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Abstract: In smart elderly care communities, optimizing the design of building energy systems
is crucial for improving the quality of life and health of the elderly. This study pioneers an inno-
vative adaptive optimization design methodology for building energy systems by harnessing the
cutting-edge capabilities of deep reinforcement learning. This avant-garde method initially involves
modeling a myriad of energy equipment embedded within the energy ecosystem of smart elderly
care community buildings, thereby extracting their energy computation formulae. In a groundbreak-
ing progression, this study ingeniously employs the actor–critic (AC) algorithm to refine the deep
deterministic policy gradient (DDPG) algorithm. The enhanced DDPG algorithm is then adeptly
wielded to perform adaptive optimization of the operational states within the energy system of a
smart retirement community building, signifying a trailblazing approach in this realm. Simulation
experiments indicate that the proposed method has better stability and convergence compared to
traditional deep Q-learning algorithms. When the environmental interaction coefficient and learning
ratio is 4, the improved DDPG algorithm under the AC framework can converge after 60 iterations.
The stable reward value in the convergence state is −996. When the scheduling cycle of the energy
system is between 0:00 and 8:00, the photovoltaic output of the system optimized by the DDPG
algorithm is 0. The wind power output fluctuates within 50 kW. This study realizes efficient operation,
energy saving, and emission reduction in building energy systems in smart elderly care communities
and provides new ideas and methods for research in this field. It also provides an important reference
for the design and operation of building energy systems in smart elderly care communities.

Keywords: deep learning; smart community; architecture; energy system; adaptive; energy conservation

1. Introduction

Smart elderly care communities provide a safer, more comfortable, and convenient
living environment for the elderly through the use of Internet of Things (IT), cloud com-
puting (CC), artificial intelligence (AI), and other means. Smart elderly care community
buildings typically include technologies such as smart homes, remote monitoring, the IT,
CC, and AI as well as supporting services and management systems. In smart elderly care
communities, relevant staff can monitor the physiological health of the elderly by installing
sensors, cameras, smart speakers, and other devices. Meanwhile, the communities can
also provide better living security by connecting elderly families and community services
through IoT technology. In addition, CC technology can be used to store the life informa-
tion and data of the elderly to provide more intelligent services. The purpose of smart
elderly care communities is to provide a safer, more comfortable, and convenient living
environment for the elderly. They also aim to improve the level of community services and
enable the elderly to enjoy a better quality of life [1,2].

In the construction of a smart elderly care community (SECC), the energy system
design of the entire community building is the most crucial part. The building energy
system refers to a comprehensive management system that provides energy and resources
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for buildings. This includes the supply and control of various energy sources, such as
electricity, gas, and hot water, and their related energy saving measures [3]. The purpose
of designing a SECC building energy system (ES) is to ensure sufficient energy supply
inside the building to meet the daily energy consumption of elderly people in the elderly
care community. It also aims to reduce energy consumption and environmental pollution.
Currently, many communities do not consider maximizing energy efficiency targets in
their energy design. With the emission of a large amount of greenhouse gases, the climate
change situation is becoming increasingly severe, and sustainable low-carbon development
has become a consensus among countries around the world to address climate change.
To achieve low-carbon living, many experts have conducted a series of observations and
studies on the building industry, which is the main source of greenhouse gas emissions.
Traditional methods for optimizing building energy, such as the use of passive technology,
have some limitations. This involves installing solar panels and other heat-absorbing
devices on the roof to provide as much energy as possible. These systems typically cannot
meet the dynamic energy needs within buildings and may require extensive maintenance
and upkeep. Traditional building energy optimization requires on-site operations by pro-
fessionals and may not be fully automated. In addition, traditional energy optimization
methods have drawbacks such as high maintenance costs and low flexibility [4]. This
study focuses on an integrated energy system for smart retirement community buildings
that is composed of various energy devices that work in conjunction with each other.
Through cooperative control and energy coupling, this integrated system is expected to
improve the efficiency of energy utilization and promote the use of renewable energy. To
achieve adaptive optimization of building energy systems, this study employs reinforce-
ment learning to construct relevant models. Reinforcement learning achieves optimization
by allowing an intelligent body to interact with the external environment and learn op-
timal action strategies. To address the limitations of the Markov process in dealing with
high-dimensional states and continuous space problems, this study introduces the deep
deterministic policy gradient (DDPG) algorithm to compensate for the shortcomings of
traditional methods [5,6]. Through these novel approaches and analyses, this study pro-
vides valuable insights and methods for optimizing energy systems in smart senior living
community buildings, contributing to improved energy use efficiency and quality of life
for users. This study is mainly divided into five parts. The first part is an overview of
the overall research. The second part is a review of research by relevant scholars, both
domestically and internationally. The third part is divided into two sections. In the first
section, the construction of a smart elderly care community building energy system model
is discussed, while the second section outlines research on adaptive optimization of smart
building energy systems based on DDPG. In the fourth part, the results of experimental
verification conducted using the DDPG algorithm and adaptive optimization of building
energy systems are discussed. The fifth part is a summary of this study and prospects
for future research. The present study provides specific adaptive optimization analysis
of energy systems by building mathematical models and using Markov decision-making
with DDPG algorithms, thus providing insight and specific practical solutions that can help
promote the development of energy systems in smart buildings.

