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Abstract: The Carboniferous–Permian, coal-bearing, sedimentary succession on the eastern edge
of the Ordos Basin in the Shilounan Block contains large accumulations of hydrocarbon resources.
During the exploration of coalbed methane and tight sandstone gas in the study area, multiple
drilling wells in the tight sandstone reservoirs have yielded favorable gas logging results. The
Benxi, Taiyuan, Shanxi, Shihezi, and Shiqianfeng formations contain multiple sets of sandstone
reservoirs, and the reservoir quality and the controlling factors of its tight sandstones were affected
by sedimentation, diagenetic alteration, and pore structure. This study comprehensively examines
the sedimentary environment, distribution of sand bodies, and physical characteristics of tight
sandstone reservoirs through drilling, coring, logging, and experimental testing. The results indicate
that the Carboniferous–Permian tight sandstones are mainly composed of lithic sandstone and
lithic quartz sandstone. The reservoir quality is relatively poor, with an average permeability of
0.705 mD and porosity of 6.20%. The development of reservoirs in the study area is primarily
influenced by diagenesis and sedimentation. Compaction and cementation, which are destructive
diagenetic processes, significantly reduced the porosity of the sandstone reservoirs in the study
area. Compaction primarily causes a reduction in porosity and accounts for over 70% of the overall
decrease in porosity. Dissolution, as a constructive diagenetic process, has a limited effect on porosity
and is the primary reason for the relatively tight nature of these reservoirs. The macroscopic and
microscopic characteristics of tight sandstone reservoirs were used to establish the evaluation and
classification criteria, after which the sandstone reservoirs in the study area were divided into three
types. The poor quality type II and type III reservoirs are predominant, while high quality type I
reservoirs are primarily limited to the Shihezi Formation.

Keywords: tight sandstone gas; reservoir; pore structure; diagenesis; porosity

1. Introduction

Tight sandstone gas is an important unconventional natural gas. Tight gas reservoirs
typically have an effective permeability of less than 0.1 mD (or an absolute permeability
of less than 1 mD) and a porosity of less than 10% [1–3]. A diverse array of tight sand-
stone gas reservoirs with significant economic potential occurs across China. Progress in
unconventional oil and gas exploration technologies has allowed for the identification of
basins such as the Ordos, the Tarim, and the Songliao, where geological conditions are also
conducive to the formation of tight sandstone gas reservoirs [4]. The annual production of
tight sandstone gas in the Ordos Basin surpassed 3 × 1010 m3 in 2010, with proven reserves
exceeding 2 × 108 m3. Tight sandstone gas accounts for over one third of China’s natural
gas energy structure, making China one of the leading global producers of tight sandstone
gas after the United States and Canada [4,5].
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Tight sandstone gas reservoirs are extensively distributed in the Upper Paleozoic
strata of the Ordos Basin and occur primarily within the Carboniferous–Permian Taiyuan,
Shanxi, and Shihezi formations, where these formations serve as the principal layers for
tight sandstone gas production. Despite the widespread occurrence of sandstone across
the Ordos Basin, its compositional and structural maturity is relatively low. Under sur-
face conditions, a significant portion of the samples have porosity levels below 10%, and
approximately 90% of the reservoirs have a matrix permeability below 0.1 mD under
overburdened pressure conditions [6,7]. The development of tight sandstone reservoirs is
primarily influenced by sedimentation, diagenesis, and tectonism. Sedimentation plays the
largest role in the formation of low-permeability reservoirs and determines the types of
diagenesis that occur. Diagenesis is the key driver in creating ultra-low porosity and per-
meability reservoirs, while tectonic processes transform tight sandstone reservoirs [8–11].
Advances in research methods and technologies have allowed for substantial progress in
studying the characteristics and controlling factors in the development of tight sandstone
reservoirs. Advanced technologies that have been used in reservoir characterization in-
clude high-precision and high-resolution microscopic observation, fluid inclusion testing,
mineralogical composition identification, genetic analysis, and pore system characteriza-
tion [12–14]. These technologies and research methods provide a reliable foundation for
analyzing pore genesis, diagenesis types, and diagenetic evolution, and shift the study of
tight sandstone reservoir characteristics and their controlling factors from a qualitative
description to a quantitative study.

The tight sandstone formation associated with the Carboniferous–Permian coal mea-
sure in the eastern margin of the Ordos Basin exhibits a stable horizontal thickness distri-
bution and vertical multi-layer superposition. This formation offers promising prospects
for the exploration and development of tight sandstone gas. This study used experimental
methods, such as thin section petrographic examinations, mercury intrusion, and porosity
and permeability testing, to determine the distribution and reservoir characteristics of the
sandstone formation of the Shilounan Block. The influence of sedimentation, diagenesis,
and pore structure on the physical properties of tight sandstone reservoirs has also been
investigated and provides valuable guidance for the exploration and development of tight
sandstone gas in the Shilounan Block.

2. Geological Setting
2.1. Structural Characteristics and Stratigraphy

The Shilounan Block is situated in the southern part of the Jinxi Flexural Belt within
the Ordos Basin. It shows an overall structural pattern known as “two uplifts and two
depressions”. The “two uplifts” are the Shilou Anticline and the Xixian Anticline, with the
eastern wing of the Shilou Anticline being intersected by a nearly north–south westward
dipping thrust fault. This fault causes a steeper eastern wing when compared to the western
wing. The “two depressions” consist of the Caocun Fold Belt and the Xixiandong Syncline.
The structural characteristics of the study area primarily involve north–south and northeast
folding and flexing, accompanied by a significant presence of faults in the region (Figure 1).

