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Abstract: Research on fault diagnosis and positioning of the distribution network (DN) has always
been an important research direction related to power supply safety performance. The back propaga-
tion neural network (BPNN) is a commonly used intelligent algorithm for fault location research in
the DN. To improve the accuracy of dual fault diagnosis in the DN, this study optimizes BPNN by
combining the genetic algorithm (GA) and cloud theory. The two types of BPNN before and after
optimization are used for single fault and dual fault diagnosis of the DN, respectively. The experi-
mental results show that the optimized BPNN has certain effectiveness and stability. The optimized
BPNN requires 25.65 ms of runtime and 365 simulation steps. And in diagnosis and positioning of
dual faults, the optimized BPNN exhibits a higher fault diagnosis rate, with an accuracy of 89%. In
comparison to ROC curves, the optimized BPNN has a larger area under the curve and its curve is
smoother. The results confirm that the optimized BPNN has high efficiency and accuracy.

Keywords: BPNN; cloud genetic algorithm; optimization; fault diagnosis

1. Introduction

Electric energy plays an irreplaceable role in promoting social progress and improving
people’s living standards. The distribution network is composed of overhead lines, cables,
towers, distribution transformers, isolation switches, reactive power compensators, and
some auxiliary facilities, playing an important role in the distribution of electrical energy
in the power grid. The distribution network generally adopts closed-loop design and
open-loop operation, with a radial structure. Aging of power lines, human operational
errors, or natural disasters can lead to faults in the distribution network. These faults will
bring great inconvenience to the production and lives of local residents, and will also cause
serious economic losses. Promoting the modernization and intelligent development of
distribution system management has always been a popular research topic of great concern
to national governments and people [1–3]. Research on the intelligent development of
distribution network (DN) fault diagnosis (FD) is an important part of improving the safety
management of power supply systems. Therefore, using various intelligent algorithms to
study and improve the FD positioning of the DN is an important research direction for
many researchers [2–4]. Back propagation neural network (BPNN), as a commonly used
multilevel learning and training method, has been widely used in distribution network
fault diagnosis [5]. For the shortcomings of inaccurate FD positioning in its application
process, this study will combine the genetic algorithm (GA) and cloud theory to establish
an optimized BPNN algorithm. The innovation of this article lies in the proposed method
of combining the cloud genetic algorithm with the BP neural network algorithm in the
experiment. The cloud genetic algorithm is an algorithm that combines cloud theory with
the genetic algorithm, and combining it with the BP neural network has certain level of
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innovation. After fully studying the practical application methods of the BP neural network
for fault diagnosis in distribution networks, this article applies the improved BP neural
network to fault diagnosis in distribution networks. It is hoped to achieve high accuracy
and efficiency in distribution network fault diagnosis.

2. Related Works

Electricity provides an important source of energy for the development and construc-
tion of society. When a fault occurs in the DN, it will seriously affect the voltage of the
power system. Therefore, ensuring the normal operation of the DN and improving its
safety are key issues that the power industry needs to solve. However, the increase in
electricity usage types has led to the complexity of the DN structure. Manual fault diagnosis
and troubleshooting are no longer suitable for the maintenance of the complex DN. The
introduction of intelligent technology has effectively improved FD the accuracy of the
DN [6–8]. With the application of artificial intelligence, fault location in the DN can be
achieved by using techniques such as neural networks. Among them, BPNN can be used
for the fault identification in different fields, and it has high diagnostic advantages [9].
BPNN can accurately identify fault type in mechanical fault detection. Researchers have
applied it in combination with different search algorithms for bearing fault identification.
In complex classification experiments, the optimized BPNN can effectively identify fault
types over 96% [10]. To improve the accuracy of intelligent detection methods for fault
location, the experimental personnel used BPNN for node-hierarchical processing. They
combined this method with shape-finding ideas to intelligently find shapes. The combi-
nation of methods improved the accuracy and efficiency of the BPNN in localization [11].
Considering the high performance of BPNN in FD and recognition, this method was chosen
as the basic method for fault location in the DN in the experiment. The research results
show that BPNN has a high performance when combined with other algorithms in the
practical applications [12]. Therefore, in the experiment, it was considered to combine it
with other methods to improve the detection efficiency and accuracy of the BPNN.

