2. Choice of 3D Rendering Engine

A 3D rendering engine utilizes image processing and computer graphics techniques to
convert geometric data into computer-readable image information, which is displayed in a

Processes 2023, 11, 2315 7 of 19

window and provides a collection of application programming interfaces for interactive
processing. A 3D graphics engine includes multiple fields such as image processing, human–
computer interaction, software programming, computer graphics, etc., and should at least
contain two hierarchical layers: the image rendering layer and the data interaction layer.
The former provides interfaces for rendering and displaying graphic data, either designed
in 3D space or loaded from external sources; the latter offers interaction function interfaces
such as 3D model optimization, assembly and control. The visualization components
of Open CASCADE are developed based on OpenGL. Compared to other 3D rendering
engine platforms such as OpenInventor, Coin3d, OSG, and VTK, the display effect and
interactive function are relatively simple. It also cannot fully utilize the GPU hardware
acceleration function, resulting in slow loading and rendering speed for 3D graphic files [28].
Therefore, this platform does not adopt OpenGL as the visualization module. Currently,
the outstanding 3D display engines include OpenSceneGraph, Coin3D, and OGRE. Among
them, OpenSceneGraph (OSG) is a high-performance open-source 3D rendering engine
library based on OSGPL license, mainly applied in modeling, gaming, VR, and scientific
visualization fields [29].

Most 3D models of pumps are created using two formats: STL and STP. Therefore, this
paper focuses mainly on STL as the primary format for investigation. Using the file reading
interface of OSG, the speed and display effects of loading and rendering six volumes
ranging from 1 MB to 12 MB in size are compared between OSG and OpenGL for STL files.
The computer configuration used for this analysis is presented in Table 3. For each file, the
time taken from file read to rendering completion is recorded and printed, with three sets
of data collected to calculate the average time. Additionally, a line graph is generated to
facilitate a visual comparison of their respective speeds.

Table 3. Computer configuration.

Computer Brand Mz Processor Memory Solid-State Drive Graphics Card

Lenovo Windows 10 AMD Ryzen 7 5800H
with Radeon Graphics 16 GB SAMSUNG

MZVLB512HBJQ-000L2
NVIDIA GeForce

RTX3060 Laptop GPU

As shown in Figure 5, when the size of the STL file is small, there is little difference
in rendering time between the two display engines. However, as the size of the STL file
increases, the efficiency of rendering with OSG is significantly higher than that of OpenGL.
Therefore, from the perspective of rendering efficiency, OSG is superior to OpenGL. More-
over, as shown in Figure 6, the comparison images of OSG and OpenGL opening the same
STL file (Impeller.STL) clearly reveal that OSG renders smoother, without any surface
fragmentation, compared to OpenGL. Therefore, this platform uses OSG display engine to
realize all the functions of 3D model rendering and display.

Processes 2023, 11, x FOR PEER REVIEW 8 of 19

opening the same STL file (Impeller.STL) clearly reveal that OSG renders smoother, with-

out any surface fragmentation, compared to OpenGL. Therefore, this platform uses OSG

display engine to realize all the functions of 3D model rendering and display.

Figure 5. Comparison of rendering file speeds.

Figure 6. Comparison of OSG and OCC rendering effects (The left image is an OSG rendering ef-

fects, while the right image is an OCC rendering effects).

4. Development Environment Setup and Interface Implementation

4.1. Platform Development Tools

4.1.1. Development Environment

Visual Studio (VS for short) [30] is an application development integrated develop-

ment environment (IDE) developed by Microsoft Corporation in Washington State, USA.

Essentially, it is a toolset that includes almost all of the tools needed in the software design

process. This platform uses VS (version 2021) for development.

4.1.2. Graphical User Interface

The Graphical User Interface (GUI) serves as the foundation of human–computer in-

teraction software. The Qt GUI [31] library employed in this paper is a C++ based applica-

tion framework for graphical interfaces, featuring C++ object-oriented programming char-

acteristics and providing abundant GUI functions.

4.1.3. Programming Language

The C++ language [32] has evolved from the foundation of the C language and is

widely used. It has advantages such as concise syntax, compactness, ease of use, flexibility,

high-quality code generation, and fast program execution efficiency. Moreover, it sup-

ports both procedural and object-oriented programming paradigms, incorporating fea-

tures such as encapsulation, inheritance, and polymorphism. Figure 7 provides a detailed

description of the fundamental characteristics of object-oriented programming. The un-

derlying source code of the Open CASCADE geometric kernel and Qt graphical user in-

terface library, which involve computationally expensive operations such as graphics ren-

dering and Boolean operations, are predominantly written in C++. Considering these fac-

tors, this paper selects C++ as the development language for the platform.

Figure 5. Comparison of rendering file speeds.

Processes 2023, 11, 2315 8 of 19

Processes 2023, 11, x FOR PEER REVIEW 8 of 19

opening the same STL file (Impeller.STL) clearly reveal that OSG renders smoother, with-

out any surface fragmentation, compared to OpenGL. Therefore, this platform uses OSG

display engine to realize all the functions of 3D model rendering and display.

Figure 5. Comparison of rendering file speeds.

Figure 6. Comparison of OSG and OCC rendering effects (The left image is an OSG rendering ef-

fects, while the right image is an OCC rendering effects).

4. Development Environment Setup and Interface Implementation

4.1. Platform Development Tools

4.1.1. Development Environment

Visual Studio (VS for short) [30] is an application development integrated develop-

ment environment (IDE) developed by Microsoft Corporation in Washington State, USA.

Essentially, it is a toolset that includes almost all of the tools needed in the software design

process. This platform uses VS (version 2021) for development.

4.1.2. Graphical User Interface

The Graphical User Interface (GUI) serves as the foundation of human–computer in-

teraction software. The Qt GUI [31] library employed in this paper is a C++ based applica-

tion framework for graphical interfaces, featuring C++ object-oriented programming char-

acteristics and providing abundant GUI functions.

4.1.3. Programming Language

The C++ language [32] has evolved from the foundation of the C language and is

widely used. It has advantages such as concise syntax, compactness, ease of use, flexibility,

high-quality code generation, and fast program execution efficiency. Moreover, it sup-

ports both procedural and object-oriented programming paradigms, incorporating fea-

tures such as encapsulation, inheritance, and polymorphism. Figure 7 provides a detailed

description of the fundamental characteristics of object-oriented programming. The un-

derlying source code of the Open CASCADE geometric kernel and Qt graphical user in-

terface library, which involve computationally expensive operations such as graphics ren-

dering and Boolean operations, are predominantly written in C++. Considering these fac-

tors, this paper selects C++ as the development language for the platform.

Figure 6. Comparison of OSG and OCC rendering effects (The left image is an OSG rendering effects,
while the right image is an OCC rendering effects).

4. Development Environment Setup and Interface Implementation
4.1. Platform Development Tools
4.1.1. Development Environment

Visual Studio (VS for short) [30] is an application development integrated develop-
ment environment (IDE) developed by Microsoft Corporation in Washington State, USA.
Essentially, it is a toolset that includes almost all of the tools needed in the software design
process. This platform uses VS (version 2021) for development.