The Upper Paleozoic strata in the Shilounan Block are well developed, with the low-
ermost part of the sedimentary succession consisting of Middle Ordovician limestones of
the Majiagou Formation. The Middle Carboniferous Benxi Formations, which are charac-
terized by a parallel unconformity, overlay the Ordovician limestones. The coal-bearing
strata within this block include the Middle Carboniferous Benxi Formation, the Upper
Carboniferous Taiyuan Formation, and the Lower Permian Shanxi Formation. Additionally,
the uppermost part of the sedimentary succession is represented by the Shihezi Formation
and the Shiqianfeng Formation (Figure 2).

2.2. Sedimentary Facies and Sand Body Distribution

The Shilounan Block is extensively developed in the Upper Paleozoic sandstones. It
consists primarily of the tidal flat sandstones from the Taiyuan Formation and the channel
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sandstones from the Shanxi, Shihezi, and Shiqianfeng formations, as well as beach bar
sandstones. A depositional hiatus occurred during the Middle Ordovician and the Early
Carboniferous. During the sedimentation period of the Benxi Formation in the Middle
Carboniferous, the Ordos Basin gradually underwent subsidence as seawater infiltrated
from the east and southeast. The sediments from the Shilounan Block in the Ordos basin
were deposited in an epicontinental sea. The sedimentary characteristics of the Taiyuan
Formation are similar to the Benxi period, where the Shilounan Block received sediment
from areas northeast and northwest of the Ordos basin. This caused the development
of tidal flats, barrier islands, and lagoon deposits (Figure 3a). The sand bodies in this
formation consist of gray fine-grained sandstones and light gray siltstones, and have a
maximum sedimentary thickness of 14.8 m. The Shanxi Formation was predominantly
deposited in the delta plain subfacies and is characterized by distributary channel sands
that form the main sand body (Figure 3b). The sand body exhibits a northwest–southeast
distribution trend and ranges in thickness from 5 to 30 m.
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The climate transitioned from warm and humid to arid and hot during the sedimen-
tation of the Xiashihezi Formation, which significantly reduced the vegetation. A series
of gray-white to yellow-green terrigenous debris, which developed the delta front sub-
facies, was deposited during this period. The main sedimentary microfacies comprised
underwater distributary channels and underwater interdistributary bays, with the presence
of underwater distributary channel sand bodies (Figure 3c). The sediments of the Shang-
shihezi Formation are characterized by purplish-red and yellowish-green hues. These
colors indicate a lithofacies paleogeographic environment where delta and shallow lake
conditions coexisted. Within the Shilounan Block, the delta front subfacies are characterized
by the presence of underwater distributary channel sand bodies (Figure 3d). A series of
purplish-red clastic rocks were deposited during the sedimentation of the Shiqianfeng
Formation. This area mainly exhibits the development of delta front subfacies and shore-
shallow lake facies, with the presence of underwater distributary channel sand bodies
(Figure 3e).
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Formation, (e) Shiqianfeng Formation. Dots represent well locations and rectangles represent cities.

3. Sampling and Methodology

More than 280 samples were collected from 28 drilling wells in the Shilounan Block,
with the main sampling layers including the Benxi, Taiyuan, Shanxi, Shihezi, and Shiqian-
feng formations. Figure 1b shows the distribution of the well locations for sampling. The
samples were analyzed via thin section petrographic examinations, SEM, porosity and per-
meability measurements, XRD analysis, and mercury intrusion tests. The specific details of
the experimental methods and detailed procedures are based on previous papers published
by our team [15,16].

4. Results
4.1. Petrological Characteristics

The sandstones from the Taiyuan and Shanxi formations range primarily from dark
gray to gray. In contrast, the sandstones from the Shihezi Formation range from gray to
gray-white to gray-green. The sandstones of the Shiqianfeng Formation, however, showcase
a more diverse range of colors that range from mainly brown to grayish-green and purple-
red. There is a notable color variation in the sandstones from the Benxi Formation and the
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Shiqianfeng Formation, where the formations transition from gray and black to green and
grayish-brown. These color changes indicate a shift from reducing to oxidizing conditions
and a transition in climate from humid to arid in the sedimentary environment during the
late Paleozoic (Figure 4).
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Figure 4. Core characteristics of the Carboniferous–Permian sandstones in the study area: (a) dark
gray siltstone of the Benxi Formation; (b) gray medium-grained sandstone of the Taiyuan Formation;
(c) gray fine-grained sandstone with carbonaceous and argillaceous material and muscovite fragments
of the Shanxi Formation; (d) gray-green sandstone of the Shihezi Formation; (e) grayish brown fine-
grained sandstone of the Shiqianfeng Formation.

The Shilounan Block contains several types of sandstones, such as lithic sandstone,
lithic feldspathic sandstone, lithic quartz sandstone, quartz sandstone, and feldspathic
lithic sandstone (Figure 5). Within the Taiyuan and Shanxi formations, three main types
of sandstone are present—lithic sandstone, lithic quartz sandstone, and quartz sandstone.
The quartz content varies from 10% to 96%, with an average quartz content of 53.2%. The
rock debris content ranges from 1% to 70%, with an average rock debris content of 28.9%.
The feldspar content in the Taiyuan and Shanxi formations is relatively low and is present
as fine to medium feldspar grains.
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The Shihezi Formation primarily comprises lithic sandstone, commonly known as
lithic quartz sandstone, feldspathic lithic sandstone, and quartz sandstone. The quartz
content within this formation ranges from 14% to 89%, while the rock debris content ranges
from 2% to 63%, with an average content of 26.1%. In contrast, the sandstones of the
Shiqianfeng Formation are predominantly composed of lithic feldspathic sandstone and
feldspathic lithic sandstone, and are occasionally accompanied by lithic sandstone and
feldspathic quartz sandstone. The feldspar content in the Shihezi Formation is relatively
high. Quartz is the predominant mineral in the sandstone, with the highest content
being observed in the Taiyuan Formation and the lowest content being observed in the
Shiqianfeng Formation.

