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Abstract: The performance of the centrifugal compressor, which is the main component of the electric
supercharger, significantly impacts the engine’s dynamics, economy, emissions, and responsiveness.
The purpose of this paper is to enhance the aerodynamic performance of the centrifugal compressor
of the electric supercharger for the two-stroke engine by optimizing the design of its impeller and
diffuser parameters. The paper employs the numerical simulation method and applies the Spalart–
Allmaras turbulence model to solve the RANS equations to analyze the impact of impeller-related
parameters on the centrifugal compressor’s performance. Subsequently, the paper optimizes the
initial model parameters based on the simulation results and confirms its performance through an
experiment. The findings indicate that enhancing the isentropic efficiency and pressure ratio of
the compressor can be achieved by increasing the number of blades on the impeller, selecting an
appropriate blade backward angle, and increasing the relative outlet width. After optimization, the
compressor’s efficiency can achieve 0.842, the pressure ratio can reach 1.49 with a working margin of
22%, and the efficiency is enhanced by 1.4%, while the pressure ratio is increased by 1.8% compared
to the pre-optimization state. Moreover, the optimized model is experimentally validated to meet the
design requirements.

Keywords: centrifugal compressor; electric supercharger; numerical simulation; optimized design;
experimental verification

1. Introduction

With the continuous development of general aviation, small unmanned aerial vehicles
(UAV) gradually emerging, two-stroke engines with low fuel consumption, low failure rate,
low noise, and light mass are widely used [1]. Compared with the traditional turbocharger,
the electric supercharger can improve the combustion quality of the engine and reduce the
emission of smoke and fuel consumption rate, which has a certain effect on environmental
protection. Moreover, it can improve the engine dynamics, especially in the low-speed and
high-torque operating conditions [2–7].

Centrifugal compressors, as the main components of electric pressure intensifiers, are
characterized by small size, simple structure, and high boost ratio, and their main structures
are the diffuser, impeller, and worm housing [8]. The design of the diffuser and impeller
has an essential impact on the performance of the pressurizer, so the current research on the
pressurizer is mainly reflected in the analysis and optimization of its implementation [9–13].
The diffuser increases the pressure of the compressed medium and reduces the medium’s
velocity through the expansion of the flow channel. The bladeless diffuser is widely used
in compressors because of its simple structure, good adaptability, and wide working range
compared to the vane diffuser [14]. Seralathan and Roy analyzed the effect of the bladeless
diffuser on the compressor performance by numerical simulation: when the diffuser flow
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angle is small, the flow path length is shorter, the impeller friction loss is reduced, and
the compressor efficiency is increased [15]. Chen et al. used the method of appropriately
increasing the bladeless area, which can significantly reduce the separation loss and make
the flow velocity at the impeller outlet and diffuser inlet uniform, which improves the
performance of the compressor [16]. Ma and Li reduced the solidity of the blade diffuser
and slotted the hub side of the diffuser impeller, which can make the compressor more
efficient [17]. Gunadal and Govardhan investigated the relationship between blade angle
and compressor performance in a bladed diffuser, and, when the diffuser blade tilt was 6◦,
the stall margin and operating range were improved, and the compressor pressure ratio
was also increased [18].

The impeller also has an important impact on the performance improvement of the
compressor, so a lot of research work has been carried out by scholars in the design op-
timization of the compressor [19–22]. Li et al. studied a set of high-speed compressor
impellers with different geometries and analyzed the secondary flow model, where the ra-
tio of impeller inlet diameter to outlet diameter has an effect on the impeller flow uniformity,
which, in turn, affects the compressor efficiency [23]. Yang et al. modified the hub align-
ment to investigate the effect of hub curvature on the performance of the compressor [24].
Hong et al., through numerical simulations of a centrifugal compressor for a hydrogen-
powered fuel electric vehicle, found that the generation of leaf top leakage, hub separation,
and horseshoe vortex structure determined the degree of the aerodynamic performance of
the centrifugal compressor [25]. Jaatinen-Värri et al. studied that impellers with different
top clearance and spreading width, and found that increasing the top clearance can signifi-
cantly increase the reverse flow in the impeller, which will mix with the top clearance flow,
leading to a reduction in impeller wake loss and an increase in compressor efficiency [26].