2. Related Work

Rao and other scholars [7] proposed a deep reinforcement learning optimization
method for the DDPG algorithm to allocate communication resources. This can solve the
problem of uneven resource allocation in communication networks. The study introduced
an adaptively adjusted entropy coefficient through the principle of maximum strategy
entropy. Then, research was conducted to enhance the search for resource allocation strate-
gies and accelerate convergence. In addition, the research transformed resource allocation
problems into Markov decision processes and output allocation plans by constructing an
allocation strategy network (SN). Experiments showed that the improved DDPG algorithm
could significantly address the problem of source allocation in relevant networks. Relative
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to other methods, this algorithm has faster speed and more stable training process. Li and
Yu [8] proposed an adaptive controller for better controlling the air flow rate of fuel cells.
This controller is used to control the air flow. Based on the DDPG algorithm, a multirole
exploration optimization DDPG algorithm was proposed and named MESD-DDPG. The
explorers in this algorithm have different exploration principles to improve exploration
efficiency. The presented MESD-DDPG algorithm also treats the PI coefficient in the control
target. In the experimental results, compared to traditional DDPG controllers, MESD-DDPG
controllers showed higher performance and better applicability. Yang et al. [9] proposed
a new reconfigurable intelligent surface assisted downlink transmission framework. The
research introduced an object migration automation algorithm for the long-term stochastic
optimization problem. This algorithm divides users into equal-sized clusters. In addition,
to optimize the matrix, the DDPG algorithm was used to synergistically control multiple
reflection elements. Unlike traditional algorithmic models, a long-term self-tuning learning
model was designed to automatically explore and learn the best actions for each state. A
large amount of experimental simulation data showed that the reconfigurable intelligent
surface-assisted downlink transmission framework proposed by the research institute
increased the data transmission rate compared to traditional orthogonal multiple access
frameworks. In addition, the DDPG algorithm proposed in the study enables the model
to dynamically allocate resources in a long-term learning manner. Parvin et al. [10] found
that the meaning of building energy management (EM) becomes gradually essential in
global emissions and climate change issues. Building EM can reduce overall electricity
bills and carbon emissions for residents and has a positive impact on both residents and
the environment. The study reviewed traditional methods in this area, highlighting their
advantages and disadvantages. It also evaluated aspects such as comfort management and
other related issues, outlined the application of different relevant algorithms in constructing
EM, and discussed the roles of controllers and related algorithms in constructing EM. This
study discussed existing methods to determine future research directions. The study pro-
vides a reference for optimizing building EM. Feng et al. [11] used an improved algorithm
to build an optimization model to optimize the structural characteristics and building shape
of the furnace. The energy simulation of the entire architectural model was completed
using RIUSKA software, and the Manta Ray Forging Optimizer algorithm was utilized to
implement adaptive optimization. The simulation indicated that the method had more
excellent simulation performance compared to traditional particle swarm optimization
algorithms. In addition, the trapezoidal and matrix structures in building structures could
be optimized to minimize energy calculation errors. Lal et al. [12] proposed the use of the
autonomous particle swarm optimization algorithm to optimize the stability of wind power
generation energy systems. The stability problem was transformed into the optimization
problem in the autonomous particle swarm optimization algorithm. The eigenvalues of
target work such as damping ratio were established and visualized. The research compared
the control performance of the autonomous particle swarm optimization algorithm and the
particle swarm optimization algorithm and verified the feasibility of the method.