4.2. Porosity and Permeability

Porosity and permeability tests were conducted on 245 sandstone samples from
the Shilounan Block. The samples have an average porosity of 6.2% and an average
permeability of only 0.705 mD. The reservoir, therefore, has low porosity and ultra-low
permeability (Table 1).

Table 1. Porosity and permeability of the sandstones from the study area.

Formation Shangshihezi Xiashihezi Shanxi Taiyuan Benxi

Porosity/% 8.4 (101) 7.1 (94) 3.99 (11) 6.88 (2) 4.9 (4)
Permeability/mD 0.95 (97) 0.29 (93) 0.11 (11) 0.77 (2) 2.86 (4)

Note: The numbers in the parentheses indicate the number of samples.

The Shihezi Formation has the highest porosity, with an average of 7.7%. The Shang-
shihezi Formation has an average porosity of 8.4%, while the Xiashihezi Formation has an
average porosity of 7.1%. The sandstones in the Xiashihezi Formation display a maximum
porosity of 15.4% and a minimum porosity of 1.3%. Porosities that exceed 10% account for
only 10% of the samples (Figure 6a). The sandstone in the Shangshihezi Formation ranges
from a maximum porosity of 16.1% to a minimum porosity of 1.6%. Here, approximately
50% of the samples exhibit porosity exceeding 10%, indicating favorable reservoir charac-
teristics (Table 1 and Figure 6a). Even though the Taiyuan Formation has a porosity close to
7%, the sample size is relatively small and shows higher variability. The Shanxi and Benxi
formations have average porosities of 4.0% and 4.9%, respectively.

The limited number of samples from the Benxi and Taiyuan formations exhibit rel-
atively high permeabilities. The average permeability is 0.11 mD in the Shanxi Forma-
tion, 0.29 mD in the Xiashihezi Formation, and 0.95 mD in the Shangshihezi Formation.
The permeability range of the Shihezi Formation is quite extensive, with the Xiashihezi
Formation displaying a maximum permeability of 6.14 mD and a minimum of only
0.0013 mD (Figure 6b). Similarly, the Shangshihezi Formation has a maximum perme-
ability of 14.18 mD and a minimum of 0.0033 mD. The peak permeability of the Xiashihezi
Formation ranges from 0.1 to 0.5 mD, while the peak permeability of the Shangshihezi
Formation ranges from 0.1 to 0.5 mD and exceeds 2 mD (Figure 6b).

Even though the data points on the porosity and permeability of the sandstone reser-
voirs in the study area are relatively scattered, they exhibit a certain degree of correlation
(Figure 7). This correlation suggests that the physical properties are influenced by multiple
factors rather than a single geological factor. The variations in the sedimentary background,
the burial depth, the lithology of the roof and floor, and the heterogeneity of diagenesis,
all contribute to the weak correlation between the porosity and the permeability [17,18].
Cai (2015) also observed a similar weak positive correlation between the porosity and the
permeability when investigating the Chang 8 reservoir in the Jiyuan area of the Ordos
Basin [19].
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4.3. Pore System
4.3.1. Pore Type

Petrographical examinations and statistical analysis of 117 sandstone cast thin sections,
combined with scanning electron microscopy (SEM) analysis, were used to classify the pore
types into residual intergranular pores, dissolution pores, and intercrystalline pores.
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Residual intergranular pores: the primary intergranular pores are almost impercep-
tible, while the residual intergranular pores are predominantly observed. The residual
intergranular pores are mainly formed due to compaction and cementation, and exhibit
triangular or polygonal shapes with fairly straight pore boundaries. There is limited con-
nectivity and significant heterogeneity among these isolated pores because the distribution
of the residual intergranular pores is primarily isolated (Figure 8).
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Figure 8. Microscopic images of polished thin sections and high-resolution SEM images of residual in-
tergranular pores: (a) medium-grained feldspathic sandstone, with small residual intergranular pores;
(b) medium-grained feldspathic sandstone, with small residual intergranular pores; (c) particles that
are bent due to compaction, causing the irregular morphology of the intergranular pores; (d) kaolinite
aggregates and illite crystals between particles, with development of residual intergranular pores
within these aggregates.

Dissolved pores: the dissolved pores consist of intergranular pores and intragran-
ular pores (Figure 9a–d). The feldspar, rock debris, and clay minerals are susceptible to
dissolution. The intergranular pores are large due to the partial or complete erosion of
larger minerals such as feldspars. The intergranular pores tend to have good connectivity
and an irregular morphology, and feature multilateral and harbor-shaped structures. The
intragranular pores, in contrast, are predominantly circular and elliptical, with relatively
limited connectivity. These pores are mainly present within the rock debris particles.