In this study, the researchers introduced a combination of different methods and BPNN
to predict storm occurrence. After processes such as method parameters optimization,
the prediction model can significantly reduce prediction time and improve prediction
accuracy. This method provides important technical support for disaster prevention and
reduction in practical applications [13]. Among many combination methods, the GA
exhibits a strong global search ability [14]. The combination of the GA and BPNN can
achieve a strong positioning ability and prediction ability in different fields. Wen, X. et al.
combined the BPNN with the GA algorithm and applied it to material fault detection.
The combination of methods can effectively improve the model’s fault location ability. In
testing experiments, the optimized new model significantly improved the accuracy of fault
location and prediction after training, and it effectively reduced the positioning error [15].
In the fault identification of mechanical components, the combination of the BPNN and GA
can be used for the fault identification of mechanical components. The combined method
can extract important features and perform accurate classification. Compared with a single
detection method, the combined method exhibits higher recognition accuracy in simulation
experiments [16]. Cloud theory can effectively handle fuzzy information. Introducing
cloud theory into the GA can form a cloud GA. The application of this theory can effectively
improve the parameter optimization ability of the GA [17]. The GA belongs to a heuristic
algorithm, and researchers have combined it with methods such as cloud theory to generate
a new algorithm. Based on the combination of cloud theory and the GA, researchers applied
it to solve multi-objective optimization problems. Through practice, it has been proven that
the combined algorithm can achieve effective time prediction and disassembly methods,
thereby reducing the cost of industrial disassembly [18]. This information indicates that
combining the BPNN with the GA has better application effects, and introducing cloud
theory can improve the performance of the GA itself. Therefore, in the experiment, the
improved cloud GA was considered to optimize and improve the BPNN.
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From the above research, the BPNN has a good application effect on FD, so this method
was adopted as the basic algorithm for fault location in the DN. However, when facing a
complex DN, the BPNN may encounter problems such as slow diagnostic speed and low
accuracy during the diagnostic process. To improve diagnostic efficiency and detection
accuracy, the cloud GA was used to optimize the BPNN in the experiment. The cloud
genetic algorithm is introduced in the experiment to optimize the BP neural network. The
purpose is to optimize and improve the initial weights and thresholds of the BP neural
network. Simultaneously, the improvement and optimization of the overall topological
structure shape can be achieved. So the diagnostic efficiency and detection accuracy of
the BP neural network can be improved. It is hoped to improve detection efficiency and
accuracy of the BPNN in DN faults.

3. Optimization of BPNN for Fault Location in DNs
3.1. Optimization of BPNN

Establishing a highly nonlinear mapping relationship between input and output
information is the main principle of the BPNN [19]. In Figure 1, the BPNN is mainly divided
into three parts. Each layer is connected and communicated through weight connections.
The learning of the BPNN mainly includes four steps: pattern forward propagation, error
back propagation, memory training, and learning convergence. After setting an input
format in advance in the BPNN, it will process and transmit information step by step from
the neurons in the input layer to the neurons in the hidden layer, and then to the neurons
in the output layer in the order of pattern propagation. Finally, corresponding outputs will
be generated in each neuron of the output layer. These outputs produce an output result in
the corresponding order. The actual output of the output layer and the expected results
are processed. If the error does not meet the preset requirements, error backpropagation
is required. The calculated error value is transmitted along the set path in the reverse
direction. Appropriate modifications were made to the threshold values of each neuron
and the weights of the connections between them to approximate the set target values.

Figure 1. BPNN structure diagram.

The performance of cloud models is reflected by three parameters: entropy (En),
hyperentropy (He), and the expected value (Ex) [20]. In Figure 2, entropy (En) is mainly
used to reflect the range size of recognized data values within a concept’s relevant domain.
Hyperentropy (He) refers to the entropy corresponding to the concept itself, reflecting the
dispersion of each cloud droplet. The expected value Ex is the value that best reflects the
performance of the corresponding concept among all data in the universe.



Processes 2023, 11, 1947 4 of 14

Figure 2. Characteristic parameters of the cloud model.