4.1.2. Graphical User Interface

The Graphical User Interface (GUI) serves as the foundation of human–computer
interaction software. The Qt GUI [31] library employed in this paper is a C++ based
application framework for graphical interfaces, featuring C++ object-oriented programming
characteristics and providing abundant GUI functions.

4.1.3. Programming Language

The C++ language [32] has evolved from the foundation of the C language and is
widely used. It has advantages such as concise syntax, compactness, ease of use, flexibility,
high-quality code generation, and fast program execution efficiency. Moreover, it supports
both procedural and object-oriented programming paradigms, incorporating features such
as encapsulation, inheritance, and polymorphism. Figure 7 provides a detailed description
of the fundamental characteristics of object-oriented programming. The underlying source
code of the Open CASCADE geometric kernel and Qt graphical user interface library, which
involve computationally expensive operations such as graphics rendering and Boolean
operations, are predominantly written in C++. Considering these factors, this paper selects
C++ as the development language for the platform.

Processes 2023, 11, x FOR PEER REVIEW 9 of 19

Encapsulation

Inheritance

Polymorphism

Generalization

Aggregation

Overriding

Overloading

Implementation

inheritance

Visual

inheritance

Interface

inheritance

Pure virtual

number

Virtual function

Interface

Overloaded

functions

Object-oriented features

Figure 7. Basic features of object-oriented programming.

4.2. Setting up the Development Environment for Platform

The development of the platform is based on joint programming using Visual Studio,

Qt, and Open CASCADE. The overall setup of the development environment can be di-

vided into two steps: configuring Qt and configuring Open CASCADE. Firstly, Qt needs

to be configured within the Visual Studio integrated development tool. Visual Studio itself

provides Qt tools. In the toolbar, under the “Extensions” and “Updates” options, search

for Qt and select “Qt Visual Studio Tools” to download the Qt plugin. Once the download

is complete, “Qt VS Tools” will appear in the menu bar of Visual Studio 2021. Select “Add

new Qt version” to specify the path and complete the downloading of the Qt plugin. This

configuration essentially enables automatic localization of the Qt compiler path by VS

when compiling the Qt project.

After configuring Qt, the next step is to configure Open CASCADE. Taking version

7.4.0 of Open CASCADE as an example, the 7 modules of Open CASCADE need to be

compiled in the following order: FoundationClasses.sln (basic classes), ModelingData.sln

(modeling data), ModelingAlgorithms.sln (modeling algorithms), Visualization.sln (visu-

alization), ApplicationFramework.sln (program framework), DataExchange.sln (data ex-

change), and Draw.sln (drawing). Once the compilation is complete, add the include files

and lib files from the opencascade-7.4.0 folder to the include directories and library direc-

tories. Manually add library files such as shell32.lib, TKernel.lib, TKMath.lib, etc., in the

Additional Dependencies section of the property pages to complete the configuration of

Open CASCADE in Visual Studio 2021, ensuring that the basic functionality of Open CAS-

CADE can be realized.

4.3. Data Transmission and Window Implementation

The main window of the platform refers to the display window where the program

is run, which includes the Menu bar, Tool bars, Dock widgets, Status bar, and Central

widget. The Menu bar is used to display text menus for files, projects, settings, and so on.

The Tool bars are used to place frequently used graphic tool buttons. The Dock widgets,

also known as floating windows, are mainly used to display current design parameters.

The Status bar is used to display prompt messages and running state information. The

Central widget is the main display and interaction window that forms the basis of the

platform’s main interface. Sub-windows refer to the windows that appear after clicking a

button in the main window. They are responsible for human–machine interaction and al-

low designers to input and modify design parameters during the design process. Data

transfer between the windows of the platform includes three types of situations: passing

values from the main window to sub-windows, passing values from sub-windows to the

main window, and passing values between sub-windows. This can be seen in Figure 8.

Figure 7. Basic features of object-oriented programming.

4.2. Setting up the Development Environment for Platform

The development of the platform is based on joint programming using Visual Studio,
Qt, and Open CASCADE. The overall setup of the development environment can be

Processes 2023, 11, 2315 9 of 19

divided into two steps: configuring Qt and configuring Open CASCADE. Firstly, Qt needs
to be configured within the Visual Studio integrated development tool. Visual Studio itself
provides Qt tools. In the toolbar, under the “Extensions” and “Updates” options, search for
Qt and select “Qt Visual Studio Tools” to download the Qt plugin. Once the download is
complete, “Qt VS Tools” will appear in the menu bar of Visual Studio 2021. Select “Add
new Qt version” to specify the path and complete the downloading of the Qt plugin. This
configuration essentially enables automatic localization of the Qt compiler path by VS
when compiling the Qt project.

After configuring Qt, the next step is to configure Open CASCADE. Taking version
7.4.0 of Open CASCADE as an example, the 7 modules of Open CASCADE need to be
compiled in the following order: FoundationClasses.sln (basic classes), ModelingData.sln
(modeling data), ModelingAlgorithms.sln (modeling algorithms), Visualization.sln (vi-
sualization), ApplicationFramework.sln (program framework), DataExchange.sln (data
exchange), and Draw.sln (drawing). Once the compilation is complete, add the include
files and lib files from the opencascade-7.4.0 folder to the include directories and library
directories. Manually add library files such as shell32.lib, TKernel.lib, TKMath.lib, etc., in
the Additional Dependencies section of the property pages to complete the configuration
of Open CASCADE in Visual Studio 2021, ensuring that the basic functionality of Open
CASCADE can be realized.

4.3. Data Transmission and Window Implementation

The main window of the platform refers to the display window where the program is
run, which includes the Menu bar, Tool bars, Dock widgets, Status bar, and Central widget.
The Menu bar is used to display text menus for files, projects, settings, and so on. The Tool
bars are used to place frequently used graphic tool buttons. The Dock widgets, also known
as floating windows, are mainly used to display current design parameters. The Status bar
is used to display prompt messages and running state information. The Central widget
is the main display and interaction window that forms the basis of the platform’s main
interface. Sub-windows refer to the windows that appear after clicking a button in the
main window. They are responsible for human–machine interaction and allow designers
to input and modify design parameters during the design process. Data transfer between
the windows of the platform includes three types of situations: passing values from the
main window to sub-windows, passing values from sub-windows to the main window,
and passing values between sub-windows. This can be seen in Figure 8.

Processes 2023, 11, x FOR PEER REVIEW 10 of 19

 The main window to

the sub-window

The sub-window to the

main window

One sub-window to

another sub-window

 Defining signals in the

main window

Defining slot signals in

the sub-window

Connecting signals and

slots in the main window

 Defining signals in the

sub-window

Defining slot signals in

the main window

Connecting signals and

slots in the main window

Passing values from sub-

window 1 to the main window

Passing values from main

window to sub-window 2

Declaring private static

variables in a class

Providing public

interfaces for variables

Assigning a value to a

variable in sub-window 1

Obtaining the value of a

variable in sub-window 2

Signal and Slot

Static

Figure 8. Data Transfer Method Between Windows.