In the literature provided, various studies have focused on optimization techniques in
different domains, such as communication resources, airflow control in fuel cells, down-
link transmission frameworks, building energy management, and wind energy systems.
Notably, there has been an emphasis on deep reinforcement learning, particularly using
DDPG algorithms, and autonomous particle swarm optimization algorithms. However,
there seems to be a gap in the application of these advanced optimization techniques by
specifically tailoring to the technical aspects of smart elderly care communities (SECCs)
and energy management systems (EMSs). Most studies have focused on their respective
domains without an explicit application or consideration of the unique requirements and
challenges in optimizing energy management in smart elderly care environments. This
highlights a need for research that is dedicated to leveraging these optimization techniques
to address the specific constraints and requirements in SECCs and EMSs. In summary,
many studies have shown that the DDPG algorithm has the characteristics of good adapt-
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ability, superior performance, simple operation, and easy control. Therefore, compared
with other deep learning algorithms, the DDPG algorithm has been widely used in various
fields of adaptive optimization problems [13,14]. Adaptive optimization of the ES is crucial
for achieving low-carbon living and reducing greenhouse effects. In current ES research,
most scholars have limited themselves to optimizing the mechanical structure of the system.
Therefore, they have overlooked the fact that adaptive optimization can also introduce new
intelligent algorithms for enhancing the intelligence level of the ES and better meet the
needs of users. Based on this background, this study will improve the DDPG algorithm
in deep learning models and apply the improved model for adaptive optimization of
intelligent building ESs. This is expected to provide new ideas for energy saving design
of ESs.

3. Smart Elderly Care Community Building Energy System Design
3.1. Building Energy System Model Construction for Smart Elderly Care Community

As comprehensive buildings, SECC buildings also have a comprehensive ES compo-
sition. In the integrated ES of intelligent buildings, various energy devices often achieve
collaborative control and energy coupling between various energy sources through mutual
cooperation. This further improves energy utilization efficiency and promotes renew-
able energy utilization [15,16]. The internal composition of the ES in SECC buildings is
showcased in Figure 1.
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Figure 1. Integrated energy system in smart elderly care community buildings. 
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photovoltaic cells (PCs) and wind turbines, which can generate various types of energy. 
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into natural gas through an electric to gas conversion device (P2G). Electric energy can 
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Figure 1 illustrates the comprehensive ES in SECC buildings. The entire comprehensive
ES is separated into four parts: energy production (EP), energy conversion (EC), energy
storage (EST), and energy consumption [17]. The EP part mainly consists of the power grid
and gas grid. The power grid includes renewable energy installations, such as photovoltaic
cells (PCs) and wind turbines, which can generate various types of energy. For example,
natural gas can generate heat and electricity, while electricity can generate cold and gas
energy. The EC part mainly involves the conversion of various sources through various
electrical equipment [18]. For example, electrical energy can be converted into natural gas
through an electric to gas conversion device (P2G). Electric energy can also be converted into
cold energy through an electric refrigerant. In a complex building system, it is necessary to
use equipment such as electric to gas (P2G), electric refrigeration (ER), gas turbine (GT), gas
boiler (GB), waste heat boiler (WHB), etc. to complete system power supply and EC. This
can achieve energy complementarity and tiered utilization of multiple intelligent building
ES. Recently, intelligent building energy systems have been equipped with multiple energy
storage systems. To facilitate energy calculation, this study only considers the energy
storage scenario of electric energy storage (EES) and is therefore not suitable for distributed
storage [19]. Electric EST, as a backup energy source for the electrical ES, can not only absorb
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excess energy in the building ES but also provide timely energy supply when the system
needs energy. The energy consumption part mainly refers to the energy consumption
demand of various electrical and energy-consuming equipment within the building system.

In real life, the ES of intelligent buildings often have complex structures and numerous
parameters. Therefore, there are also significant fluctuations in load demand at different
times. Therefore, to achieve adaptive optimization of the final building ES, this study first
elaborates on the mathematical models of various energy supply and EST equipment in
the building ES. As one of the energy supply devices, the power output formula of PCs is
shown in Equation (1) [20].

PPV
t = PSTC

GT
GSTC

(1 − K(θC − θτ)) (1)

In Equation (1), PPV
t represents the output power (OP) of the PC at different times, and

PSTC represents the maximum OP of the PC under standard test conditions. The standard
test conditions refer to the ambient temperature of 25 ◦C and solar radiant intensity of
1000 W/m2. GSTC and GT represent standard light intensity and solar radiant intensity,
respectively; K represents the coefficient of power temperature change, with a fixed value
of −0.47%/◦C taken in this study; and θC and θτ represent the surface temperature and
standard temperature of the PC, respectively.

θC = θH + 30
GT

1000
(2)

Equation (2) is the calculation formula for the surface temperature of PCs. θH repre-
sents the ambient temperature.

PWT
t =


0 vco < v < vci

0.5ρAv3Cp vci ≤ v < vr

PWT
max vr ≤ v ≤ vco

(3)

Equation (3) is the calculation formula for the OP of the fan. PWT
t represents the OP

of the fan at time t; vco, vr, and vci represent the cut-out, rated, and cut-in wind speeds
of the fan, respectively; A represents the swept area; and Cp represents the wind EC
coefficient with a value of 0.4. ρ is the density of air, and the density value under standard
environmental conditions is 1.29 kg/m3.