Intercrystalline pores: the clay minerals kaolinite and illite are commonly found in this
rock. Kaolinite typically forms through feldspar alteration and often exhibits a book-like or
plate-like structure. Illite is predominantly fibrous and filamentous, with numerous pores
developed within its aggregates (Figure 9e,f).
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Figure 9. Microscopic images of polished thin sections and high-resolution SEM images of the
dissolved pores and intercrystalline pores: (a) fine- to medium-grained feldspathic sandstone, with
well-developed pores that formed due to feldspar dissolution; (b) coarse-grained lithic quartz sand-
stone exhibiting significant feldspar that was corroded to form well-developed dissolved pores;
(c) illite-wrapped quartz particle surfaces with limited dissolved pores; (d) intergranular pores filled
with kaolinite aggregates, along with developed intercrystalline micropores and dissolved pores;
(e) chlorite aggregate covering particle surfaces, intermixed with authigenic quartz crystals, and
displaying developed intergranular micropores; (f) intergranular pores filled with kaolinite and illite
aggregates, accompanied by developed intercrystalline micropores.

4.3.2. Pore Structure

The pore structure of the sandstone in the Shilounan Block is categorized into three
types based on the pore structure parameters and the capillary pressure curve derived from
the mercury intrusion measurements of the 29 sandstone samples, the observations of the
cast thin sections, and the SEM (Table 2 and Figure 10).
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Table 2. Pore structure parameters and classification of pore structure types based on mercury intrusion testing.

Pore
Type

Sample
ID Formation Sorting

Coefficient
Structural
Coefficient

Coefficient of
Mean Value

Average Pore
Throat

Diameter/µm

Displacement
Pressure/MPa

Maximum
Mercury

Saturation/%

Efficiency of
Mercury

Ejection/%

Porosity
/%

I

S6-5 Xiashi
hezi 2.89 3.25 0.16 0.97 0.23 69.03 37.59 3.1

S6-18 Xiashi
hezi 0.87 2.3 0.46 0.37 0.99 81.08 43.38 8.2

S6-19 Xiashi
hezi 1.12 3.42 0.22 0.44 0.79 80.09 38.76 7.2

S7-6 Xiashi
hezi 1.52 1.59 0.3 0.59 0.61 86.85 51.68 12.4

S7-7 Xiashi
hezi 1.62 1.67 0.32 0.62 0.59 84.59 42.85 10.8

S1-2 Xiashi
hezi 0.23 0.08 / 2.48 0.7 84.6 39.8 7.7

S1-3 Xiashi
hezi 0.2 0.17 / 0.31 0.7 91.54 35.92 7

S1-4 Xiashi
hezi 0.21 0.15 / 0.31 0.5 88 42.02 8.6

S2-22 Shang
shihezi 0.21 0.13 / 0.33 0.3 86.89 46.63 16.8

S2-38 Shang
shihezi 0.28 0.19 / 0.41 0.3 79.63 45.26 10.6

S2-47 Shang
shihezi 0.26 0.03 / 0.48 0.3 84.33 35.91 13.8

Average 0.86 1.18 0.29 0.66 0.55 83.33 41.8 9.65

II

S12-44 Tai
yuan 11.2 9.58 0.35 3.66 0.12 85.4 20.08 7.9

S12-45 Tai
yuan 13.2 14.5 0.32 4.26 0.11 75.89 16.19 8.4

S2-17 Shang
shihezi 0.12 0.01 / 0.02 7 90.65 22.28 4

S2-30 Shang
shihezi 0.2 0.2 / 0.38 0.5 86.69 30.17 12.2

S6-2 Shanxi 0.63 1.06 0.33 0.28 1.65 81.67 26.28 3.6
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Table 2. Cont.

Pore
Type

Sample
ID Formation Sorting

Coefficient
Structural
Coefficient

Coefficient of
Mean Value

Average Pore
Throat

Diameter/µm

Displacement
Pressure/MPa

Maximum
Mercury

Saturation/%

Efficiency of
Mercury

Ejection/%

Porosity
/%

II

S12-13 Shang
shihezi 2.2 5.09 0.24 0.77 0.38 76.89 33.41 9.9

S12-14 Shang
shihezi 5.2 40.8 0.23 1.64 0.19 61.57 21.18 12.6

S1-1 Xiashi
hezi 0.48 0.05 / 0.11 1 63.57 33.38 2.5

S2-9 Shanxi 0.52 0.1 / 0.17 0.8 62.45 31.29 4
S2-14 Shanxi 0.69 0.01 / 0.02 7 51.08 31.73 3.2

Average 3.43 7.14 0.29 1.13 1.87 73.58 26.6 6.83

III

S6-3 Tai
yuan 0.52 1.04 0.39 0.27 1.12 37.42 32.92 3.2

S6-4 Tai
yuan 1.92 0.87 0.24 0.72 0.45 38.98 36.1 5.6

S6-9 Tai
yuan 0.04 0.08 0.6 6.88 6.88 30.79 35.6 2.7

S2-2 Tai
yuan 1.05 0.13 / 0.14 1.5 37.4 44.52 5.2

S2-52 Xiashi
hezi 0.55 0.05 / 0.09 2 59.42 38.08 4

S2-62 Xiashi
hezi 1.66 0.03 / 0.06 3 22.3 33.61 5.7

S2-67 Xiashi
hezi 1.06 0.04 / 0.05 3 36.75 36.2 3.7

S2-75 Xiashi
hezi 1.05 0.13 / 0.14 1.5 37.4 44.52 5.2

Average 0.98 0.3 0.41 1.04 2.43 37.56 37.69 4.4
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Figure 10. Mercury intrusion curves of three types of sandstone samples in the study area. Porosity
type I: (a,b); type II: (c,d); type III: (e,f). The blue circles indicate inject mercury quantity curve, and
the red circles indicate withdrawal mercury quantity curve.