Using the Qt Interface Library, the program was designed based on different mod-

ules, as shown in Figure 9, and resulted in the main window shown in Figure 10.

Set the title and icon of

the main window

Configure the Menu bar

(File, Pump, Help, etc.)
Configure the Tool bar

Configure the Status

bar

Set up the Central

widget

Implementing the main

window development

Figure 9. The implementation steps for the main window.

Figure 10. The main interface of 3D support platform.

4.4. Three-Dimensional Visualization

After completing the window interface design of the 3D platform, users are able to

conveniently develop their own 3D visualization functions that meet their requirements

by utilizing the encapsulation libraries included in OpenSceneGraph [33]. As an open-

source display engine, OpenSceneGraph has a wide range of encapsulation libraries,

mainly divided into the following five categories.

The five modules mentioned in Table 4 can constitute a 3D rendering window with

basic interactive functions, and its basic organizational structure is shown in Figure 11.

Table 4. The Encapsulation Libraries of OpenSceneGraph.

Name Function

OSG
This library is the primary foundation of OpenSceneGraph, which mainly

includes node types used to describe graphics in the scene tree, as well as

Figure 8. Data Transfer Method Between Windows.

Using the Qt Interface Library, the program was designed based on different modules,
as shown in Figure 9, and resulted in the main window shown in Figure 10.

Processes 2023, 11, 2315 10 of 19

Processes 2023, 11, x FOR PEER REVIEW 10 of 19

 The main window to

the sub-window

The sub-window to the

main window

One sub-window to

another sub-window

 Defining signals in the

main window

Defining slot signals in

the sub-window

Connecting signals and

slots in the main window

 Defining signals in the

sub-window

Defining slot signals in

the main window

Connecting signals and

slots in the main window

Passing values from sub-

window 1 to the main window

Passing values from main

window to sub-window 2

Declaring private static

variables in a class

Providing public

interfaces for variables

Assigning a value to a

variable in sub-window 1

Obtaining the value of a

variable in sub-window 2

Signal and Slot

Static

Figure 8. Data Transfer Method Between Windows.

Using the Qt Interface Library, the program was designed based on different mod-

ules, as shown in Figure 9, and resulted in the main window shown in Figure 10.

Set the title and icon of

the main window

Configure the Menu bar

(File, Pump, Help, etc.)
Configure the Tool bar

Configure the Status

bar

Set up the Central

widget

Implementing the main

window development

Figure 9. The implementation steps for the main window.

Figure 10. The main interface of 3D support platform.

4.4. Three-Dimensional Visualization

After completing the window interface design of the 3D platform, users are able to

conveniently develop their own 3D visualization functions that meet their requirements

by utilizing the encapsulation libraries included in OpenSceneGraph [33]. As an open-

source display engine, OpenSceneGraph has a wide range of encapsulation libraries,

mainly divided into the following five categories.

The five modules mentioned in Table 4 can constitute a 3D rendering window with

basic interactive functions, and its basic organizational structure is shown in Figure 11.

Table 4. The Encapsulation Libraries of OpenSceneGraph.

Name Function

OSG
This library is the primary foundation of OpenSceneGraph, which mainly

includes node types used to describe graphics in the scene tree, as well as

Figure 9. The implementation steps for the main window.

Processes 2023, 11, x FOR PEER REVIEW 10 of 19

 The main window to

the sub-window

The sub-window to the

main window

One sub-window to

another sub-window

 Defining signals in the

main window

Defining slot signals in

the sub-window

Connecting signals and

slots in the main window

 Defining signals in the

sub-window

Defining slot signals in

the main window

Connecting signals and

slots in the main window

Passing values from sub-

window 1 to the main window

Passing values from main

window to sub-window 2

Declaring private static

variables in a class

Providing public

interfaces for variables

Assigning a value to a

variable in sub-window 1

Obtaining the value of a

variable in sub-window 2

Signal and Slot

Static

Figure 8. Data Transfer Method Between Windows.

Using the Qt Interface Library, the program was designed based on different mod-

ules, as shown in Figure 9, and resulted in the main window shown in Figure 10.

Set the title and icon of

the main window

Configure the Menu bar

(File, Pump, Help, etc.)
Configure the Tool bar

Configure the Status

bar

Set up the Central

widget

Implementing the main

window development

Figure 9. The implementation steps for the main window.

Figure 10. The main interface of 3D support platform.

4.4. Three-Dimensional Visualization

After completing the window interface design of the 3D platform, users are able to

conveniently develop their own 3D visualization functions that meet their requirements

by utilizing the encapsulation libraries included in OpenSceneGraph [33]. As an open-

source display engine, OpenSceneGraph has a wide range of encapsulation libraries,

mainly divided into the following five categories.

The five modules mentioned in Table 4 can constitute a 3D rendering window with

basic interactive functions, and its basic organizational structure is shown in Figure 11.

Table 4. The Encapsulation Libraries of OpenSceneGraph.

Name Function

OSG
This library is the primary foundation of OpenSceneGraph, which mainly

includes node types used to describe graphics in the scene tree, as well as

Figure 10. The main interface of 3D support platform.

4.4. Three-Dimensional Visualization

After completing the window interface design of the 3D platform, users are able to
conveniently develop their own 3D visualization functions that meet their requirements by
utilizing the encapsulation libraries included in OpenSceneGraph [33]. As an open-source
display engine, OpenSceneGraph has a wide range of encapsulation libraries, mainly
divided into the following five categories.

The five modules mentioned in Table 4 can constitute a 3D rendering window with
basic interactive functions, and its basic organizational structure is shown in Figure 11.

Table 4. The Encapsulation Libraries of OpenSceneGraph.

Name Function

OSG
This library is the primary foundation of OpenSceneGraph, which mainly
includes node types used to describe graphics in the scene tree, as well as the
abstract base class osg::Node for traversal and callback function interfaces.

OSG DB This library is designed as a program architecture for managing file reading and
writing, supporting multiple file formats.

OSG Util This library is primarily used for operations such as scene updates, scene
element refinement, and scene graph optimization.

OSG GA

This library is designed to create a system–independent human–computer
interaction abstraction layer for users. Various low-level graphic functions
provided by different operating systems are encapsulated in the abstraction layer,
and a message response mechanism is implemented with a unified interface.

OSG Viewer This library facilitates the construction of a 3D data file viewer and can be used
in conjunction with interface functions from different operating systems.

The 3D visualization architecture in OpenSceneGraph mainly consists of four classes:
Graphic3d_GraphicDriver, osgGraphicsContext, osgViewer, and osgView. These classes
provide a comprehensive framework for creating and rendering complex 3D scenes and
models, including support for advanced graphics techniques such as lighting, texture
mapping, and shading. The Graphic3d_GraphicDriver class serves as the primary interface

Processes 2023, 11, 2315 11 of 19

for interacting with the graphics hardware, while the osgGraphicsContext class provides a
context for graphics resources. The osgViewer class manages the overall rendering pipeline,
including the management of viewports, cameras, and scene graphs, while the osgView
class provides a platform-specific implementation of a view for rendering the 3D scene.
Together, these classes form a powerful and flexible 3D visualization system that can be
easily extended and customized to meet a wide range of needs and requirements.