In cloud theory, cloud droplets can randomly tilt in a certain direction when forming a
cloud. Applying it to the GA can improve the probability of inheritance and mutation in
the GA, reducing the blindness of the traditional GA. Thus, the convergence performance
is improved and the operational efficiency of the GA is accelerated. In the cloud GA, the
first step is to perform a crossover operation. Formula (1) is a method for exchanging
information between chromosomes am and an at population k.{

amk = amk(1− b) + ankb
ank = ank(1− b) + amkb

(1)

In Formula (1), b is a random number within range of [0, 1]. The cloud GA deter-
mines the probability of the crossover operation pc1 based on the generation algorithm of
conditional cloud Y in Equation (2).

pc1 =

ke
( f−Ex1)

2

2(E′n1)
2

, f >
−
f

k, f <
−
f

(2)

In Formula (2), e is the base of natural logarithm, c1 is the control coefficient, Ex1 is the
expected value, En1

′ represents entropy after random processing, and f is the fitness value

of the current operation entity.
−
f represents the average value of individual fitness after

updating in Formula (3).
−
f =

n

∑
j=1

f j/n (3)

f j in Formula (3) is the fitness value of individual j after updating. The calculation of
the expected value Ex1 in Formula (2) is shown in Formula (4).

Ex1 =
−
f (4)

The calculation of entropy En1 in Formula (2) is shown in Formula (5).

En1 = ( fmax −
−
f )/c1 (5)

In Formula (5), c1 is the control coefficient, and fmax represents the maximum fitness
of all individuals. The calculation of super entropy He1 is shown in Formula (6).
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He1 = En1/c2 (6)

In Formula (6), c2 refers to the control coefficient. En1
′ represents entropy after random

processing, and its calculation is shown in Formula (7).

En1
′ = RANDN(En1, He1) (7)

The difference between the cloud GA and the traditional GA lies in the way in which
probability values of cross-mutation operations are determined. The uncertainty value u
was generated based on sample uniformity. Then, a weighted value was used to determine
Ex1 for the parent sample, where En1 is equal to value obtained by dividing the variable
search range by c1 and He1 = En1/c2. Finally, the method of generating the conditional
cloud Y using cloud theory is used to determine the magnitude of the probability of
crossover.

Cross operation in the cloud GA requires mutation operation, and Formula (8) is the
method for chromosome l to undergo mutation operation at h.

aln =

{
alh + (alh − amax) ∗ f (g)
alh + (amin − alh) ∗ f (g)

(8)

In Formula (8), amax stands for the upper bound of alh, and amin represents the lower
bound of alh. Formula (9) is the calculation of f (g).

f (g) = r2(1− g/Gmax) (9)

In Formula (9), r2 is the number generated within a set range, g refers to the number
of data updates, and Gmax represents the maximum number of data updates. The specific
calculation process for determining mutation operation probability pc2 by using the cloud
GA is shown in Formula (10).

pc2 =

ke

( f ′−Ex2)
2

2(E′n2)
2

, f ′ >
−
f

k, f ′ <
−
f

(10)

f ′ in Formula (10) is the larger fitness value obtained by an individual after crossover
operation. E′n2 represents entropy after random processing in the cross operation. The
calculation of the expected value Ex2 in the cross operation is shown in Formula (11).

Ex2 =
−
f (11)

The calculation of entropy En2 in the cross operation is shown in Formula (12).

En2 = ( fmax −
−
f )/c3 (12)

In Formula (12), c3 also represents the control coefficient. The calculation of hyperen-
tropy He2 in the cross operation is shown in Formula (13).

He2 = En2/c4 (13)

In Formula (13), c4 also represents the control coefficient. The calculation of entropy
En2
′ after random processing in the cross operation is shown in Formula (14).

En2
′ = RANDN(En2, He2) (14)
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Taking original individuals Ex2, En2 is equal to the face-changing search range divided
by c3, He2 = En2/c4. When certainty u is less than the mutation probability value, so the
mutated individual is determined by using cloud theory methods.