Type I: the displacement pressure of a reservoir with the type 1 pore structure ranges
from 0.3 to 0.99 MPa, with an average of 0.55 MPa. The average pore throat size ranges from
0.31 to 2.48 µm, indicating relatively small pore throats, while the sorting coefficient is rela-
tively low. The average maximum mercury saturation reached 85%, with over 40% of the
mercury being efficiently ejected (with an average mercury injection porosity of 9.65%). The
capillary pressure curve has a gentle slope, deviating towards the bottom left of the graph.
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It was initially only possible to inject a small amount of mercury, suggesting the absence
of well-developed fractures and large pores. However, at 0.1 MPa pressure, a significant
amount of mercury entered the pores, indicating good pore connectivity. The pore mor-
phology is predominantly cylindrical and parallel plate-shaped (Figure 10a,b). Sandstone
reservoirs with such pore structures generally exhibit favorable physical properties.

Type II: the displacement pressure of a reservoir with the type II pore structure is
relatively high, ranging from 0.11 to 7 MPa, with an average of 1.87 MPa. The average pore
throat size ranges from 0.02 to 4.26 µm. The sorting coefficient of the type II pore structure is
relatively high, and the average maximum mercury saturation reaches 73%. However, the
efficiency of mercury ejection is low at only 26.6%, yielding an average mercury injection
porosity of 6.83%. The volume of mercury increases slowly when the pressure reaches
0.1 MPa, but rapidly increases when the pressure reaches 1 MPa (Figure 10c,d). These
results indicate the presence of relatively well-developed small-sized pores within which
a significant amount of mercury gets trapped. Sandstone reservoirs with the type II pore
structure have a relatively high porosity but poor connectivity.

Type III: the mercury intrusion curve of a reservoir with the type III pore structure
exhibits a steep slope and upward convexity, leaning towards the upper right part of the
figure (Figure 10e,f). Both the mercury saturation and efficiency of mercury ejection are
below 40%, indicating limited available pore space for mercury intrusion. The average
porosity of this type of reservoir is 4.4%, suggesting poor suitability for gas storage and
gas seepage.

The Shihezi Formation mainly has sandstone reservoirs with type I and type II pore
structures. These reservoirs exhibit fairly well-developed dissolution pores and resid-
ual intergranular pores, resulting in higher porosity and better connectivity. These pore
structures are primarily formed in a delta front environment. Sandstone reservoirs with a
type III pore structure, however, have low porosity and limited connectivity. The Taiyuan
Formation consists of many of these reservoirs.

5. Discussion
5.1. Sedimentation Controls on Reservoir Quality

Sedimentary facies play a crucial role in controlling the development and distribution
characteristics of sandstone reservoirs. The Taiyuan Formation is primarily composed
of tidal flat and lagoon deposits, while the Shanxi Formation consists predominantly of
delta plain deposits. The Shihezi Formation is characterized by delta front deposits, while
the Shiqianfeng Formation is dominated by shore shallow lake and delta facies. The
physical parameters of the sandstone reservoirs vary across the different sedimentary
facies zones (Table 3). The sandstone reservoirs in the Shihezi Formation exhibit favorable
reservoir properties, such as high porosity and good connectivity. The barrier sandstone
reservoirs in the Taiyuan Formation and the distributary channel sandstone reservoirs in
the Shanxi Formation, however, exhibit low porosity and permeability. The low porosity
and permeability are due to the frequent marine invasion and regression events during their
sedimentation period that have led to the interbedding of sand and mudstone [20]. The
pore structures have become complex, while the pore tortuosity increased. It is important to
note that even sandstone reservoirs that formed in the same sedimentary facies can exhibit
significant differences in their properties [21,22]. Sandstone reservoirs that developed in the
central areas of river channels, such as those in the Shihezi Formation, generally have better
porosity and permeability compared to those developed in the inter-channel or two-wing
regions of the river channel.
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Table 3. Porosity and permeability of sandstone reservoirs in different sedimentary facies in the
study area.

Formation Sedimentary Facies
Porosity (%) Permeability (mD)

Range Average Range Average

Shangshihezi Delta Front 0.51–15.34 8.4 0.06–2.31 0.95
Xiashihezi Delta Front 0.23–14.34 7.1 0.04–0.79 0.29

Shanxi Distributary Channel 1.43–5.89 3.99 0.007–0.45 0.11
Taiyuan Tidal Flat Lagoon 4.56–9.2 6.88 0.002–3.64 0.77

Sandstones that formed under different sedimentary conditions can exhibit signif-
icant variations in their mineral composition, thickness, distribution, particle size, sort-
ing, and rounding. These further increase the substantial differences in the reservoir
properties [23,24]. A positive correlation is observed between quartz content and porosity,
indicating that porosity tends to increase with higher quartz content (Figure 11a). The sedi-
ments in the study area have experienced deep burial (>1500 m) and significant compaction
and pressure dissolution. Since quartz is a rigid mineral, it enhances the rock’s ability to
withstand compression and preserves some primary intergranular pores [25,26]. Quartz
also serves as the material basis for the formation of secondary dissolution pores, and there
is a positive correlation between the porosity and the quartz content of the sediment. There
is, however, a negative correlation between rock fragments and porosity since higher rock
fragment content decreases the porosity (Figure 11c). Unlike quartz, rock fragments have
smaller particle sizes which can easily block pores. Sandstone-type reservoirs with higher
quartz content (for example quartz sandstone) usually have higher porosities compared
to samples with a higher rock fragment content, such as lithic sandstone. No significant
correlation was observed between the content of quartz and rock fragments and the per-
meability (Figure 11b,d). This means that quartz and rock fragments are not the primary
controlling factors that influence permeability.
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Figure 11. The relationship between the quartz content, the rock fragment content, the porosity, and
the permeability of the sandstone samples in the study area: (a) The relationship between the quartz
content and porosity, and the red dotted lines indicate a positive trend. (b) The relationship between
the quartz content and permeability. (c) The relationship between the rock fragment content and
porosity, and the red dotted lines indicate a negative trend. (d) The relationship between the rock
fragment content and permeability.
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5.2. Diagenetic Controls on Reservoir Quality
5.2.1. Diagenesis Type