VP2G
t =

ηP2GPP2G
t

Hgas
(4)

Equation (4) is the calculation formula for the amount of natural gas generated by the
electric to gas equipment. VP2G

t represents the natural gas content generated by the electric
to gas conversion equipment at time t, PP2G

t represents the relevant power consumed
by the electric to gas equipment at time t, ηP2G is the EC efficiency of the electric to gas
equipment, Hgas represents the thermal energy generated by a unit of natural gas with a
value of 9.7 kWh/m3.

HGB
t = VGB

t ηGBHgas (5)

Equation (5) is the calculation formula for the heat generation power (HGP) of GB. HGB
t

represents the HGP of the GB at time t, VGB
t represents the natural relevant consumption

of the GB at time t, and ηGB is the heating efficiency.

QEC
t = PEC

t ηEC (6)

Equation (6) is the calculation formula for the cooling power of an electric refrigerator
(ER). QEC

t represents the ER’s cooling power at time t, PEC
t represents the power consump-



Processes 2023, 11, 2155 6 of 18

tion of the ER at time t, and ηEC is the cooling efficiency. Gas-fired boilers (GB) can be
combined with GT to form a combined thermal power plant (CHP). The cogeneration unit
can meet the electrical and thermal load requirements of the entire building ES.

PGT
t = VGT

t HgasηGT (7)

Equation (7) is the calculation formula for the power generated by gas turbines (GT).
PGT

t represents the power generated by the GT at time t, VGT
t represents the natural gas

consumption of the GT at time t, and ηGT represents the power generation efficiency.

HGT
t = PGT

t
1 − ηGT − εGT

ηGT
(8)

Equation (8) is the thermal energy calculation formula for GT. HGT
t represents the

thermal energy generated by the combustion of natural gas for power supply by the GT at
time t, and εGT serves as the heat loss coefficient.

HWHB
t = HGT

t ηWHB (9)

Equation (9) is the calculation formula for heat generation of waste heat boilers. HWHB
t

represents the heat generated by the waste heat boiler using waste heat at time t, and ηWHB
represents the heating efficiency of the waste heat boiler.

EEES
t = (1 − aEES)EEES

t−1 +

(
ηEES

in PEES
t,in −

PEES
t,out

ηEES
out

)
∆t (10)

Equation (10) is the mathematical model of electric EST equipment [21]. EEES
t serves

as the electrical energy stored in the electrical EST device at time t; ηEES
in and ηEES

out represent
charging and discharging efficiency, respectively; PEES

t,in and PEES
t,out represent the charging

and discharging power of the electric EST device at time t, respectively; and aEES represents
the electrical energy loss coefficient.

Through the above mathematical model, a complete intelligent elderly care community
building ES can be built [22]. In the control and optimization of energy systems, model
predictive control (MPC) and RL are both popular methods. However, in smart retirement
community building energy systems, RL has better adaptability and robustness due to
the uncertainty and dynamics of the processing environment. Therefore, this study uses
reinforcement learning to build a relevant model in order to perform adaptive optimization
of the energy system. The basic idea of reinforcement learning is to acquire optimal action
strategies through mutual learning between intelligent agents and the external environment.
In reinforcement learning, if the state of an agent at a certain moment is only related to
the state of the previous moment, the corresponding learning state at that moment is
considered to satisfy Markov properties. If the entire learning process satisfies Markov
properties at all times, then the learning process is called a Markov process.

Figure 2 indicates the interaction in the intelligent agent and the external environ-
ment in the Markov process. The goal of intelligent agents interacting with the external
environment is to obtain the maximum cumulative reward. Therefore, in general, actions
at a certain moment do not affect the final cumulative result, and the model can modify
long-term rewards by changing subsequent strategies [23]. Markov processes can describe
almost all problems and have good universality. However, as the dimension of the state
space is high, intelligent algorithms still need to be introduced to compensate for the
shortcomings of this method in dealing with high dimensional state and continuous space
problems.
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Figure 3 indicates the general framework of the actor–critic (AC) algorithm. This
algorithm has fast training speed, small estimation variance, and high sample utilization.
This study takes it as a general framework and ultimately uses the DDPG algorithm under
the AC framework for addressing the model.
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3.2. Research on Adaptive Optimization of Intelligent Building Energy Systems Based on the
DDPG Algorithm

Currently, most of the optimization methods proposed for the uncertainty of dual
supply and demand in intelligent buildings rely on the accuracy of modeling the uncer-
tainty of renewable energy OP and load. It is difficult to accurately account for the load
fluctuations in actual situations, and it does not take into account the thermal comfort of
internal users in the building. Based on this current situation, this study considers the
relationship between more random variables in the ES of intelligent buildings and the
thermal comfort needs of internal users. This study uses Markov decision processes to
jointly model various energy and thermal comfort demand problems and solves the model
using the DDPG algorithm under the AC framework [24].