Using the cloud GA to optimize the BPNN, the specific process is mainly divided into
two types. One is to optimize and improve the initial weight and threshold of the BPNN.
The second is to comprehensively improve and optimize the initial weights, thresholds,
and overall topological shape of the BPNN. The specific flowchart of optimizing the initial
threshold and weight values of the BPNN by using the cloud GA is shown in Figure 3.
Firstly, the initial thresholds and weights in the BPNN were classified and sorted. After the
sorting was complete, a random data information vector was generated as the population
chromosome. According to these chromosomes, the appropriate numerical function of
fitness was determined, and the fitness values of all individuals were calculated. According
to the fitness result judgment, an appropriate standard value was set for the number of
cycle operations. If the set standard met the preset conditions of the cloud GA, then this
standard was used as the ideal parameter for the initial weight and threshold of the BPNN.
Otherwise, the operation of the GA was followed, and individual updates were iterated
until the preset requirements were met. The optimal value obtained by the cloud GA is the
reference value for the initial threshold and weight of the BPNN. By following the learning
process of the BPNN, global optimization can be completed.

Figure 3. Operation process of the BPNN cloud genetic optimization algorithm.

The use of the cloud GA to optimize the topological structure of the BPNN mainly
involves optimizing the hidden layer and total number of neurons in the hidden layer of the
entire neural network. The specific optimization process is reflected in the encoding of the
topological structure. The encoding of topological structures mainly adopts two methods:
binary encoding and integer encoding. The encoding of binary encoding is simple and
easy to implement, and it is a commonly used method for topological structure encoding.
The code sequence is divided into three parts. Code string l represents the total number of
layers included in the hidden layer, and β is 0 or 1. The code string l1 represents the number
of neurons contained in the first hidden layer. The code string l2 represents the number of
neurons contained in the second hidden layer. There is a certain conversion relationship
between l1 and l2, and their specific conversion is shown in Equation (15). Among them, j
represents the length which is taken for encoding the number of neurons in each part of the
corresponding hidden layer, which is generally determined based on the actual situations.
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{
l1 = 20β11 + 21β12 + · · ·+ 2j−1β1j
l2 = 20β21 + 21β22 + · · ·+ 2j−1β2j

(15)

The optimization of the integer encoding process mainly involves encoding the number
of nodes and its neurons as L, l1, l2 in the hidden layer, respectively, and all require encoding
using integers within a certain range. Compared with binary encoding, integer encoding
has shorter sequences that are limited to a certain range. Therefore, the implementation of
this encoding method is relatively complex. Therefore, this study considers using binary
encoding to determine the hidden layer number and total number of neurons, as well as
optimizing the BPNN’s topological structure.

3.2. DN FD based on BPNN

Most DN systems are composed of multiple subsystems, which are combined in a
hand-in-hand manner. The interconnection between these subsystems is mainly achieved
through the use of interconnection switches L. As shown in Figure 4, I0 is the circuit breaker
and I1, I2, I3, I4 are segmented developments in the DN line. The interconnection switch
decomposes the DN into two independent sub grid systems to reduce fault location range.
Therefore, when conducting a fault analysis, only one sub grid system needs to be collected
and analyzed, which greatly reduces the difficulty of data analysis and processing, thereby
improving the efficiency of FD. To use the BPNN for DN FD, an FTU device is first required
to collect fault information samples from the DN and establish corresponding fault sample
sets. For the collection of sample data, each small area in the power grid will be equipped
with an FTU device. FTU devices can compare the current size in each circuit with the preset
setting value, and the comparison results are collected to achieve information collection for
each circuit in the power grid [21,22]. When there is a difference between the current value
and the setting value, the line data information collected by the FTU device is 1. When
there is no difference between the current value and the setting value, the information
collected by the FTU device is 0. For information data collected by the FTU device after
initializing, they can be used as input information for the BPNN. And fault information
location can be analyzed based on the BPNN to achieve the fault diagnosis and positioning.

Figure 4. Hand-in-hand DN.