This article makes the following contributions: (1) Designing a centrifugal compressor
for the electric turbocharger by exploring the internal flow field of the compressor through
numerical simulations of the initial model; (2) Analyzing the impact of impeller blade
number, relative outlet width, and impeller backbend angle on compressor performance
and optimizing the initial model to determine whether optimized performance is improved
over initial performance; (3) Experimentally verifying whether the optimized compressor
performs according to the design requirements.

The main sections of this article are as follows. Section 2 introduces the theoretical
foundation of numerical simulation and formulates the initial model of the compressor.
Section 3 analyzes the effects of the impeller blade number, relative outlet width, and
impeller backbend angle on the compressor’s performance and flow field, evaluating
the optimized compressor model. Section 4 outlines the experimental procedure, while
Section 5 outlines the main conclusions of the research.

2. Centrifugal Compressor Modeling and Numerical Simulation

This chapter introduces the theoretical background of compressor numerical sim-
ulation and presents the procedures for designing a compressor model, grid division,
discretization, and performance analysis. The factors affecting the compressor performance
are investigated.

2.1. Numerical Simulation Theory

Numerical simulation methods [27] allow accurate and efficient analysis of the flow
and heat transfer in the compressor model. In this paper, the numerical calculations
are mainly performed using the Euranus solver in FineTurbo, and the Spalart-Allmaras
equation turbulence model is selected to solve the RANS equations. The RANS equations
are obtained by Re averaging the conventional mass conservation equation, momentum
conservation equation, and energy conservation equation, where the mass conservation
equation is expressed as:

∂ρ

∂t
+

∂(ρVi)

∂xi
= 0, i = 1, 2, 3 (1)
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where ρ is the fluid density; t is the time; xi is the spatial coordinate position; i is the three
directions in space; and Vi is the velocity in the direction.

The conservation of momentum equation is:

∂ρVi
∂t

+
∂(ρ

_____
ViVj)

∂xj
= − ∂p

∂xi
+

∂

∂xj
(ρv

∂Vi
∂xj

) +
∂

∂xj
(−ρVi

′Vj
′), i = 1, 2, 3, j = 1, 2, 3 (2)

where p is the combined pressure force acting on the fluid microcluster; v is the kinematic
viscosity coefficient of the fluid; m2/s; −ρVi

′Vj
′ is the Reynolds stress term; xi is the spatial

coordinate position; j denotes the three directions of space; Vi, Vj is the velocity of the fluid

microcluster in the xi, xj direction, respectively; and V’
i, V’

j is the velocity of the pulsating
mass in the xi, xj direction, respectively.

The conservation of energy equation is:

∂
(
ρE
)

∂t
+

∂
(
ρEVi

)
∂t

=
∂

∂xi
(λ

∂T
∂xi

) + SE, i = 1, 2, 3 (3)

where E is the total energy of the fluid microcluster; λ is the thermal conductivity; T is
the temperature; and SE is the energy source term. The finite difference method and finite
volume method are used to discretize the control method.

The SA turbulence model contains turbulent viscosity, generation, and dissipation terms.
The turbulent viscosity is:

vt = ṽ fv1 (4)

where ṽ represents is the Spalart-Allmaras variable [28], with fv1 expressed as follows:

fv1 =
χ3

χ3 + cv1
(5)

where χ is the ratio between the turbulent fluctuation velocity ṽ and the molecular viscosity
v. The turbulent fluctuation velocity ṽ is obtained from the following equation:

∂ṽ
∂t

+
→
V · ∆ṽ =

1
σ
{∆ · [(v + (1 + cb2)ṽ)∆ṽ]− cb2ṽ∆ṽ}+ Q (6)

where
→
V is the average velocity vector; Q is the source term, σ and cb2 is a constant. Q

consists of a generating term and a dissipative term, and the expression is as follows:

Q = ṽp(ṽ)− ṽD(ṽ) (7)

where
ṽp(ṽ) = cb1S̃ṽ (8)

ṽD(ṽ) = cw1 fw

(
ṽ
d

)
(9)

S̃ = S fv3 +
ṽ

k2d2 fv2 (10)

fv2 =
(1 + χ fv1)(1− fv2)

χ
(11)

fv3 =
(1 + χ fv1)(1− fv2)

χ
(12)
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where the expression of fw, g, and r are as follows:

fw = g(
1 + c6

w3

g6 + c6
w3

)

1
6

(13)

g = r + cw2(r6 − r) (14)

r =
ṽ

s̃κ2d2 (15)

where the constant term is shown below:

cw1 =
cb1

κ2 +
σ

(1 + cb2)
(16)

where cw2 = 0.3, cw3 = 2, cv1 = 7.2, cv2 = 5, cb1 = 0.1357, cb2 = 0.619, κ = 0.41, σ = 2
3 .