Compaction: the pressure that is exerted by the overlying strata on the target layer
increases as the burial depth increases. This causes intensified compaction [27,28]. The
particles primarily experience linear and concave–convex contact during compaction, caus-
ing a significant reduction in the pore content and a deterioration in the reservoir quality.
Compaction can decrease the porosity of sandstone reservoirs by over 50% and shale gas
reservoirs by approximately 70% [29]. In the study area, sandstone reservoirs with favor-
able porosity and permeability are predominantly found in the relatively shallow-buried
Shiqianfeng Formation and Shihezi Formation. The porosity of the sandstone in the study
area generally decreases with increasing burial depth, while there is no significant corre-
lation between the permeability and burial depth (Figure 12), indicating that compaction
affects porosity. Even though there is a correlation between burial depth and porosity, the
data points also exhibit variability, suggesting that the intensity of compaction is influ-
enced by factors such as sandstone composition and other factors such as cementation.
A sandstone that is predominantly composed of rigid particles like quartz may exhibit
less compaction even at greater burial depths, indicating the effect of composition on
compaction and porosity [26].
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Cementation: the main types of cementation in the study area include clay mineral
cementation, siliceous cementation, and calcite cementation (Figure 13). Illite, which forms
during the middle-late diagenetic stage, is a common clay mineral that occurs in the
rocks from the study area. It primarily occurs in hair-like, needle-like, and fibrous forms,
where it coats other particles. Kaolinite occurs predominantly as plate-like, book-like,
or vermicular structures. Plate-like kaolinite forms due to feldspar dissolution in acidic
water bodies during the early diagenetic stage. Kaolinite, which exhibits well-developed
crystal forms, primarily fills the dissolution pores or intergranular pores and is mainly
formed during the late diagenetic stage. Similar to illite, chlorite partially fills the pores.
Siliceous cementation in sandstone reservoirs commonly appears in two forms: quartz
overgrowth and microcrystalline quartz aggregates (Figure 13e,f). Calcite cementation is
also prevalent in the Shihezi Formation. During the early diagenetic stage, microcrystalline
calcite primarily grows in a ctenoid form around clastic particles. During the late diagenetic
stage, it is susceptible to replacement by carbonate cement (Figure 13d). Late-stage calcite
cement typically forms during intense compaction in the late diagenetic stage.
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Figure 13. The occurrence and characteristics of cement observed under optical microscopy and SEM:
(a) lamellar and hair-like authigenic illite; (b) book-like kaolinite aggregate; (c) needle-like chlorite
aggregate; (d) authigenic calcite; (e,f) quartz overgrowth.

Cementation can occur during all the stages of diagenesis. Since the cement mainly
fills the pores, a higher cement content usually leads to poorer reservoir properties [30,31].
The cements identified in the study area rocks mainly include authigenic clay minerals
such as kaolinite, carbonate minerals such as calcite and dolomite, and siliceous minerals
such as quartz overgrowth. The carbonate mineral content shows a negative correlation
with porosity; as the carbonate mineral content increases, porosity decreases (Figure 14a).
Even though carbonate cement can be partially dissolved to form dissolution pores in
an acidic environment, the overall correlation between the carbonate mineral content
and the reservoir’s physical parameters is negative, indicating relatively underdeveloped
dissolution pores. There is no significant correlation between the clay mineral content
and the porosity and permeability (Figure 14c,d). Kaolinite, illite, and chlorite have high
plasticity and are susceptible to compaction, causing a reduction in the primary pores.
The intercrystalline pores of these clays are, however, well developed, and the micropores
within the clay mineral aggregates are easily preserved [32]. The influence of clay minerals
on reservoir properties is relatively complex and can have both positive and negative effects.
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Figure 14. The relationship between the cement content and the porosity and permeability of the
sandstone hydrocarbon reservoirs: (a) The relationship between the carbonate content and the
porosity, (b) the relationship between the carbonate content and the permeability, (c) the relationship
between the clay content and the porosity, and (d) the relationship between the clay content and
the permeability.

Dissolution: dissolution is a constructive diagenetic process that can enhance the phys-
ical properties of hydrocarbon reservoirs. Chemically unstable debris particles, cement,
and matrices can undergo dissolution under specific conditions, causing the development
of secondary pores [33]. The sandstone reservoirs in the study area experienced varying
degrees of dissolution (Figure 9a–d). The thermal maturity of source rocks increases as
the burial depth increases, causing the production of organic acids during hydrocarbon
generation. These acidic fluids can infiltrate the sandstone reservoir, causing the dissolution
of feldspar and carbonate minerals. The resulting dissolution of pores can significantly
enhance the pore connectivity of the reservoir [34,35]. When the carbonate mineral con-
tent is less than 2% (Figure 14a,b), certain sandstone samples exhibit high porosity and
permeability, which could be attributed to the dominant role that dissolution and limited
cementation play in improving the reservoir quality.