Processes 2023, 11, x FOR PEER REVIEW 11 of 19

the abstract base class osg::Node for traversal and callback function inter-

faces.

OSG DB
This library is designed as a program architecture for managing file reading

and writing, supporting multiple file formats.

OSG Util
This library is primarily used for operations such as scene updates, scene

element refinement, and scene graph optimization.

OSG GA

This library is designed to create a system–independent human–computer

interaction abstraction layer for users. Various low-level graphic functions

provided by different operating systems are encapsulated in the abstraction

layer, and a message response mechanism is implemented with a unified

interface.

OSG Viewer

This library facilitates the construction of a 3D data file viewer and can be

used in conjunction with interface functions from different operating sys-

tems.

Window

management

(OSG Viewer)

Program entry

point
Event

response

Loading a

model

Event

management

(OSG GA)

File

management

(OSG DB)

Rendering loop

Figure 11. Basic structure of OpenScenceGraph rendering module.

The 3D visualization architecture in OpenSceneGraph mainly consists of four classes:

Graphic3d_GraphicDriver, osgGraphicsContext, osgViewer, and osgView. These classes

provide a comprehensive framework for creating and rendering complex 3D scenes and

models, including support for advanced graphics techniques such as lighting, texture

mapping, and shading. The Graphic3d_GraphicDriver class serves as the primary inter-

face for interacting with the graphics hardware, while the osgGraphicsContext class pro-

vides a context for graphics resources. The osgViewer class manages the overall rendering

pipeline, including the management of viewports, cameras, and scene graphs, while the

osgView class provides a platform-specific implementation of a view for rendering the 3D

scene. Together, these classes form a powerful and flexible 3D visualization system that

can be easily extended and customized to meet a wide range of needs and requirements.

To implement 3D visualization based on OpenSceneGraph, the following steps (as

shown in Figure 12) need to be taken, and the 3D window obtained after running the

program is shown in Figure 13. This realizes the 3D visualization function of the platform.

Creating the OpenGL 3D Creating the osgViewer Creating the osgView

Creating the osgGraphicsContextCreating the interactive objects

Displaying the interactive

objects

Figure 12. Steps for 3D Visualization.

Figure 11. Basic structure of OpenScenceGraph rendering module.

To implement 3D visualization based on OpenSceneGraph, the following steps (as
shown in Figure 12) need to be taken, and the 3D window obtained after running the
program is shown in Figure 13. This realizes the 3D visualization function of the platform.

Processes 2023, 11, x FOR PEER REVIEW 11 of 19

the abstract base class osg::Node for traversal and callback function inter-

faces.

OSG DB
This library is designed as a program architecture for managing file reading

and writing, supporting multiple file formats.

OSG Util
This library is primarily used for operations such as scene updates, scene

element refinement, and scene graph optimization.

OSG GA

This library is designed to create a system–independent human–computer

interaction abstraction layer for users. Various low-level graphic functions

provided by different operating systems are encapsulated in the abstraction

layer, and a message response mechanism is implemented with a unified

interface.

OSG Viewer

This library facilitates the construction of a 3D data file viewer and can be

used in conjunction with interface functions from different operating sys-

tems.

Window

management

(OSG Viewer)

Program entry

point
Event

response

Loading a

model

Event

management

(OSG GA)

File

management

(OSG DB)

Rendering loop

Figure 11. Basic structure of OpenScenceGraph rendering module.

The 3D visualization architecture in OpenSceneGraph mainly consists of four classes:

Graphic3d_GraphicDriver, osgGraphicsContext, osgViewer, and osgView. These classes

provide a comprehensive framework for creating and rendering complex 3D scenes and

models, including support for advanced graphics techniques such as lighting, texture

mapping, and shading. The Graphic3d_GraphicDriver class serves as the primary inter-

face for interacting with the graphics hardware, while the osgGraphicsContext class pro-

vides a context for graphics resources. The osgViewer class manages the overall rendering

pipeline, including the management of viewports, cameras, and scene graphs, while the

osgView class provides a platform-specific implementation of a view for rendering the 3D

scene. Together, these classes form a powerful and flexible 3D visualization system that

can be easily extended and customized to meet a wide range of needs and requirements.

To implement 3D visualization based on OpenSceneGraph, the following steps (as

shown in Figure 12) need to be taken, and the 3D window obtained after running the

program is shown in Figure 13. This realizes the 3D visualization function of the platform.

Creating the OpenGL 3D Creating the osgViewer Creating the osgView

Creating the osgGraphicsContextCreating the interactive objects

Displaying the interactive

objects

Figure 12. Steps for 3D Visualization.
Figure 12. Steps for 3D Visualization.

Processes 2023, 11, x FOR PEER REVIEW 12 of 19

Figure 13. 3D window based on OpenScenceGraph.

4.5. Basic Geometric Modeling

By exploring the geometric kernel algorithms of Open CASCADE and using the

MakeBox, MakeCone, MakeSphere, MakeCylinder, and MakeTorus classes provided by

the Open CASCADE library, common geometric primitives such as cubes, cones, spheres,

cylinders, and circular cylinders were modeled on the established 3D support platform,

as illustrated in Figure 14. Additionally, the basic operational algorithms related to 3D

modeling of pump designs were investigated and tested, including Fillet, Boolean, and

Prism functions, as depicted in Figure 15.

Figure 14. Diagram of basic element.

Figure 15. Fundamental algorithms implementation.

Figure 13. 3D window based on OpenScenceGraph.

4.5. Basic Geometric Modeling

By exploring the geometric kernel algorithms of Open CASCADE and using the
MakeBox, MakeCone, MakeSphere, MakeCylinder, and MakeTorus classes provided by
the Open CASCADE library, common geometric primitives such as cubes, cones, spheres,

Processes 2023, 11, 2315 12 of 19

cylinders, and circular cylinders were modeled on the established 3D support platform,
as illustrated in Figure 14. Additionally, the basic operational algorithms related to 3D
modeling of pump designs were investigated and tested, including Fillet, Boolean, and
Prism functions, as depicted in Figure 15.

Processes 2023, 11, x FOR PEER REVIEW 12 of 19

Figure 13. 3D window based on OpenScenceGraph.

4.5. Basic Geometric Modeling

By exploring the geometric kernel algorithms of Open CASCADE and using the

MakeBox, MakeCone, MakeSphere, MakeCylinder, and MakeTorus classes provided by

the Open CASCADE library, common geometric primitives such as cubes, cones, spheres,

cylinders, and circular cylinders were modeled on the established 3D support platform,

as illustrated in Figure 14. Additionally, the basic operational algorithms related to 3D

modeling of pump designs were investigated and tested, including Fillet, Boolean, and

Prism functions, as depicted in Figure 15.

Figure 14. Diagram of basic element.

Figure 15. Fundamental algorithms implementation.

Figure 14. Diagram of basic element.

Processes 2023, 11, x FOR PEER REVIEW 12 of 19

Figure 13. 3D window based on OpenScenceGraph.