2.2. Compressor Modeling

As shown in Table 1, the design index of the centrifugal compressor is that the total
pressure ratio of the compressor is more significant than 1.4, the isentropic efficiency is
greater than 0.75, and the working margin is greater than 15% under the condition that the
speed is 70,000 r/min and the air mass flow rate is 0.027 kg/s. The design needs to meet
the above requirements.

Table 1. Impeller basic design parameters.

Parameters/Unit Value

Total inlet temperature/kPa 101.325
Total inlet pressure/K 288.15

Design speed/r ·min−1 7 × 104

Design flow rate/kg · s−1 0.027
Isentropic efficiency 0.75

Pressure ratio 1.4

This paper explores the design of the impeller and diffuser for centrifugal compressors.
The impeller inlet design [29,30] considers various parameters, such as rim diameter and
hub diameter. The impeller inlet rim diameter has an enormous impact on the performance
of the compressor. At the same mass flow rate, a smaller rim diameter can reduce the
hub diameter, which reduces the tip Mach number and plays a role in improving the
downstream flow field of the impeller; if the hub diameter is too large, the local Mach
number of the compressor will reach transonic velocity and generate surge phenomenon in
the leading-edge region of the blade, which, in turn, will produce flow separation. Impeller
outlet design [31,32] mainly considers impeller diameter, impeller outlet width, and outlet
blade angle. Increasing the impeller diameter significantly enhances its work capacity
and pressure ratio, but excessively enlarging it will increase the impeller’s circumferential
velocity, thereby affecting its safe operation. The impeller outlet width mainly affects the
impeller import and export speed ratio, and, if the impeller outlet width is too small, it will
lead to the top of the impeller and a significant increase in the impact of gap leakage. The
impeller outlet blade angle significantly affects the impeller’s aerodynamic performance.
The backward curved impeller sufficiently reduces the impeller outlet flow rate, regardless
of the subsequent stationary parts, which enhances its performance. Its conditions range
widely compared to the forward curved and radial impellers, and it also weakens the
strength of the secondary flow inside the impeller, which increases compressor efficiency.
Hence, this paper adopts the backward curved impeller.

This paper presents a bladeless diffuser, with the main focus on the ratio of the diffuser
diameter D3 to the impeller diameter D2, referred to as f 1. Studies indicate that a value
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of f 1 equal to 1 results in better diffuser performance; however, for this design, a value of
0.8 for f 1 is considered. Additionally, the ratio of the diffuser inlet width b1 to the impeller
outlet width f 2 is typically between 1 and 1.1. Thus, the value of f 2 is set to 1 in this design,
resulting in b1 being equal to the impeller outlet width for consistency.

According to the above requirements, the relevant geometric parameters of the com-
pressor are designed, and the results are shown in Table 2, which are input into the compal
to generate the meridional flow channel surface, as shown in Figure 1a. D1 is the impeller
inlet diameter, d is the impeller inlet hub diameter, D2 is the impeller outlet diameter,
b1 is the impeller outlet width, and D3 is the diffuser diameter. The designed 1D model is
imported into Axcent to generate a 3D model, as shown in Figure 1b.

Table 2. Impeller geometry parameters.

Parameters/Unit Value

Impeller inlet hub diameter d/mm 14
Impeller inlet diameter D1/mm 19

Impeller outlet diameter D2/mm 37
Leaf top clearance/mm 0.3

Blade back bending angle 45◦

Number of blades 7 × 7
Width of diffuser inlet/mm 2.8173
Diffuser diameter D3/mm 29
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Figure 1. Compressor model. (a) The meridional flow channel surface of the compressor; (b) Compressor
3D model.