5.2.2. Influence of the Diagenesis Type on the Porosity

The physical properties of sandstone reservoirs in the study area are influenced by both
destructive diagenesis, such as compaction and cementation, and constructive diagenesis,
namely dissolution. To quantify these processes, the pore evolution was calculated using a
quantitative method [36,37]. The porosity loss resulting from compaction and cementation
during the burial of sandstone reservoirs in the Taiyuan, Shanxi, Shihezi, and Shiqianfeng
formations in the Shilounan area was calculated, along with the porosity increase caused
by dissolution.

The initial porosity can be determined using the following equations, which are
based on the relationship between the initial porosity and sorting coefficient of sandstone
reservoirs as proposed by Beard and Weyl (1973) [36]:

ϕ1 = 20.91 + 22.90/S0 (1)
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S0 = (d75/d25)1/2, (2)

where ϕ1 represents the initial porosity in %; S0 denotes the sorting coefficient; d75 is the
particle diameter in the cumulative curve corresponding to 75% cumulative content; and d25
represents the particle diameter in the cumulative curve corresponding to 25% cumulative
content. The value of d75 and d25 were obtained through particle size analysis experiments.

The formulae for calculating the porosity loss caused by compaction and cementation,
as well as the porosity increase caused by dissolution, are as follows [38]:

ϕ2 = C + (P1 × P0/Pt) (3)

ϕ3 = P1 × P0/Pt (4)

ϕ4 = P2 × P0/Pt, (5)

where ϕ2 represents the porosity reduced by compaction in %; ϕ3 denotes the porosity
reduced by cementation in %; ϕ4 is the porosity increased by dissolution in %; C represents
the cement content in %; P0 denotes the measured porosity in %; P1 is the intergranular
porosity in %; P2 represents the dissolution porosity in %; and Pt denotes the total porosity
in %. The values of C, P1, Pt, and P2 were obtained through observation and statistical
analysis of cast thin sections.

The primary porosity in the study area exhibits a relatively narrow range, varying
from 31.3% to 38.9% (Figure 15), which is comparable to the predominant tight sandstone
gas formations in the Ordos Basin. Compaction and cementation have notably reduced
the porosity, with compaction accounting for a porosity decrease ranging from 22% to
28.9%, while cementation contributed to a porosity decrease ranging from 5.7% to 7.2%.
The Xiashihezi Formation shows the smallest porosity decrease due to compaction, while
the Shanxi Formation exhibits the largest porosity decrease due to compaction, and the
Benxi Formation shows the largest porosity decrease due to cementation. Compaction
primarily causes a reduction in porosity, accounting for over 70% of the porosity decrease.
Dissolution has also positively affected the physical properties of the reservoir, causing a
porosity increase ranging between 2.9% and 4.8%. The Shangshihezi Formation exhibits
the most developed dissolution process and the highest porosity.
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Carboniferous–Permian sedimentary succession from the study area.

As the sediments experience an increasing burial depth during the early diagenetic
stage, compaction becomes the dominant diagenetic process. This caused the closure of
numerous primary intergranular pores, causing a rapid decrease in porosity. During the
early diagenetic stage, porosity reduction due to compaction can be as high as 20%. As the
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burial depth continues to increase during the later stages of diagenesis, porosity reduction
due to compaction is around 10%. The gradual rise in the formation temperature also
causes the generation of authigenic minerals like quartz, kaolinite, and illite. These minerals
further fill the pore spaces and consequently decrease porosity. The Carboniferous–Permian
coal measures are characterized by the widespread development of source rocks, including
coal and black shale. The abundant organic matter in these rocks produced organic acid as
it underwent hydrocarbon generation [32]. These acids dissolve feldspar, rock fragments,
and other minerals, thereby improving the physical properties of the hydrocarbon reservoir
and increasing the porosity by approximately 5%. The Carboniferous–Permian strata
experienced gradual uplift in the study area during the late diagenetic stage, and the
occurrence of micro-cracks due to tectonic processes was relatively limited. The sandstone
reservoirs in the study area, therefore, exhibit tight characteristics (Figure 16).
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5.3. Pore Structure Controls on the Reservoir Quality

Using mercury intrusion experiments, various parameters reflecting pore structure
characteristics were obtained (Table 2). There is a weak positive correlation between
the porosity and the sorting coefficient, indicating that porosity tends to increase with
an increase in the sorting coefficient (Figure 17a). SEM and cast thin section analyses
revealed that the Shihezi Formation has relatively well-developed pores, with intergranular
pores and dissolution pores being the main type. These dissolution pores exhibit diverse
morphologies, and the pore throat sizes have an uneven distribution. Samples with higher
sorting coefficients tend to have larger pore sizes and smaller throats. Sandstone reservoirs
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with larger pores have higher permeability, while micro throats facilitate gas occurrence
and storage [39,40].
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reservoirs in the study area: (a) The relationship between the sorting coefficient and the porosity,
(b) the relationship between the structural coefficient and the porosity, (c) the relationship between
the maximum mercury saturation and the porosity, and (d) the relationship between the efficiency of
mercury ejection and the porosity.

Unlike the sorting coefficient, there is no significant correlation between the structural
coefficient and the porosity (Figure 17b), suggesting that the tortuosity of the pore throat
has a minimal impact on porosity. There may, however, be a distinct relationship between
the structural coefficient and permeability. Higher tortuosities in the pore throat generally
make seepage more challenging. The parameters related to mercury saturation include
maximum mercury saturation and efficiency of mercury ejection. There is a positive
correlation between the maximum mercury saturation and the porosity, while the efficiency
of mercury ejection shows no significant correlation with porosity (Figure 17c,d). This
means that the pore structure is favorable for the accumulation of sandstone gas but not for
gas seepage.