The more complex the distribution system is, the more complex its corresponding
power grid topological structure becomes. Traditional BPNNs for FD in a complex DN
often suffer from local optima due to slow convergence speed, leading to certain deviations
in fault localization and diagnosis [23]. The optimized BPNN can effectively avoid this
defect. Like the traditional BPNN, the optimized BPNN requires the collection of fault
information before FD. And the BPNN structure can be determined based on the collected
data information. The difference is that the initial weight and threshold settings in the
optimized BPNN depend on the cloud GA for determination. As shown in Figure 4,
assuming a fault occurs at A, switches I2, I3, and I0 will generate abnormal current data,
while I3 and I4 will not flow through the abnormal current. For these current data, the
FTU device will collect it and represent it in an ordered vector. These vectors are the input
information set of BPNN for FD, and the specific expression is A = (X1, X2, . . . , XM)T . By
inputting the collected fault vector information into the BPNN for operation calculation,
the fault location A can be identified.
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4. Simulation Analysis Based on BPNN Optimization Algorithm

In order to verify whether the improved BP neural network is suitable for fault
location in distribution networks, this section will conduct a simulated verification of the
effectiveness of the improved BP neural network applied to fault location in distribution
networks. In the experiment, the detection performance of fault location methods was
compared using indicators such as iteration number, convergence, iteration time, and fault
location accuracy. At the same time, different algorithms were applied to the fault location
of the same distribution network in the experiment to observe the performance of the
improved BP neural network. A distribution network system was set up for online fault
location analysis using different methods in this study, as shown in Figure 5.

Figure 5. Schematic diagram of DN.

A partial and small “hand in hand” DN is shown in Figure 5. The diagram includes
circuit breaker I0, which is a device used to record the switch information of various DNs.
The Figure also includes current information from the FTU numbered I1 to I9, as well as
the corresponding X1 to X9 sections. The FTU device is numbered I1-I20, X1-X19 represents
each line segment, and I0 represents the circuit breaker.

The improved BPNN mentioned above was used to locate the fault location of the DN.
The first step was to establish a learning sample. Data information of each line segment
collected by the FTU device were organized and statistically analyzed, and a relevant data
sample vector set was established. The vector information of the sample is shown in Table 1.
Based on the vector information, the number of neurons that required an input layer was 10.
The corresponding number of neurons for the output layer was 10. The number of neurons
in the hidden layer was calculated to be 9.

This experiment selected 10 fault samples as the input sample set for the optimized
BPNN training, represented by P1, P2, P3, P4, and P5, respectively. Before running the
BPNN, the initial population size of the cloud GA was set to 60, the iteration number of the
GA was 80, and the optimization goal of the BPNN was set to 0.001. Finally, the traditional
BPNN and the optimized BPNN were used to iterate the input fault information set, and the
final output results of the optimized BPNN are shown in Table 2. By using the optimized
BPNN to locate FDs of five fault samples in the DN, the fault location was determined
for each sample set, indicating that the optimized BPNN has a certain effectiveness and
stability in the FD of DNs.

The iterative results obtained by two different neural networks are shown in Figure 6.
Figure 6a shows the single FD simulation training results of the traditional BPNN. Figure 6b
shows the single FD simulation training results of the optimized BPNN. Figure 6c shows
the dual FD simulation training results of the traditional BPNN. Figure 6d shows the
dual FD simulation training results of the optimized BPNN. By comparing and analyzing
Figure 6a,b, when conducting a single FD on the DN, the simulation time of the traditional
BPNN is 18.73 ms, and its simulation step number is 160 steps. The simulation time of
the optimized BPNN is 17.50 ms, and its simulation step number is 85. The simulation
training time difference between the traditional BPNN and the optimized neural network
is relatively small. But, the simulation step number used in the optimized BPNN is
much smaller than that of the traditional BPNN, indicating a significant improvement in
learning speed of the optimized BPNN. By comparing and analyzing Figure 6c,d, when
performing the dual FD on the DN, the traditional BPNN operation requires 72.73 ms and
the simulation step number is 2075. The optimized BPNN requires 25.65 ms to run and
365 simulation steps. The optimized BPNN spends less time and has fewer simulation steps
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in the dual FD of the DN than the traditional neural network, while its accuracy is much
higher than the traditional BPNN. This is because the traditional genetic algorithms are
prone to drawbacks such as poor convergence and local optima. The algorithm dimension
is too high, resulting in excessively long iteration convergence time. In comparison, the
improved genetic algorithm has the advantages of high fault location rate, low algorithm
dimension, and good iterative convergence when dealing with fault location of distribution
network lines. Therefore, it can be concluded that the optimized BPNN has high accuracy
and efficiency when dealing with dual faults in the DN.