This research uses the DDPG algorithm of deep reinforcement learning to solve the
optimization problem in the energy system of intelligent buildings, especially considering
the uncertainty of bilateral supply and demand and the thermal comfort of users inside
the building. The decision variable type is a continuous real variable, which includes
environmental state inputs such as photovoltaic output, wind power output, and electricity
load demand. The constraints include boundary constraints, such as upper and lower
limits for thermal and cold energy outputs, and inequality constraints. In addition, this
study also takes into account the operating efficiency constraints of the equipment, user
thermal comfort requirements, and power quality limitations [25]. To simplify the com-
putational complexity of the ES, this study assumes that the thermal energy in intelligent
buildings is provided by gas turbines (GT) and waste heat boilers (WHB), while the cold
energy is provided by ER. Both thermal and cold energy are only used to regulate the
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indoor temperature of buildings to ensure thermal comfort for users, and there is no other
consumption of thermal and cold energy. The above assumption is to ensure that there is
only a single heating or cooling load demand in intelligent buildings.

Tin
t = Tin

t−1e−
1

RCair +
(

REair
t + Tout

t

)(
1 − e−

1
RCair

)
(11)

Equation (11) represents the simplified thermodynamic mathematical model of intel-
ligent buildings [26]. Tin

t and Tout
t represent the indoor and outdoor temperatures of the

building at time t, respectively; R serves as the equivalent thermal resistance of materials in
a certain area inside the building; and Cair represents equivalent heat capacity; Eair

t serves
as the heat supply of the area at time t. If Eair

t > 0, it indicates the input of thermal energy
and the temperature of the area will increase accordingly. If Eair

t < 0, it indicates that the
input of cold energy will cause the temperature of the area to decrease accordingly. By
increasing or decreasing the temperature, the user’s thermal comfort is ensured.

In the ES of intelligent buildings, the indoor temperature at the next moment is only
related to the current indoor temperature, outdoor temperature, and equipment operation.
The operating state of the system at the next moment is only related to the system status
and equipment operation at the previous moment. Therefore, Markov decision processes
can be used to jointly model and solve user thermal comfort problems with an intelligent
building ES.

M = (S, A, P, R, γ) (12)

Equation (12) describes the Markov decision mathematical process used by the research
institute [27]. S, A, P, and R represent the environmental state set, action space set, state
transition matrix, and reward function, respectively, and γ represents the discount factor.
The relevant process in the intelligent building ES agent and the external environment is
shown in Figure 4.
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In Figure 4, the agent learns the optimal learning action strategy by continuously
interacting with the external environment. In this study, the intelligent building ES is the
interactive environment for intelligent agents. The information that can be exchanged
includes the OP of the device, the OP of renewable energy, the status of electrical EST,
indoor and outdoor temperatures, load demands, etc. In Figure 4, t represents the time, St
represents the current environmental status information received by the intelligent agent at
time t, at serves as the execution action at time t, and rt serves as the reward at moment
t. Through continuous learning, intelligent agents can maximize cumulative rewards and
make optimal strategies.

The indoor temperature and OP of various equipment are influenced by various
factors. Therefore, it is difficult to accurately describe the changing data using the state
transition probability matrix. For continuous state space and action space problems, the
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DDPG algorithm is studied for optimization. The relevant framework structure is indicated
in Figure 5.
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Figure 5 indicates the DDPG algorithm includes four parts: environment, experience
pool, SN, and value network (VN). In the SN, there are mainly three parts: strategy gradient,
main SN, and target SN. In the VN, there are mainly three parts: loss function, main VN,
and target VN. In the DDPG algorithm, the SN and VN are used to approximate the strategy
function and value function, respectively. To prevent fluctuations in the learning process of
the network due to parameter updates, a target network was set for the SN and the VN,
and the learning reward value was ultimately obtained through the target network.