4.5. Basic Geometric Modeling

By exploring the geometric kernel algorithms of Open CASCADE and using the

MakeBox, MakeCone, MakeSphere, MakeCylinder, and MakeTorus classes provided by

the Open CASCADE library, common geometric primitives such as cubes, cones, spheres,

cylinders, and circular cylinders were modeled on the established 3D support platform,

as illustrated in Figure 14. Additionally, the basic operational algorithms related to 3D

modeling of pump designs were investigated and tested, including Fillet, Boolean, and

Prism functions, as depicted in Figure 15.

Figure 14. Diagram of basic element.

Figure 15. Fundamental algorithms implementation. Figure 15. Fundamental algorithms implementation.

5. Three-Dimensional Modeling of Centrifugal Pump Impellers and Volutes Based on
the Platform
5.1. Three-Dimensional Modeling of Impellers

Three-dimensional modeling of centrifugal pump impellers represents a critical aspect
of pump design [34], as the hydraulic design of impellers has important implications for
the efficiency, head, and cavitation of centrifugal pumps [35]. In the process of impeller
design, the primary geometric parameters of the impeller are first calculated based on
design parameters. Then, a blade meridian is drawn based on the primary geometric
parameters. Once the shape of the blade meridian has been determined, the entire impeller
flow path is divided into multiple small channels, with multiple streamline points obtained
from these individual channels. The grid expansion method is then used to obtain the
blade camber line from these streamline points, followed by the thickening of the blade
and retrieval of the blade back line. The blade camber line is then transformed into the
blade axis section line, after which the working surface and back surface of the blade are
drawn based on the axis section line, and subsequently fitted to generate the blade. The
design process is illustrated in Figure 16.

Processes 2023, 11, 2315 13 of 19

Processes 2023, 11, x FOR PEER REVIEW 13 of 19

5. Three-Dimensional Modeling of Centrifugal Pump Impellers and Volutes Based on

the Platform

5.1. Three-Dimensional Modeling of Impellers

Three-dimensional modeling of centrifugal pump impellers represents a critical as-

pect of pump design [34], as the hydraulic design of impellers has important implications

for the efficiency, head, and cavitation of centrifugal pumps [35]. In the process of impeller

design, the primary geometric parameters of the impeller are first calculated based on

design parameters. Then, a blade meridian is drawn based on the primary geometric pa-

rameters. Once the shape of the blade meridian has been determined, the entire impeller

flow path is divided into multiple small channels, with multiple streamline points ob-

tained from these individual channels. The grid expansion method is then used to obtain

the blade camber line from these streamline points, followed by the thickening of the blade

and retrieval of the blade back line. The blade camber line is then transformed into the

blade axis section line, after which the working surface and back surface of the blade are

drawn based on the axis section line, and subsequently fitted to generate the blade. The

design process is illustrated in Figure 16.

Calculate the primary

geometric parameters

Begin

Enter the design

parameters

(Q, H, n)

Drawing the blade

meridian

Streamline splitting

Grid expansion

Blade thickening

Calculate the meridian

section and back section

Generate the blades

Save and export the

file in STEP format

End

Figure 16. Blade design process.

Through the blade design flowchart, program design is performed on this platform.

Click the quick button for impeller design, enter the design parameter input interface, and

start designing the centrifugal pump impeller. Parameter input interface is shown in Fig-

ure 17. In this interface, the pump type can be selected, and the design parameters of the

pump can be inputted: Flow rate (Q), Head (H), Speed (n), Impeller stages (i). The platform

will automatically calculate the specific speed (ns) of the pump based on the design pa-

rameters (as shown in Table 5). The final 3D model of the blade is shown in Figure 18.

Table 5. Design parameters of impellers.

 1 2 3 4

Q (m³/h) 140 200 35 45

H (m) 30 84 16 40

n (rpm) 1450 2900 1450 2960

ns 81 90 65 76

Figure 16. Blade design process.

Through the blade design flowchart, program design is performed on this platform.
Click the quick button for impeller design, enter the design parameter input interface,
and start designing the centrifugal pump impeller. Parameter input interface is shown in
Figure 17. In this interface, the pump type can be selected, and the design parameters of
the pump can be inputted: Flow rate (Q), Head (H), Speed (n), Impeller stages (i). The
platform will automatically calculate the specific speed (ns) of the pump based on the
design parameters (as shown in Table 5). The final 3D model of the blade is shown in
Figure 18.

Table 5. Design parameters of impellers.

1 2 3 4

Q (m3/h) 140 200 35 45
H (m) 30 84 16 40

n (rpm) 1450 2900 1450 2960
ns 81 90 65 76

Processes 2023, 11, x FOR PEER REVIEW 14 of 19

ns 81 90 65 76

Figure 17. Interface for design parameters of input impeller.

	 	

	 	

Figure 18. 3D modeling of different blades.

5.2. Three‐Dimensional Modeling of Volute

The volute, also known as the spiral casing, is a flow-through component in a

centrifugal pump that converts liquid energy [36]. From a hydraulic perspective, it has the

advantages of a wide high-efficiency region and broad applicability [37].

In volute design, the main geometric parameters of the volute are first calculated, and

the front seven section areas are determined based on the eighth section area. While

ensuring the areas of the eight sections, the section shape is designed, and the spiral

section is generated. After determining the outlet section parameters, the transitional

section shapes from the eighth section to the outlet section are obtained. Typically, two

transitional sections are used, namely, the ninth and tenth sections. The outlet position is

chosen as a central outlet or a side outlet, and the diffuser section with different shapes is

generated based on the transitional sections. The shape of the tongue is determined by

parameters such as the tongue placement angle and tongue radius. Finally, the volute is

Figure 17. Interface for design parameters of input impeller.

Processes 2023, 11, 2315 14 of 19

Processes 2023, 11, x FOR PEER REVIEW 14 of 19

Figure 17. Interface for design parameters of input impeller.

Figure 18. 3D modeling of different blades.

5.2. Three-Dimensional Modeling of Volute

The volute, also known as the spiral casing, is a flow-through component in a cen-

trifugal pump that converts liquid energy [36]. From a hydraulic perspective, it has the

advantages of a wide high-efficiency region and broad applicability [37].

In volute design, the main geometric parameters of the volute are first calculated, and

the front seven section areas are determined based on the eighth section area. While en-

suring the areas of the eight sections, the section shape is designed, and the spiral section

is generated. After determining the outlet section parameters, the transitional section

shapes from the eighth section to the outlet section are obtained. Typically, two transi-

tional sections are used, namely, the ninth and tenth sections. The outlet position is chosen

as a central outlet or a side outlet, and the diffuser section with different shapes is gener-

ated based on the transitional sections. The shape of the tongue is determined by param-

eters such as the tongue placement angle and tongue radius. Finally, the volute is assem-

bled by combining the spiral section, diffuser section, and tongue. The design procedure

is shown in Figure 19.

Figure 18. 3D modeling of different blades.

5.2. Three-Dimensional Modeling of Volute

The volute, also known as the spiral casing, is a flow-through component in a cen-
trifugal pump that converts liquid energy [36]. From a hydraulic perspective, it has the
advantages of a wide high-efficiency region and broad applicability [37].