2.3. Simulation Analysis

Figure 2 displays the grid partitioning diagram for the compressor in the
FINE/Turbo16.1 software. The boundary conditions are appropriately set, assuming
the working fluid to be an ideal gas. The inlet total pressure is set at 101.3 KPa, and the
inlet total temperature is set to 288.15 K. The turbulent viscosity is 0.00005 m2/s. The wall
condition is defined as adiabatic with no slip, and the compressor operates at a rotational
speed of 7 × 104 r/min in a rotating coordinate system. The convergence criterion for
residual values is set to 10−6. Different turbulence models have distinct thresholds for
the y+ value. For the S-A model, the y+ value must be less than 10 to directly solve the
viscous sublayer. To ensure precise capturing of the fluid state near the boundary, the
first-layer mesh near the wall has a size of 0.005 mm with a y+ value of 5. Three grid
models of varying coarseness, composed of 2,121,904, 1,881,016, and 1,526,405 grid cells,
respectively, are selected to verify grid independence. The following quality requirements
must be met: possess no negative cells, exhibit minimum orthogonality greater than 20◦,
demonstrate maximum expansion ratio less than 5, and display a maximum aspect ratio
less than 1000. Finally, the pressure ratio and efficiency errors for different grid models
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are maintained within 0.3%. Grid coarseness exhibits minimal influence on the calculation
results, as indicated in Table 3.
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Table 3. Grid independence verification.

Number of Grids Mass Flow/(kg·s−1) Pressure Ratio Isentropic Efficiency

2,121,904 0.27 1.421 0.815
1,881,016 0.27 1.419 0.812
1,526,405 0.27 1.409 0.81

According to the above simulation conditions for the flow field simulation of the
compressor model, its maximum flow rate is 0.0561, the wheezing flow rate is 0.0233,
the adiabatic efficiency is 0.828, and the pressure ratio is 1.46, so the performance of the
compressor meets the design requirements.

By analyzing the internal flow field of the centrifugal compressor, the deficiencies
in the performance of the compressor can be accurately explored so that the design of
the compressor can be optimized. Figure 3a displays the impeller meridional surface
static pressure diagram, where the gas converts kinetic energy into pressure energy by
overcoming the adverse pressure gradient in the diffuser flow. Figure 3b depicts the entropy
increase of the meridional surface and highlights the tip clearance and bladeless diffuser
as the primary regions of entropy gain. The tip clearance is mainly designed to prevent
the collision between the compressor blade and the shroud. Due to the pressure difference
between the blade suction and pressure surfaces, a portion of the fluid flows over the top
of the blade, forming a leakage flow that leads to a loss of flow and an increase in the blade
top entropy value. The bladeless diffuser has no blades, which eliminates impact loss.
However, it incurs primary losses due to friction and separation loss. The separation occurs
when the boundary layer lacks enough kinetic energy to convert pressure to overcome the
adverse pressure gradient.

In Figure 4a, the entropy distribution of the compressor is presented in the 95% and
50% blade height directions. The comparison between Figures 4a and 3b shows that the
larger entropy distribution is mainly observed on the suction surface of the main blade and
splitter blade. This phenomenon is caused by the large hub turning angle where the airflow
travels from the impeller inlet to the diffuser. During this process, the airflow needs to
reduce its flow velocity and convert kinetic energy to pressure energy to overcome pressure
gradients in the flow. However, a large pressure gradient results in a gradual decrease
in flow velocity in both the main flow region and the boundary layer. The gas flow in
the boundary layer, which has insufficient kinetic energy to overcome adverse pressure
gradients, leads to stagnation, deceleration of gas, and the generation of large flow loss in
the separation region. This results in reduced compressor efficiency. Figure 4b shows two
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separation regions on the suction surface of the blade with low gas flow velocities, leading
to significant flow loss, lower impeller efficiency, and lower pressure expansion capacity.
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3. Study of the Influence of Relevant Parameters on the Performance of
Centrifugal Compressors

Several factors influence the performance of a centrifugal compressor, including the
compressor’s tip clearance, hub ratio, number of impeller blades, impeller inlet angle,
circumferential position of the splitter blades, the impeller outlet width, and the backbend
angle of the blades. This paper focuses on the main optimized parameters, namely, the
number of impeller blades, the relative impeller outlet width, and the impeller backbend
angle. By examining the effects of these parameters on the centrifugal compressor’s
isentropic efficiency, pressure ratio, and flow rate, the impeller is optimized by selecting the
parameter values that enhance the compressor’s performance. Ultimately, the optimized
model is compared and analyzed with the preliminary model.