Figure 6 demonstrates the related structure diagram in the DDPG algorithm. Figure 6
illustrates that the entire policy network includes one input layer (IL), two hidden layers,
and one output layer. The input of the algorithm is the environmental state, including
photovoltaic output, wind power output, and electrical load demand. The output is an
action waiting to be executed. The input data comes from the data generated by EnergyPlus
software to simulate the operation of intelligent buildings, including power load demand,
outdoor temperature, wind speed, solar radiant intensity, etc. After the intelligent agent
executes an action, the environment generates a state transition and receives corresponding
reward values. By continuously training the SN, the final execution action can no longer add
noise and ultimately achieve a predetermined effect. This study selected the environmental
status of a smart elderly care community building energy system, including photovoltaic
output, wind power output, and electrical load demand, for training. Environmental state
parameters were collected from historical records of the energy system. By analyzing these
historical data, we could understand their distribution characteristics and randomly sample
them to simulate various environmental conditions.

Figure 7 showcases the structure diagram of the VN in the DDPG algorithm. Figure 7
depicts that the basic structure of the VN is similar to that of the SN, but the input terms
of its IL are no longer limited to the OP and environmental parameters of each device.
It also includes the execution actions of the policy network output. The output of the
VN obtained through continuous training is a set composed of execution actions and
environmental parameters. It uses Markov decision-making and DDPG algorithm to
optimize the mathematical model of the ES built above and observes and analyzes the
effectiveness of adaptive optimization of the ES.
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4. Analysis of Adaptive Optimization Results for Building Energy Systems Based on
the DDPG Algorithm
4.1. Algorithm Performance Analysis

To simulate the stochasticity of the parameters of the intelligent building thermal
dynamics model, this study assumed that the model parameters follow Gaussian distribu-
tion. The initial temperature and appropriate temperature were set to 21 ◦C, the minimum
indoor temperature was 18 ◦C, the maximum indoor temperature was 24 ◦C, the thermal
discomfort penalty factor was 1 CNY/kW, the environmental interaction and learning ratio
was 6, the discount factor was 0.95, and the capacity of the experience pool was 5000. The
remaining relevant experimental parameters are shown in Table 1.
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Table 1. Experimental parameters and their values.

Parameter Numerical Value

Building thermal-equivalent resistance N~(18, 0.5)
Building thermal-equivalent capacitance N~(0.525, 0.1)

Overlay noise N~(0.5, 0.2)
Explore factors U~(0, 1)

Value network learning rate 1.00 × 10−04

Number of hidden layer neurons of the value network [300,600,600,300]
Policy network learning rate 1.00 × 10−04

Number of hidden layer neurons in the policy network [300, 600]
Target network update factor 1.00 × 10−03

Initial proportion of the superimposed noise 1
Superimposed noise decay factor 0.997

Superlay noise proportion minimum 0.05

To demonstrate the merits of the DDPG algorithm, the public UMass Smart Dataset
from Massachusetts Institute of Technology was selected for testing. This dataset includes
various senior living community buildings, daily household electricity load requirements,
indoor and outdoor temperatures, and related environmental data. In this study, it was
divided into training and testing datasets, and simulation experiments were completed on
the MATLAB experimental platform to analyze the performance of different algorithms in
the same dataset.

Figure 8 depicts the relevant curves of different algorithms under different rewards.
Figure 8a depicts the relevant curve of the traditional DDPG algorithm under single
reward and average reward. As the number of episodes increases, the single reward
curve and average reward curve of the DDPG algorithm show a continuous upward
trend. Before 200 episodes, the algorithm experiences significant fluctuations, and as the
number of episodes increases, the fluctuation range of the algorithm gradually decreases.
Figure 8b demonstrates the iterative convergence curves of the traditional Deep Q Network
(DQN) algorithm under single and average rewards. As the number of episodes increases,
the single reward curve and average reward curve of the DQN algorithm also shows a
continuous upward trend. However, relative to the DDPG algorithm, the fluctuation of
the DQN algorithm is larger in amplitude and frequency. This depicts that the DDPG
algorithm has better stability.
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Figure 8. Reward convergence iterative curves of DDPG and DQN algorithms. Figure 8. Reward convergence iterative curves of DDPG and DQN algorithms.