5.4. Evaluation of Sandstone Reservoirs

Within the Carboniferous–Permian sedimentary succession, the characteristics of
sandstone reservoirs in the study area vary significantly. The sandstone reservoirs in the
Shilounan Block were classified into three types based on factors such as sedimentary facies,
sandstone distribution, physical properties, and the influence of sedimentation, diagenesis,
and pore structure on reservoir quality [41–43] (Table 4):

Type I: the type I reservoir is predominantly found in the primary areas of the super-
imposed multiphase distributary channels within the study area. The type I sandstone
reservoir exhibits relatively high porosity and permeability, with quartz sandstone being
the primary lithology [44]. The grain size of the type I reservoir ranges from medium to
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coarse and displays good sorting. The main types of cement are siliceous minerals and
kaolinite. The pore structure of the type I reservoirs consists of a combination of dissolution
pores and residual intergranular pores. The pore structure characteristics are relatively
straightforward, with a displacement pressure that is typically below 1 MPa and an average
throat radius of 0.4 µm. Type I reservoirs, which are mainly developed in the Shihezi
Formation, should be considered as a primary focus for future hydrocarbon exploration
and development efforts.

Type II: the type II reservoir occurs in the principal sand bodies of the subaqueous
distributary channels. The rock particle size ranges from medium to fine, with an increased
presence of interstitial materials. Compaction and cementation are more pronounced in
the type II reservoirs compared to the type I reservoirs, causing a significant reduction
in the primary intergranular pores. The porosity generally ranges between 5% and 10%,
with a moderate displacement pressure. The pore development of the type II reservoirs
is noticeably lower compared to the type I reservoirs. The predominant pore types are
intergranular pores and intercrystalline pores, with an average throat size of 0.2 to 0.4 µm.
This type of reservoir can serve as an alternative target for exploration and development
within the Shilounan Block [45,46]. The type II reservoir is primarily developed in the
Shiqianfeng Formation.

Type III: the type III reservoir is mainly developed in the underwater distributary
channels and consists predominantly of fine-grained lithic sandstones, siltstones, and
argillaceous siltstones. This reservoir exhibits relatively compact characteristics. It has
a high presence of interstitial material, and compaction and cementation significantly
affect the reservoir properties [47,48]. The particles often exhibit concave–convex and
mosaic-like contacts, which causes a substantial reduction in the primary pores and limited
development of the secondary dissolution pores. The porosity typically falls below 5%.
The predominant pore type is intercrystalline pores, with an average throat size of less than
0.2 µm. The displacement pressure of type III reservoirs is relatively high, and larger-sized
pores and fractures are generally scarce. The type III reservoirs are primarily developed in
the Shanxi Formation and the Taiyuan Formation.

Table 4. Comprehensive evaluation parameters for sandstone reservoirs in the study area.

Parameters Type I Type II Type III

Depositional Feature

Single-layer sandstone
thickness/m >8 3–8 3<

Sandstone type

Coarse- to
medium-grained

quartz sandstone, lithic
quartz sandstone, with
low interstitial content

Medium- to fine-grained
quartz lithic sandstone,

lithic sandstone, medium
to low interstitial content,

kaolinite is the
predominant clay

mineral

Fine-grained lithic
sandstone, with high

content of fillings,
mainly carbonates and

clay minerals

Sand body type Channel sand body
Channel sand body,

underwater distributary
channel sands

Underwater
distributary channel

sands

Physical Property Porosity/% >10 5–10 5<
Permeability/mD >0.5 0.1–0.6 0.1<

Pore Structure

Pore type Intergranular and
dissolution pores

Intergranular and
dissolution pores Intercrystalline pores

Pore-Throat Mesopore-fine throat,
moderately sorted

Fine-micro throat, poorly
sorted

Micro-throat, poorly
sorted

Displacement pressure Low Medium High
Average throat

size/µm >0.4 0.2–0.4 0.2<

Reservoir Properties High quality Good Average and lower
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6. Conclusions

(1) The predominant sandstone type in the Shilounan Block is lithic sandstone, which
has a low porosity and ultra-low permeability reservoir. The primary types of pores present
are intergranular pores, intercrystalline pores, and dissolution pores. The Shihezi Formation
exhibits relatively good porosity and pore connectivity, characterized by a larger average
throat size. In contrast, the Taiyuan and Shanxi formations have poor pore connectivity
and have smaller throats.

(2) The primary controlling factors influencing the sandstone reservoirs in the study
area are diagenesis and sedimentation. Sedimentation determines the distribution charac-
teristics of the sand bodies and their petrological features, including the composition and
grain size. Compaction and cementation caused the loss of a significant number of primary
pores, leading to unfavorable reservoir properties. Compaction has notably reduced the
porosity, accounting for over 70% of the overall porosity decrease. Dissolution processes
have been relatively limited in the Shilounan Block, contributing to the relatively tight
nature of the reservoirs in this region.

(3) A comprehensive evaluation system has been established to assess tight sandstone
reservoirs in the Shilounan Block. This system is based on sedimentary characteristics
such as sandstone thickness, sandstone type, and sand body type, while the primary
discriminant criteria are porosity, permeability, and pore structure parameters. Using this
evaluation system, it is determined that the high-quality reservoirs in the study area are
primarily developed in the Shihezi Formation.
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