3.1. Number of Impeller Blades

The centrifugal compressor’s impeller blades’ number has a significant impact, albeit
not in a clear linear relationship. Therefore, specific analysis is necessary. This study used
7 × 7 blades in the initial model, and the number of blades was increased and decreased
in subsequent models, choosing two groups with 6 × 6 and 8 × 8 blades, respectively.
Figure 5 illustrates the efficiency and pressure ratio as influenced by the impeller blades’



Processes 2023, 11, 2132 8 of 18

number. From the figure, it is evident that the compressor with 8 × 8 blades performs
better than the others in the compressor’s working range, with an isentropic efficiency of
up to 83% and a corresponding pressure ratio of 1.477.

Processes 2023, 11, x FOR PEER REVIEW 8 of 18 
 

 

angle. By examining the effects of these parameters on the centrifugal compressor’s isen-
tropic efficiency, pressure ratio, and flow rate, the impeller is optimized by selecting the 
parameter values that enhance the compressor’s performance. Ultimately, the optimized 
model is compared and analyzed with the preliminary model. 

3.1. Number of Impeller Blades 
The centrifugal compressor’s impeller blades’ number has a significant impact, albeit 

not in a clear linear relationship. Therefore, specific analysis is necessary. This study used 
7 × 7 blades in the initial model, and the number of blades was increased and decreased 
in subsequent models, choosing two groups with 6 × 6 and 8 × 8 blades, respectively. Fig-
ure 5 illustrates the efficiency and pressure ratio as influenced by the impeller blades’ 
number. From the figure, it is evident that the compressor with 8 × 8 blades performs 
better than the others in the compressor’s working range, with an isentropic efficiency of 
up to 83% and a corresponding pressure ratio of 1.477. 

  
(a) (b) 

Figure 5. Isentropic efficiency and pressure variation curves for different number of blades. (a) Ee-
fect on isentropic efficiency; (b) Effect on pressure ratio. 
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with Figure 3b, it can be seen that, when the number of blades is 8 × 8, the entropy in-
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the compressor improved. 
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Figure 6 shows the distribution of entropy values at the impeller meridian surface for
the 6 × 6 and 8 × 8 impeller blades when the compressor efficiency is highest. Comparing
with Figure 3b, it can be seen that, when the number of blades is 8 × 8, the entropy
increasement at the tip clearance of the impeller is the smallest, and the energy loss of the
compressor compared with the other two cases is reduced, which makes the efficiency of
the compressor improved.

Processes 2023, 11, x FOR PEER REVIEW 8 of 18 
 

 

angle. By examining the effects of these parameters on the centrifugal compressor’s isen-
tropic efficiency, pressure ratio, and flow rate, the impeller is optimized by selecting the 
parameter values that enhance the compressor’s performance. Ultimately, the optimized 
model is compared and analyzed with the preliminary model. 

3.1. Number of Impeller Blades 
The centrifugal compressor’s impeller blades’ number has a significant impact, albeit 

not in a clear linear relationship. Therefore, specific analysis is necessary. This study used 
7 × 7 blades in the initial model, and the number of blades was increased and decreased 
in subsequent models, choosing two groups with 6 × 6 and 8 × 8 blades, respectively. Fig-
ure 5 illustrates the efficiency and pressure ratio as influenced by the impeller blades’ 
number. From the figure, it is evident that the compressor with 8 × 8 blades performs 
better than the others in the compressor’s working range, with an isentropic efficiency of 
up to 83% and a corresponding pressure ratio of 1.477. 

  
(a) (b) 

Figure 5. Isentropic efficiency and pressure variation curves for different number of blades. (a) Ee-
fect on isentropic efficiency; (b) Effect on pressure ratio. 

Figure 6 shows the distribution of entropy values at the impeller meridian surface for 
the 6 × 6 and 8 × 8 impeller blades when the compressor efficiency is highest. Comparing 
with Figure 3b, it can be seen that, when the number of blades is 8 × 8, the entropy in-
creasement at the tip clearance of the impeller is the smallest, and the energy loss of the 
compressor compared with the other two cases is reduced, which makes the efficiency of 
the compressor improved. 