Figure 9 showcases the variation of the improved exploration mechanism curves for
different algorithms. Figure 9a showcases that as the number of episodes increases, both the
DDPG algorithm and the DQN algorithm under the AC framework show an upward trend.
Compared to traditional DDPG algorithms, the improved DDPG algorithm based on the
AC framework can achieve faster convergence and has better stability. When the number of
episodes of the model is 200 times, the DDPG algorithm under the AC framework begins
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to reach a stable reward state, with a reward value of −1186. Figure 9b indicates that as
the number of episodes increases, both the DQN algorithm and the DQN algorithm under
the AC framework show an upward trend. Compared to traditional DQN algorithms, the
improved AC framework based on the DQN algorithm has better stability and convergence.
When the number of episodes of the model is 200 times, the algorithm begins to converge.
The reward value of the DQN algorithm under the AC framework when it reaches a stable
reward state is −1182. In addition, the DQN and the DQN under the AC framework have
more fluctuations and poor stability relative to the DDPG and the DDPG algorithm under
the AC framework.
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Figure 10 showcases the improved experience playback curves under different al-
gorithms. Figure 10a showcases that with an experience pool, the DDPG algorithm can
begin to stabilize after 400 episodes. When no experience pool is set, the DDPG algorithm
begins to stabilize at 85 episodes. Comparing the two, it can be seen that not setting an
experience pool can accelerate the convergence of the model and enable it to converge
to a stable reward state as soon as possible. However, as the episodes progress, models
without an experience pool begin to experience fluctuations, and their stability is poorer
compared to models with an experience pool. In summary, adding an experience pool
during model training can make the convergence process of the algorithm more stable.
Figure 10b showcases that with an experience pool, the DQN can begin to stabilize after
600 episodes. When no experience pool is set, the DDPG algorithm begins to stabilize at
70 episodes. In an environment without an experience pool, compared to the DDPG, the
fluctuation amplitude of the DQN algorithm is greater. In summary, the analysis of the
results in Figures 8–10 fully demonstrates that the stability and convergence of the DDPG
algorithm are better than the other commonly used deep learning algorithm DQN.
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Figure 11 depicts the related curves of the improving DDPG algorithm under various
conditions. Condition 1, 2, and 3 in Figure 11 refer to coefficients of 4, 8, and 12 for
environmental interaction and learning ratio, respectively. Figure 11 depicts that when
the coefficient of environmental interaction and learning ratio is small, the improved
DDPG algorithm under the AC framework can achieve faster convergence and stable
reward values. When the coefficient of environmental interaction and learning ratio is
large, the improved DDPG algorithm under the AC framework requires more training to
complete convergence. When the number of network training reaches about 1200, the final
convergence of the improved DDPG algorithm with large coefficients is worse than that
with small coefficients.
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4.2. Application Effect Analysis

To further demonstrate that the improved DDPG algorithm under the AC framework
can jointly optimize the ES of intelligent buildings and user thermal comfort, the study
selected daily load data, temperature data, etc. in the above test dataset and performed
optimization testing using SN and VN. Considering the significant temperature difference
between different seasons, the study first divided the entire year into two parts: the heating
season and the cooling season. Then, this study analyzed the load changes, wind power
output (WPO), and photovoltaic output (PO) during the heating and cooling seasons.

Figure 12 depicts the load changes under different conditions. Figure 12a depicts
that as the average daily usage time increases, the intelligent building system has almost
no cooling load demand during the heating season, while the demand for electricity and
heating loads depicts a constantly changing trend. Figure 12b depicts that as the average
daily usage time increases, the intelligent building system has almost no heating load
demand during the cooling season. The total demand for electricity and heating loads
shows a continuous upward trend.
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scheduling cycle of the ES is between 0:00 and 8:00, the PO of the system is 0, and only the 
WPO is used to provide the energy required by users. When the scheduling cycle of the 
ES is between 9:00 and 15:00, the energy supply of the system is jointly provided by PO 

Figure 12. Variation of load under different conditions.