In volute design, the main geometric parameters of the volute are first calculated,
and the front seven section areas are determined based on the eighth section area. While
ensuring the areas of the eight sections, the section shape is designed, and the spiral section
is generated. After determining the outlet section parameters, the transitional section
shapes from the eighth section to the outlet section are obtained. Typically, two transitional
sections are used, namely, the ninth and tenth sections. The outlet position is chosen as a
central outlet or a side outlet, and the diffuser section with different shapes is generated
based on the transitional sections. The shape of the tongue is determined by parameters
such as the tongue placement angle and tongue radius. Finally, the volute is assembled by
combining the spiral section, diffuser section, and tongue. The design procedure is shown
in Figure 19.

Click on the volute design button to enter the volute design parameter input interface
and start designing the centrifugal pump volute. Figure 20 shows the volute parameter
input interface, where the designer can select the volute design details and input the
pump design parameters. If the impeller of the centrifugal pump has been designed
previously, the program will automatically read the impeller’s design parameters, as well
as the impeller outer diameter and outlet diameter data. If there is no relevant data for
the impeller design, the program will provide recommended values for the impeller outer
diameter and outlet diameter based on the design parameters inputted by the designer.
The final volute model obtained is shown in Figure 21 and design parameters are shown in
Table 6.

Processes 2023, 11, 2315 15 of 19Processes 2023, 11, x FOR PEER REVIEW 15 of 19

Calculate the primary

geometric parameters

Begin

Read the

impeller data

(Q, H, n)

Confirmation of volute

section shape

Generating spiral section

Confirmation of outlet

diffusion section

Generating outlet

diffusion section

Generating tongue

Save and export the

file in STEP format

End

Is the impeller parameter

known?

 Consolidated volute

parts

Enter the design

parameters

 (Q, H, n)

YES NO

Figure 19. Flow chart for volute design.

Click on the volute design button to enter the volute design parameter input interface

and start designing the centrifugal pump volute. Figure 20 shows the volute parameter

input interface, where the designer can select the volute design details and input the pump

design parameters. If the impeller of the centrifugal pump has been designed previously,

the program will automatically read the impeller’s design parameters, as well as the im-

peller outer diameter and outlet diameter data. If there is no relevant data for the impeller

design, the program will provide recommended values for the impeller outer diameter

and outlet diameter based on the design parameters inputted by the designer. The final

volute model obtained is shown in Figure 21 and design parameters are shown in Table 6.

Figure 20. Input interface for volute housing parameters.

Figure 19. Flow chart for volute design.

Processes 2023, 11, x FOR PEER REVIEW 15 of 19

assembled by combining the spiral section, diffuser section, and tongue. The design

procedure is shown in Figure 19.

Calculate the primary
geometric parameters

Begin

Read the
impeller data

(Q, H, n)

Confirmation of volute
section shape

Generating spiral section

Confirmation of outlet
diffusion section

Generating outlet
diffusion section

Generating tongue

Save and export the
file in STEP format

End

Is the impeller parameter
known?

 Consolidated volute
parts

Enter the design
parameters
 (Q, H, n)

YES NO

Figure 19. Flow chart for volute design.

Click on the volute design button to enter the volute design parameter input interface

and start designing the centrifugal pump volute. Figure 20 shows the volute parameter

input interface, where the designer can select the volute design details and input the pump

design parameters. If the impeller of the centrifugal pump has been designed previously,

the program will automatically read the impeller’s design parameters, as well as the

impeller outer diameter and outlet diameter data. If there is no relevant data for the

impeller design, the program will provide recommended values for the impeller outer

diameter and outlet diameter based on the design parameters inputted by the designer.

The final volute model obtained is shown in Figure 21 and design parameters are shown

in Table 6.

Figure 20. Input interface for volute housing parameters. Figure 20. Input interface for volute housing parameters.

Processes 2023, 11, x FOR PEER REVIEW 16 of 19

Figure 21. Volute model.

Table 6. Design parameters of volute.

Q (m³/h) 243 D2 (mm) 274

H (m) 19 b2 (mm) 32

n (rpm) 1450 ns 151

6. Computational and Experimental Validation

To verify the reliability of the pump 3D platform, this paper conducts numerical cal-

culations and experimental validation on a designed centrifugal pump with a specific

speed of 90. The design parameters of this pump are shown in Table 7.

Table 7. Design parameters of centrifugal pumps.

 Centrifugal Pump

Q (m³/h) 200

H (m) 33

n (rpm) 1450

ns 90

Based on the design parameters, the impeller and volute were designed on the 3D

platform. After completion, the inlet and outlet extension sections were drawn based on

the input and output data, and the pump assembly was carried out. The assembled pump

is shown in Figure 22. The computational domain was partitioned into tetrahedral meshes

using ANSYS ICEM CFD, with additional grid refinement added to the volute tongue,

impeller rounding, and interface regions to ensure quality. The overall mesh quality was

maintained at or above 0.30.

Figure 22. Assembly drawing of 3D model.

Figure 21. Volute model.

Processes 2023, 11, 2315 16 of 19

Table 6. Design parameters of volute.

Q (m3/h) 243 D2 (mm) 274
H (m) 19 b2 (mm) 32

n (rpm) 1450 ns 151

6. Computational and Experimental Validation

To verify the reliability of the pump 3D platform, this paper conducts numerical
calculations and experimental validation on a designed centrifugal pump with a specific
speed of 90. The design parameters of this pump are shown in Table 7.

Table 7. Design parameters of centrifugal pumps.

Centrifugal Pump

Q (m3/h) 200
H (m) 33

n (rpm) 1450
ns 90

Based on the design parameters, the impeller and volute were designed on the 3D
platform. After completion, the inlet and outlet extension sections were drawn based on
the input and output data, and the pump assembly was carried out. The assembled pump
is shown in Figure 22. The computational domain was partitioned into tetrahedral meshes
using ANSYS ICEM CFD, with additional grid refinement added to the volute tongue,
impeller rounding, and interface regions to ensure quality. The overall mesh quality was
maintained at or above 0.30.

Processes 2023, 11, x FOR PEER REVIEW 16 of 19

Figure 21. Volute model.

Table 6. Design parameters of volute.

Q (m³/h) 243 D2 (mm) 274

H (m) 19 b2 (mm) 32

n (rpm) 1450 ns 151

6. Computational and Experimental Validation

To verify the reliability of the pump 3D platform, this paper conducts numerical cal-

culations and experimental validation on a designed centrifugal pump with a specific

speed of 90. The design parameters of this pump are shown in Table 7.

Table 7. Design parameters of centrifugal pumps.

 Centrifugal Pump

Q (m³/h) 200

H (m) 33

n (rpm) 1450

ns 90

Based on the design parameters, the impeller and volute were designed on the 3D

platform. After completion, the inlet and outlet extension sections were drawn based on

the input and output data, and the pump assembly was carried out. The assembled pump

is shown in Figure 22. The computational domain was partitioned into tetrahedral meshes

using ANSYS ICEM CFD, with additional grid refinement added to the volute tongue,

impeller rounding, and interface regions to ensure quality. The overall mesh quality was

maintained at or above 0.30.