Table 1. Input vector and output vector of fault sample set.

Vector FTU 1 2 3 4 5 6 7 8 9 10 11

Input vector

I0 0 1 1 1 1 1 1 1 1 1 1

I1 0 0 1 1 1 1 1 1 1 1 1

I2 0 0 0 1 1 1 1 1 1 1 1

I3 0 0 0 0 1 1 1 1 1 1 1

I4 0 0 0 0 0 1 1 1 1 1 1

I5 0 0 0 0 0 0 1 1 1 1 1

I6 0 0 0 0 0 0 0 1 1 1 1

I7 0 0 0 0 0 0 0 0 1 1 1

I8 0 0 0 0 0 0 0 0 0 1 1

I9 0 0 0 0 0 0 0 0 0 0 1

Output vector

I0 0 1 0 0 0 0 0 0 0 0 0

I1 0 0 1 0 0 0 0 0 0 0 0

I2 0 0 0 1 0 0 0 0 0 0 0

I3 0 0 0 0 1 0 0 0 0 0 0

I4 0 0 0 0 0 1 0 0 0 0 0

I5 0 0 0 0 0 0 1 0 0 0 0

I6 0 0 0 0 0 0 0 1 0 0 0

I7 0 0 0 0 0 0 0 0 1 0 0

I8 0 0 0 0 0 0 0 0 0 1 0

I9 0 0 0 0 0 0 0 0 0 0 1

The error statistics of the traditional BPNN and the optimized neural network sim-
ulation training results are shown in Figure 7. Figure 7a shows the single FD simulation
training error results of the traditional BPNN. Figure 7b shows the single FD simulation
training error results of the optimized BPNN. Figure 7c shows the dual FD simulation
training error results of the traditional BPNN. Figure 7d shows the dual FD simulation
training error results of the optimized BPNN. By comparing and analyzing various graphs,
both the traditional and optimized BPNN can achieve an accuracy of over 98% for single
fault analysis. When performing dual FD, the accuracy of the traditional BPNN is 65%,
while the accuracy of the optimized BPNN reaches 89%. The accuracy of the optimized
BPNN for dual FD is significantly higher than the traditional BPNN, and the error margin
is also significantly lower. It can be seen that the accuracy of the improved algorithm
decreases when it is used for dual fault localization. This is because the increase in the
number of faults that need to be located leads to an increase in computational difficulty,
resulting in a decrease in the accuracy of the algorithm’s fault location. Therefore, further
verification of the application effect of the improved algorithm in multiple faults is needed
in subsequent experiments, as shown in Figure 8.



Processes 2023, 11, 1947 10 of 14

Table 2. Output results of the optimizing BPNN.

P1 P2 P3 P4 P5

X0 0.0021 0.0028 0.0031 0.0030 0.0019

X1 0.0023 0.0013 0.0057 0.0007 0.9901

X2 0.0016 0.0022 0.0010 0.8999 0.0029

X3 0.9916 0.0028 0.0046 0.0055 0.0012

X4 0.0025 0.0029 0.0012 0.0011 0.0023

X5 0.0018 0.0001 0.9916 0.0021 0.0033

X6 0.0021 0.9917 0.0025 0.0039 0.0053

X7 0.0026 0.0036 0.0018 0.0039 0.0011

X8 0.0026 0.0058 0.0021 0.0012 0.9965

X9 0.0002 0.0013 0.0036 0.0007 0.0009

Fault point X3 X6 X5 X2 X8

Figure 6. Iterative training results of the BPNNFD.