Figure 13 indicates the changes in WPO and PO under different conditions. Figure 13a
indicates that as the average daily usage time increases, the WPO of the intelligent building
system during the heating season indicates a continuous upward trend, while its PO
indicates a continuous downward trend. Figure 13b indicates that as the average daily
usage time increases, the WPO and PO of the intelligent building system change during
the cooling season. The PO is 0 both before and after 5 h of daily use but indicates a trend
that first increases and then decreases in the middle. The WPO fluctuates between 20 and
70 kW. From Figures 12 and 13, it can be observed that seasonal changes have an essential
influence on the ES of intelligent buildings. The electricity load, cooling load, heating load,
PO, and WPO vary in different seasons.
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Figure 14 illustrates the power supply and consumption of the intelligent building
ES optimized by the improved DDPG algorithm. Figure 14a illustrates that when the
scheduling cycle of the ES is between 0:00 and 8:00, the PO of the system is 0, and only the
WPO is used to provide the energy required by users. When the scheduling cycle of the
ES is between 9:00 and 15:00, the energy supply of the system is jointly provided by PO
and WPO. After 15:00, the system is powered by WPO. Figure 14b illustrates that when the
scheduling period of the ES is between 0:00 and 20:00, the electrical load demand of the
system is between −50 and −150 kW. The electrical energy provided by the system at each
stage can basically meet the thermal comfort needs of users.
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The accuracy of adaptive regulation of intelligent building energy systems is shown 
in Figure 16. Figure 16a shows the comparison of control accuracy for temperature sys-
tems. From the graph, it can be seen that the average accuracy of DQN regulation is 
81.42%, the average accuracy of DDPG regulation is 88.23%, and the average accuracy of 
improved DDPG regulation is 98.45%. Compared to DQN and DDPG, the improved 
DDPG algorithm has a significant increase in regulation accuracy, which confirms its 
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Figure 15 illustrates the heating and heat consumption situation of the intelligent
building ES optimized by the improved DDPG algorithm. Figure 15a illustrates that when
the scheduling period of the ES is between 0:00 and 9:00, the user’s heat load demand
is basically met by the GB. Waste heat boiler (WHB) produces almost no new thermal
energy. When the scheduling cycle of the system is after 9:00, the waste heat boiler begins to
generate a large amount of thermal energy for satisfying the thermal comfort requirements
of users. This is because of the continuous generation of electricity by GT, accompanied by
a large amount of heat generation being recycled by WHB to satisfy the user’s needs.
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The accuracy of adaptive regulation of intelligent building energy systems is shown
in Figure 16. Figure 16a shows the comparison of control accuracy for temperature sys-
tems. From the graph, it can be seen that the average accuracy of DQN regulation is
81.42%, the average accuracy of DDPG regulation is 88.23%, and the average accuracy of
improved DDPG regulation is 98.45%. Compared to DQN and DDPG, the improved DDPG
algorithm has a significant increase in regulation accuracy, which confirms its superiority
in temperature adaptive regulation of intelligent building energy systems. Figure 16b
shows the comparison of regulation accuracy for the power system. From the graph, it can
be seen that the average accuracy of DQN regulation is 78.11%, the average accuracy of
DDPG regulation is 87.66%, and the average accuracy of improved DDPG regulation is
96.09%. Compared to DQN and DDPG, the improved DDPG algorithm has significantly
improved the accuracy of power system regulation, verifying the effectiveness of this study.
In summary, the improved DDPG algorithm used in this study can take into account the
interaction between various parameters in the building dynamics model, thus achieving
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the goal of adaptive optimization. It can also consider the thermal comfort needs of users
while meeting the energy supply goals of the system.
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5. Conclusions

With the acceleration of population aging, the quality of life and health status of the
elderly are increasingly receiving social attention. This research used the DDPG algorithm
with deep reinforcement learning to solve the optimization problem of smart building
energy systems and specifically considered the uncertainty of bilateral supply and demand
as well as the thermal comfort of users inside the building. In addition, the study considered
the environmental state input as well as several constraints such as the operational efficiency
constraints of the equipment and the thermal comfort demand of the users so as to achieve
optimization of the smart building energy system in a practical and complex scenario. The
outcomes indicate that the DDPG algorithm has a large fluctuation range before 200 training
sessions. As the quantity of training grows, the fluctuation range of the algorithm gradually
diminishes. When the coefficient of environmental interaction and learning ratio is 4, the
improved DDPG algorithm can converge by iterating 60 times, and the stable reward
value in the convergence state is −996. Compared with the DQN algorithm, the DDPG
algorithm has better stability and convergence. By applying the DDPG algorithm to
adaptive optimization of building ES, it was found that there are differences in system
load changes, WPO, and PO during the heating and cooling seasons. This study analyzed
the power supply and consumption of intelligent building ES optimized by the improved
DDPG algorithm. When the scheduling cycle is between 0:00 and 8:00, the PO is 0, and the
WPO is within 50 kW. When the scheduling cycle is between 9:00 and 15:00, the system is
powered by a combination of the two. When the scheduling period is after 15:00, the PO
becomes 0 again, but the WPO is within 100 kW. When the scheduling cycle is between
0:00 and 9:00, the user’s required heat load demand is supplied by GB, and the GB range
is within 120 kW. When the scheduling cycle is after 9:00, GT and GB jointly supply the
user’s thermal demand. In summary, the DDPG algorithm used in this study has a good
adaptive optimization effect in smart building energy systems. However, due to the limited
conditions, the study is not a practical experiment on real buildings, so the study is only
for reference purposes. Improving the reliability of the study will be the main topic in
the future. Future research can explore the robustness of DDPG under various climatic
conditions and design strategies to achieve the best performance in different environments.
In addition, future research should also explore the application of model predictive control
(MPC) and RL in the optimization of energy systems in smart buildings and further analyze
the advantages and disadvantages of both.
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