Figure 22. Assembly drawing of 3D model. Figure 22. Assembly drawing of 3D model.

The design target head of the centrifugal pump was 33m. After calculation, the head
of the centrifugal pump at the design working condition was 33.47m, which differed from
the design target by 1.42%. The designed scheme met the requirements for subsequent
numerical simulations. Furthermore, the feasibility of the numerical simulation was verified
via energy performance testing experiments on the model pump. The comparison curve
between the experimental and simulated results is shown in Figure 23. As can be seen from
the figure, at the design working condition, the difference between the design head and the
experimental value was 1.56%, and the difference in efficiency was 1.36%. Therefore, at the
design working condition, the difference between the simulated and experimental values
of the centrifugal pump was small, which suggests that using the 3D platform to design
the centrifugal pump is feasible. The accuracy and precision of the design and modeling
can meet the requirements of subsequent CFD calculations.

Processes 2023, 11, 2315 17 of 19

Processes 2023, 11, x FOR PEER REVIEW 17 of 19

The design target head of the centrifugal pump was 33m. After calculation, the head

of the centrifugal pump at the design working condition was 33.47m, which differed from

the design target by 1.42%. The designed scheme met the requirements for subsequent

numerical simulations. Furthermore, the feasibility of the numerical simulation was veri-

fied via energy performance testing experiments on the model pump. The comparison

curve between the experimental and simulated results is shown in Figure 23. As can be

seen from the figure, at the design working condition, the difference between the design

head and the experimental value was 1.56%, and the difference in efficiency was 1.36%.

Therefore, at the design working condition, the difference between the simulated and ex-

perimental values of the centrifugal pump was small, which suggests that using the 3D

platform to design the centrifugal pump is feasible. The accuracy and precision of the de-

sign and modeling can meet the requirements of subsequent CFD calculations.

Figure 23. External characteristic curves of centrifugal pump.

7. Conclusions

This paper presents the successful development of a three-dimensional CAD

graphics support platform for pumps. The platform was developed using the Visual Stu-

dio 2021 development environment and incorporates the Open CASCADE geometry ker-

nel, the OpenSceneGraph rendering engine, and the Qt graphical user interface library. It

provides essential functionality for viewing, displaying, and modeling three-dimensional

pumps. With complete independent intellectual property rights, this platform offers en-

hanced flexibility and interactivity in three-dimensional pump product modeling, surpas-

sing that of commercial CAD design software. An innovative aspect of the platform is the

utilization of the OpenSceneGraph rendering engine instead of the OpenGL visualization

component of Open CASCADE. This implementation choice improves data loading effi-

ciency and enhances rendering effects. Building upon this robust three-dimensional plat-

form, the paper investigates design and modeling algorithms for centrifugal pump impel-

lers and volutes. Through calculations and experiments, the accuracy and precision of

pump models designed on this platform are validated, meeting the design requirements.

The three-dimensional CAD graphical support platform for pump design provides design

and modeling functionalities. Nevertheless, the predictive analysis of pump performance

remains dependent on the individual design engineer’s experience. To enhance design

efficiency, future development of the platform can involve integration with a backend da-

tabase, thereby incorporating performance prediction capabilities. Following the comple-

tion of the design process, designers can retrieve analogous pump data from the database

and employ appropriate algorithms to deliver performance prediction results, effectively

augmenting design efficiency.

Figure 23. External characteristic curves of centrifugal pump.

7. Conclusions

This paper presents the successful development of a three-dimensional CAD graphics
support platform for pumps. The platform was developed using the Visual Studio 2021
development environment and incorporates the Open CASCADE geometry kernel, the
OpenSceneGraph rendering engine, and the Qt graphical user interface library. It provides
essential functionality for viewing, displaying, and modeling three-dimensional pumps.
With complete independent intellectual property rights, this platform offers enhanced
flexibility and interactivity in three-dimensional pump product modeling, surpassing that
of commercial CAD design software. An innovative aspect of the platform is the utilization
of the OpenSceneGraph rendering engine instead of the OpenGL visualization compo-
nent of Open CASCADE. This implementation choice improves data loading efficiency
and enhances rendering effects. Building upon this robust three-dimensional platform,
the paper investigates design and modeling algorithms for centrifugal pump impellers
and volutes. Through calculations and experiments, the accuracy and precision of pump
models designed on this platform are validated, meeting the design requirements. The
three-dimensional CAD graphical support platform for pump design provides design
and modeling functionalities. Nevertheless, the predictive analysis of pump performance
remains dependent on the individual design engineer’s experience. To enhance design
efficiency, future development of the platform can involve integration with a backend
database, thereby incorporating performance prediction capabilities. Following the comple-
tion of the design process, designers can retrieve analogous pump data from the database
and employ appropriate algorithms to deliver performance prediction results, effectively
augmenting design efficiency.

Author Contributions: Conceptualization, H.L.; Data curation, S.Y.; Funding acquisition, L.D.;
Methodology, H.L. and Z.W.; Project administration, L.D.; Resources, Y.W.; Software, S.Y.; Writing—
original draft, Z.W.; Writing—review and editing, Y.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
52279087, 51879122), Program Development of Jiangsu Higher Education Institutions (PAPD), and
Jiangsu top six talent summit project (GDZB-017).

Data Availability Statement: Restrictions apply to the availability of the data. Data are proprietary
to the National Pump and System Engineering Technology Research Center, and are available from
the authors with the permission of the National Pump and System Engineering Technology Research
Center.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

Processes 2023, 11, 2315 18 of 19

References
1. Orrù, P.F.; Zoccheddu, A.; Sassu, L.; Mattia, C.; Cozza, R.; Arena, S. Machine Learning Approach Using MLP and SVM Algorithms

for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry. Sustainability 2020, 12, 4776. [CrossRef]
2. Liu, H. Development of Pump Hydraulic Design Software PCAD 2004. Pump Technol. 2005, 1, 15–17+47.
3. Liu, M. Parametric 3D Modeling of Pump and Its Software Development; Jiangsu University: Zhenjiang, China, 2006.
4. Yin, Y.; Wang, T.; Wang, Z.; Huang, Z.; Shen, X.; Zhou, J. Research and Development of Casting Process CAD System for Steel

Casting based on OpenCASCADE and wxWidgets. Procedia Manuf. 2019, 37, 348–352. [CrossRef]
5. Hartono, S. Effectiveness of geometer’s sketchpad learning in two-dimensional shapes. Math. Teach.-Res. J. Online 2020, 12, 23–25.
6. Eu, L.K. Impact of geometers sketchpad on students achievement in graph functions. Malays. Online J. Educ. Technol. 2014, 1,

17–20.
7. Luo, H.; Zhang, X.-P.; Xiang, W.; Zhou, J. Development status and Prospect of Constrained Parametric Design Technology. China

Mech. Eng. 1995, 6, 21–25.
8. Aldefeld, B. Variation of geometric based on a gemotric-reasoning method. Comput.-Aided Des. 1998, 20, 117–126. [CrossRef]
9. Koichi, K. PIGMOD: Parametric and interactive geomtric modeler for mechanical design. Comput.-Aided Des. 1990, 22, 623–644.
10. Liuis, S.; Brunet, P. Constructive constraint-based model for parametric CAD systems. Comput.-Aided Des. 1994, 26, 614–621.
11. Zhang, S.; Wang, C.; Sun, T.; Zhang, D. Research on design method of twisted impeller of centrifugal Pump based on CFturbo.