  
(a) (b) 

Figure 6. Meridional surface mass entropy distribution with different number of blades. (a) Merid-
ional surface mass entropy (number of blades 6 × 6); (b) Meridional surface entropy distribution
(number of blades 8 × 8).

Figure 7 illustrates the relative Mach number distribution at 95% and 50% of the
blade height under different blade numbers. Specifically, the relative Mach number of
the 8 × 8 blade configuration is higher than that of 6 × 6 and 7 × 7 configurations. By
examining Figure 3b, it is clear that the impeller with the 6 × 6 blade configuration has
a larger low-speed zone range than the impeller with the 7 × 7 configuration at the suc-
tion surface of the splitter blade at the 95% blade height direction. However, for the
8 × 8 blade configuration, the range of the low-speed zone is significantly reduced com-
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pared to the first two configurations, which indicates a decrease in separation loss. This
decrease in separation loss is further supported by Figure 8, which demonstrates that as
the number of blades increases, the separation loss decreases. Thus, the 8 × 8 blade con-
figuration has a significantly reduced entropy increasement region compared to the other
two impellers. Finally, Figure 5a shows an improvement in compressor efficiency for the
8 × 8 blade configuration.
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3.2. Impeller Outlet Relative Width

The impeller outlet relative width is defined as the ratio of impeller outlet width d
to impeller outlet diameter D2. In this study, we set the initial impeller outlet width d as
2.8173 mm and impeller outlet diameter D2 as 19.627 mm, resulting in the initial impeller
outlet relative width is 0.1435. By maintaining the impeller outlet radius, the impeller
outlet width d was altered to 3.601 mm and 2.0313 mm, resulting in relative outlet widths
of 0.1835 and 0.1035, respectively. The simulation results of the compressor performance
are shown in Figure 9. An increase in the relative impeller outlet width corresponded to
higher compressor efficiency and pressure ratio. The highest isentropic efficiency achieved
was 0.81 when the relative outlet width was 0.1835. However, it should be noted that the
isentropic efficiency is lower than that of the other two cases during low-flow conditions.
On the other hand, the pressure ratio significantly improved when compared to the other
two cases, as illustrated in Figure 9.
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Figure 9. Variation curves of isentropic efficiency and pressure ratio of impeller with different relative
outlet width. (a) Effect on isentropic efficiency; (b) Effect on pressure ratio.

Impeller relative outlet width change will affect the impeller outlet relative velocity
and impeller outlet airflow direction. As the relative outlet width increases, the impeller
outlet relative velocity decreases, while the pressure expansion degree increases. Figure 10’s
static pressure diagram of the compressor meridian surface highlights this relationship.
Compared with Figure 3a, it can be observed that an outlet width of 0.1835 results in the
highest adverse pressure gradient on the impeller meridian surface. The high adverse
pressure gradient reduces the relative flow velocity of the airflow in the diffuser, suppress-
ing the radial flow of the vortex at the impeller’s trailing edge. As a result, the pressure
expansion capacity is increased. Therefore, the pressure ratio will be higher than in the
other two cases.
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Figure 10. Different relative outlet width impeller radial surface static pressure. (a) Meridional
surface static pressure (relative exit width 0.1035); (b) Meridional surface static pressure (relative exit
width 0.1835).

Figure 11 shows the relative Mach number distribution at the 95% and 50% blade
heights of different impeller relative outlet widths. It can be observed that at both relative
outlet widths, a lower relative Mach number region exists at the 95% blade height. The
width of the impeller outlet affects the range of the low-speed zone, which is wider at
the 0.1835 outlet width range than at the 0.1035 range with lower flow rate. At the 50%
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blade height, a low-speed zone is also present on the suction surface of the splitter blade,
although not noticeably. The impeller’s outlet relative width affects the impeller’s inlet
and outlet relative velocity ratio, which increases as the outlet relative width increases.
This results in premature blade suction surface separation and increases separation loss,
ultimately reducing efficiency. However, an adverse pressure gradient can improve the
pressure expansion capacity. Therefore, in order to maintain efficiency at the design value,
the relative outlet width of 0.1835 is recommended.
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3.3. Blade Backbend Angle