The simulation analysis of multiple fault locations was also carried out in the exper-
iment, and the results of the fitness function of different methods are shown in Figure 8.
When lines 5, 7, 11, 13, and 16 fail, the fault location time of the improved algorithm is
158.77 ms, the number of iterations is 75, and the fitness value is 1.0. The fault location time
and fitness of this method are lower than those of other methods. This indicates that the
improved algorithm has the advantages of fast iteration speed, high fault localization rate,
and low algorithm dimension when dealing with multiple fault localization. The results
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show that the introduction of the cloud genetic algorithm effectively improves the accuracy
and operational efficiency of the BP neural network in multiple fault localization.

Figure 7. Analysis chart of error results. (a) shows the single FD simulation training error results
of the traditional BPNN. (b) shows the single FD simulation training error results of the optimized
BPNN. (c) shows the dual FD simulation training error results of the traditional BPNN. (d) shows the
dual FD simulation training error results of the optimized BPNN.

Figure 8. Fitness. (Maghami et al. 2023 [21], Xiong et al. 2022 [22], Hu et al. 2022 [23], Hong 2022 [24]).

To conduct a more comprehensive evaluation of the improved algorithm mentioned
above, relevant data statistics were also conducted in the experimental validation, and the
receiver operating characteristic (ROC) curves of different methods were plotted. This curve
uses specificity as the horizontal axis and sensitivity as the vertical axis. It can demonstrate
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the performance of various methods. When the area under the ROC curve is large, the
algorithm performance is better. The comparison results between the optimized BPNN
and the ROC of references [24–27] are shown in Figure 9. From the graph, the improved
algorithm proposed in the experiment has a larger area under the curve, indicating that
this method has better overall performance. From the enlarged images of some curves, the
improved method proposed in the experiment has a slightly fluctuating ROC curve, but
overall it is relatively smooth. However, another comparison method, when magnified,
shows greater volatility. This is because the cloud genetic algorithm is a globally applicable
and robust search optimization method. It can effectively improve the convergence speed
of the BP neural network and prevent the network from falling into local minimum points.
The optimized BP neural network has higher learning efficiency, stability, and robustness.

Figure 9. ROC curve. (Maghami et al. 2023 [21], Xiong et al. 2022 [22], Hu et al. 2022 [23],
Hong 2022 [24]).

5. Conclusions

Electric energy is one of the important energy sources required for various technologi-
cal production and people’s happy lives. Therefore, studying the DN and achieving safe
and effective management of the DN is the research goal of many researchers. The fault
detection methods for power grids include various methods [28]. Researchers have con-
ducted a large number of experiments to establish detection methods for different power
grid faults [29]. Research has shown that BP neural networks have good application effects
in fault detection [10]. However, traditional BP neural networks have poor convergence
in practical applications and are prone to falling into local optima. In terms of improving
the convergence speed of BP neural networks, general optimization algorithms have made
certain improvements [15]. However, the optimized BP neural network still has problems
such as being prone to falling into local optima, oscillation and poor robustness due to the
improvement of learning rate, and the sensitivity of network performance to the initial
values of the network. The cloud genetic algorithm is a globally applicable and robust
search optimization method. It can effectively improve the convergence speed of the BP
neural network and prevent the network from falling into local minimum points [17]. This
study investigates the application of the BPNN in FD positioning in the DN. And, on the
basis of the traditional BPNN, the GA and cloud theory were introduced to achieve the
optimization of the traditional BPNN. Finally, the optimized BPNN algorithm is applied
to diagnosis and location analysis of single and dual faults in the DN, and the simulation
training results of the traditional BPNN and the optimized BPNN were compared. The re-
sults show that the operation of the optimized BPNN requires 25.65 ms and the simulation
steps are 365. The optimized BPNN has high effectiveness, stability, and accuracy in FD
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localization. In the diagnosis and positioning of dual faults, the optimized BPNN exhibits
a higher FD rate, with an accuracy of 89%, and its FD localization speed is much higher
than the traditional BPNN. In the comparison of ROC curves, the optimized BPNN has
a larger area under the curve and has a smoother curve. Although research results show
that the optimized method has good performance, this model requires many samples for
learning. This leads to certain limitations in the optimized method in practical applications.
In addition, the local optimal solution problem has not yet been fundamentally solved.
Therefore, further in-depth research is needed to diagnose and locate multiple faults in
the DN.
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