Fluid Mach. 2016, 44, 56–59.
12. Xu, Y.; Song, W.; Fu, J.; Jin, Y. Analysis of influence of volute with different area ratio on performance of centrifugal pump. China

Rural. Water Resour. Hydropower 2015, 8, 172–175.
13. Ding, L.; Feng, J.; Liu, X.; Zhang, S.L. Application of CFX-BladeGen in turbine blade modeling. Chin. J. Eng. Des. 2005, 2, 109–112.
14. Zhang, R.; Yang, J.; Li, R. Inverse design method of centrifugal pump blade based on Partial Differential Equation. Trans. Chin.

Soc. Agric. Mach. 2009, 9, 81–84.
15. Lu, Y. Research and Application of Binding Design Method for Core Components of Hydraulic Model of CAP1400 Nuclear Main Pump;

Dalian University of Technology: Dalian, China, 2019.
16. Zhao, H.; Wang, H.; Zhang, X. Axis 3D Parametric Design System Based on OpenCASCADE. Mach. Build. Autom. 2019, 4, 97–99.
17. Zhuo, Y.; Zhan, H.X.; Wu, X.; Chen, J.F.; Pan, J.H. Integration of 3D Mechanical and 2D Electronic Design Based on Open

CASCADE. Appl. Mech. Mater. 2014, 635–637, 616–620. [CrossRef]
18. Yuan, G.; Zhang, Y. Development and Research of 3D Modeling Platform using Open CASCADE. J. Eng. Graph. 2008, 4, 146–149.
19. Niu, B.; Wei, Z. Development of 3D Modeling Software Based on Open CASCADE. Mech. Eng. 2013, 3, 52–54.
20. Yuan, Y.; Wang, Y.; Jiang, L.; Lin, C.; Wang, Y. Research on modeling Technology based on QT and OPENCASCADE. Mod. Electron.

Technol. 2013, 10, 74–77.
21. Ding, H.; Wang, Z. Research on CAD System Development Based on OPEN CASCADE Platform. J. Southwest Univ. Sci. Technol.

2014, 2, 72–76.
22. Yang, L.; Han, S.-J.; Chen, W.; He, J.-S. Development and research of 3D Model Software based on Open CASCADE. Mech. Eng.

2015, 12, 43–45.
23. Zhou, Q.; Sun, H.; He, S.; Yang, J.; Tian, Y. Development of an MCNP assisted modelling software based on OpenCasCade. Int. J.

Ad Hoc Ubiquitous Comput. 2017, 25, 75–84. [CrossRef]
24. Yang, H. Implementation of 3D Modeling Software Based on Geometric Engine Library Open CASCADE; Lanzhou University: Lanzhou,

China, 2015.
25. Zobrist, G.W. Information & computer science—Parametric and feature-based CAD/CAM concepts, techniques, and applications

by Jami J. Shah and Marttti Mantyla. Choice Rev. Online 1996, 33, 1830.
26. Spatial Corp. Michael Payne to Provide Keynote at Spatial’s 3D Insiders’ Summit 2010. Comput. Wkly. News. 2010, 9, 597.
27. Feng, Y. Design and Implementation of 3D CAD Geometric Engine Data Structure; Shandong University: Jinan, China, 2022.
28. Xu, W. Design and Implementation of Aero Engine Blade Reconstruction Module Based on Open CASCADE; Southeast University:

Nanjing, China, 2017.
29. Ni, Z.; Ji, W. Porting and running of OSG Engine in Android Studio. Comput. Appl. Softw. 2018, 35, 212–214,236.
30. Weiss, T.R. Microsoft Releases Visual Studio 2019, Visual Studio 2019 for Mac.; eWeek: Foster City, CA, USA, 2019.
31. Fine, V.E. Cross-platform Qt-based implementation of low level GUI layer of ROOT. Nucl. Instrum. Methods Phys. Research. Sect.

A: Accel. Spectrometers Detect. Assoc. Equip. 2003, 502, 681–683. [CrossRef]
32. Hock, P.; Nakayama, K.; Arai, K. A Tool for C++ Header Generation: An Extension of the C++ Programming Language. Int. J.

Adv. Comput. Sci. Appl. 2019, 10, 458–465.
33. Lee, C.; Kim, J.; Kim, K.-I. Implementation of Altitude Information for Flight Simulator in OpenSceneGraph. IEMEK J. Embed.

Syst. Appl. 2014, 9, 11–16. [CrossRef]
34. Chen, W.; Li, Y.; Liu, Z.; Hong, Y. Understanding of energy conversion and losses in a centrifugal pump impeller. Energy 2023,

263, 125787. [CrossRef]
35. Dai, C.; Wang, Z.; Dong, L.; Qiu, J.; Chen, Y. Effect of obstacle placement on cavitation performance of centrifugal pump. J. Drain.

Irrig. Mach. Eng. 2022, 40, 122–127.

https://doi.org/10.3390/su12114776
https://doi.org/10.1016/j.promfg.2019.12.058
https://doi.org/10.1016/0010-4485(88)90019-X
https://doi.org/10.4028/www.scientific.net/AMM.635-637.616
https://doi.org/10.1504/IJAHUC.2017.083488
https://doi.org/10.1016/S0168-9002(03)00542-4
https://doi.org/10.14372/IEMEK.2014.9.1.11
https://doi.org/10.1016/j.energy.2022.125787

Processes 2023, 11, 2315 19 of 19

36. Li, C.; Wang, Y.; Li, X.; Chen, H.; Wei, Y.; Wu, G. A two-dimensional method for radial turbine volute design. Proc. Inst. Mech.
Eng. Part A J. Power Energy 2023, 237, 33–47. [CrossRef]

37. Sun, H.; Xu, H.; Li, Y.; Wang, X.; Li, Y. Parametric Analysis and Optimization Design of the Twin-Volute for a New Type of
Dishwasher Pump. Processes 2023, 11, 305. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/09576509221109070
https://doi.org/10.3390/pr11020305

	Introduction
	Introduction of Open CASCADE
	Preparatory Work
	Choice of 3D Geometric Kernel
	Choice of 3D Rendering Engine

	Development Environment Setup and Interface Implementation
	Platform Development Tools
	Development Environment
	Graphical User Interface
	Programming Language

	Setting up the Development Environment for Platform
	Data Transmission and Window Implementation
	Three-Dimensional Visualization
	Basic Geometric Modeling

	Three-Dimensional Modeling of Centrifugal Pump Impellers and Volutes Based on the Platform
	Three-Dimensional Modeling of Impellers
	Three-Dimensional Modeling of Volute

	Computational and Experimental Validation
	Conclusions
	References