The outlet backbend blade angle can be used to categorize impellers according to their
orientation: forward impeller, backward impeller, or radial impeller. For this research, a
backward impeller was used. Changing the blade backbend angle has an effect on the
outlet airflow’s deflection angle, which consequently affects the compressor’s efficacy and
pressure ratio. The initial blade backbend angle was set to 45◦. The blade backbend angle
was changed to 40◦ and 50◦, and the impact on the compressor’s pressure ratio and efficacy
were investigated. The findings of this study are presented in Figure 12.
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From Figure 12b, it is evident that the pressure ratio of the impeller initially rises,
then falls, as the blade backbend angle increases. The compressor’s pressure ratio is at its
minimum when the blade backbend angle is 40◦. An increase in the angle to 45◦ raises the
pressure ratio, but as the impeller backbend angle advances, a decline in the pressure ratio
is observed. Although the compressor efficiency remains relatively constant, the one with a
blade backbend angle of 45◦ yields higher efficiency compared to the other two impellers.

Figure 13 shows the entropy map of the impeller meridian surface for different blade
backbend angles. The entropy value is observed to be higher for a blade backbend angle
of 40◦ when compared to that of 50◦. As depicted in Figure 3b, a blade backbend angle
of 45◦ results in the smallest meridian surface entropy value. Moreover, the regions with
increased entropy values are primarily located at the tip clearance, blade trailing edge
position, and diffuser internal.
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Figure 14 displays the entropy distribution at the 95% and 50% blade heights for
different impeller backbend angles. A comparison with Figure 4a indicates that for three
different backbend angles of the impeller, both pressure surface entropy values in the main
and splitter blades increase more at a backbend angle of 40◦ compared with the other
two impellers. The entropy increase range for the splitter blade suction surface is also
wider, leading to more serious gas mixing and, consequently, lower compressor efficiency
and pressure ratio. While the impeller with a blade backbend angle of 45◦ experiences
a significant decrease in entropy value at 95% of the blade height and an improved gas
mixing phenomenon, the impeller with a backbend angle of 50◦ experiences a significant
increase in entropy value due to the gas changing from axial to radial. This change induces
a vortex area close to the compressor shroud, in which the velocity is reduced, and the
energy loss increases. As the blade backbend angle increases, the outlet pressure of the
compressor gradually decreases, leading to more airflow separation in the flow channel,
increased energy loss, and decreased compressor efficiency. Therefore, the impeller with a
backbend angle of 45◦ was selected for this study, to optimize its efficiency.
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3.4. Design Parameter Optimization

According to the aforementioned study, optimization of parameters from the initial
model had a significant impact on the compressor performance. The number of impeller
blades was increased from the original 7 × 7 to 8 × 8 while retaining the backbend angle of
the impeller at 45◦. The relative outlet width was also increased to 0.1835, which adjusts
the impeller outlet width to 3.601. All other parameters remained constant.

The optimized model is meshed, and Figure 15 shows the performance curves of the
compressor before and after optimization. The optimized efficiency and pressure ratio
can reach 0.842 and 1.49, respectively, indicating a 1.4% and 1.8% improvement from their
previous levels. Furthermore, the optimized isentropic efficiency and pressure ratio show
higher readings at various flow rates compared to their previous values before optimization.
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Figure 16a presents the optimized impeller meridian static pressure and entropy distri-
bution diagrams. A comparison with Figure 3 reveals that before optimization, the impeller
meridian surface exhibits a small adverse pressure gradient. After optimization, the static
pressure distribution is more even, characterized by a higher adverse pressure gradient,
thereby lowering the relative flow velocity of airflow in the diffuser and improving the
pressure expansion capacity. As Figure 16b depicts, the entropy increase on the optimized
impeller meridian surface is reduced by a considerable amount, indicating the mitigation
of gas confusion in the tip clearance and bladeless diffuser section, and the improved
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uniformity of airflow in the bladeless diffuser section. This improvement enhances the
compressor performance.
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monitoring of compressor vibrations during operation to ensure proper functionality. 
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Figure 17a presents the relative Mach number distribution of the impeller at blade
heights of 95% and 50%. The same low-speed region is shown in Figure 4b. However,
compared to before optimization, the range of the low-speed region is significantly reduced,
and the speed is also increased. The main area of the impeller entropy gain in Figure 17b
overlaps with the low-speed region, where the presence of the low-speed region leads to
the generation of separation loss. The entropy gain region is considerably smaller, and the
entropy gain is significantly lower than before optimization. As a result of these changes,
the efficiency and pressure ratio of the impeller are improved.
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4. Experimentation

The experimental test bench consists of several key components: the INV9832-50
three-axis vibration acceleration sensor, an electric booster, an electronic control board,
external water cooling, and tow atmospheric pressure sensors. The three-axis acceleration
sensor is responsible for measuring speed variations in three dimensions, allowing for the
monitoring of compressor vibrations during operation to ensure proper functionality. This
sensor is capable of measuring within a range of 50 g, operates at temperatures between
−50 ◦C and 120 ◦C, and has a maximum error of 0.05 g. The electronic control board
functions primarily to manage compressor speed through a computer application program.
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This capability enables measurement of the compressor’s pressure ratio and efficiency at
different speeds. To determine pressure changes, tow atmospheric pressure sensors are
installed at both the inlet and outlet of the centrifugal compressor. This sensor records
pressure fluctuations at different speeds, enabling the calculation of pressure ratio changes.
The Honeywell HPB200F5DA atmospheric pressure sensor has a range of 500 to 1500 hPa,
an operating temperature range of −40 ◦C to 110 ◦C, and an error range of ±0.4 hPa.

The physical model of the centrifugal compressor was developed based on the op-
timized impeller parameters, as shown in Figure 18a. The compressor’s efficiency and
pressure ratio experiments were carried out on the bench with an ambient temperature
of 25.61 ◦C and pressure of 103.03 KPa. The flow rate, pressure ratio, and efficiency
of the compressor were evaluated at different RPM levels from 40,000–70,000 RPM, in
steps of 10,000 RPM due to an insignificant boost effect of the electric supercharger at
10,000–30,000 RPM, as illustrated in Figure 18b. Moreover, the overall vibration noise of
the supercharger and the electric control board motor temperature was monitored. The
experiment was conducted under the aforementioned experimental conditions, and the
results are presented in Figure 19. The experimental and simulated compressor perfor-
mances were compared, indicating a minor difference within the acceptable error range.
The compressor met the design requirements. To establish the overall credibility of the
experiment, Figure 20 depicts the engine model equipped with a propeller, matching it
with an electric booster, primarily utilized on unmanned aerial vehicles.
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5. Conclusions

In this paper, the relevant operational conditions of the compressor were calculated
according to design guidelines. The impeller and diffuser models were also designed, and
the impact of these operational conditions on the compressor’s performance were studied.
The parameters were then optimized, and the conclusions obtained are as follows:

(1) The performance of a centrifugal compressor is markedly influenced by the number
of impeller blades, the impeller outlet’s relative width, and the impeller backbend
angle. Increasing the number of impeller blades will decrease the low-speed zone
range at the compressor exit, resulting in a decrease in entropy and an increase in
compressor efficiency. An appropriate increase in the impeller’s backbend angle
enhances its efficiency and pressure ratio. However, a continuous rise of backbend
angle will reduce the exit airflow deflection angle and intensify the airflow separation
phenomenon in the flow channel. These factors result in an increase in inefficiencies.
Increasing the relative width of the impeller exit decreases the relative speed of the
impeller and increases pressure expansion, thereby amplifying the compressor’s
pressure ratio.

(2) By optimizing the above-mentioned parameters of the compressor, compared with
the initial model, the performance of the centrifugal compressor can be effectively
improved when the number of impeller blades is 8 × 8, the relative width of the
impeller outlet is 0.01835, and the backbend angle of the impeller is 45◦. The optimized
compressor efficiency can reach 0.842, and the pressure ratio can reach 1.49 with a
working margin of 22%. The optimized efficiency is 1.4%, and the pressure ratio is
1.8% higher than before.

(3) The experimental bench was utilized to evaluate the compressor’s efficiency and
pressure ratio. The compressor’s electric supercharger was operated between 40,000
and 70,000 RPM to calculate both the pressure ratio and actual efficiency. The experi-
mental results demonstrated, basically, consistency with the simulated values. Hence,
validating the engineered model met the design requirements.
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