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Abstract: Valve stiction is the most common root of oscillation faults in process control systems, and it
can cause the severe deterioration of control performance and system instability, ultimately impacting
product quality and process safety. A new method for detecting valve stiction, based on dynamic slow
feature analysis (DSFA) and the Hurst exponent, is proposed in this paper. The proposed method
first utilizes DSFA to extract slow features (SFs) from the preprocessed and reconstructed data of
the controller output and the controlled process variable; then, it calculates the Hurst exponent of
the slowest SF to quantify its long-term correlation; and, finally, it defines a new valve detection
index to identify valve stiction. The results obtained from simulations and actual process case studies
demonstrate that the proposed method, based on a DSFA–Hurst exponent, can effectively detect
valve stiction in control loops.

Keywords: valve stiction detection; process control; dynamic slow feature analysis; hurst exponent

1. Introduction

Control valves are widely applied in process control systems to regulate fluid flow,
pressure, and temperature in various industrial processes, such as oil and gas, buildings,
chemical, petrochemical, power, and water treatment. They are critical mechanical devices
for the production process to achieve precise control and maintain product quality [1–3].
However, one of the challenges of control valve operation is the occurrence of stiction,
which can lead to undesirable behavior, such as oscillations in the control loop, reducing its
control performance and product quality. It also accelerates the wear and aging of valves
and related equipment, and even causes system failure, resulting in safety accidents [4].
According to a survey, 20–30% of control loops experience oscillations due to valve failures
caused by stiction or hysteresis [5]. In recent years, valve stiction detection has received
much attention in academia and engineering due to its practical value in improving system
reliability, control performance, and product quality.

The formal definition of valve stiction states that it is a characteristic of an element
whereby its smooth motion in response to a changing input is preceded by a stationary
phase, and then followed by a sudden, abrupt jump known as the “slip-jump”. This slip-
jump in a mechanical system is caused by static friction that surpasses dynamic friction
during smooth motion [6]. Several review articles and books on control valve stiction
detection and quantification techniques have already appeared [2,7–9]. In the past decade,
physics-based and data-driven-based methods have been developed to investigate the
behavior of valve stiction. Physics-based methods utilize the first principles to describe
the stiction phenomenon, providing a mechanistic understanding of valve behavior [10,11].
Di Capaci et al. proposed a method that utilizes the Hammerstein model and nonlinear
optimization to accurately estimate the valve stiction parameters of a smoothed model
for industrial processes controlled by model predictive controllers [12]. Romano and
Garcia introduced a method that begins with an optimization-based approach in order
to jointly estimate the friction and nonlinear process model parameters from closed-loop
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tests. This method offers significant advantages when considering a nonlinear process
model: improved accuracy in quantifying friction and reasonable estimates of the nonlinear
steady-state characteristics of the process [13]. Based on power spectral density (PSD)
and auto-correlation function (ACF), Karra and Karim proposed a model-based oscillation
detection method to identify and quantify the root cause of oscillations [14]. However,
implementing physics-based methods for control valves in ordinary differential equation
(ODE) format poses several challenges. Firstly, the physical parameters, such as the mass of
moving components and different friction forces, are difficult to measure. Secondly, these
methods are invasive, which makes their implementation more challenging. Additionally,
for industrial production processes with a large number of valves, establishing physical
models can require significant human resources and cost expenses [4,15,16]. With the
widespread use of distributed control systems (DCS), process data are generated and
recorded in large quantities, giving rise to the data-driven-based approach. This approach
does not require complex mechanisms and knowledge to detect faults from changes in
process data. It is non-invasive and automatable, thus making it easier to implement [17].

Various data-driven-based methods have been proposed for detecting valve stiction in
recent years, mainly in the following five categories: (1) correlation-based methods [18,19],
(2) nonlinear-based methods [20,21], (3) waveform-shape-based methods [22,23], (4) limit-
cycle-based methods [24,25], and (5) machine learning (ML)-based methods [16,26–28]. Among
the above methods, Horch pioneered the development of the initial method for stiction de-
tection [18]. This technique involves calculating the cross-correlation function between the
controller output (OP) and controlled process variable (PV) data, and it is effective in detecting
stiction in flow control loops. Choudhury et al. proposed a nonlinear-based approach to detect
valve stiction. This approach identifies nonlinearities within a control loop by utilizing the sen-
sitivity of the normalized bispectrum or bicoherence to potential nonlinear interactions in the
control error signal [29]. Among the waveform-shape-based methods, a pattern recognition
method, using the dynamic time warping (DTW) technique, was proposed by Srinivasan et al.
This method can identify the different qualitative shapes caused by valve stiction from OP
and PV data [5]. Garcia and Zakharov et al. proposed a valve detection system based on
data characterizations to automatically select valve stiction detection algorithms. This sys-
tem extracts different characterizations in the data by establishing different characterization
indicators, and then automatically selects and applies the most suitable detection algorithm
based on the analysis of the characterizations, which can effectively improve the detection
performance and reliability [22,23]. Yamashita proposed a qualitative description formalism
to describe qualitative trends or shapes of the valve input and output signals, then defined
the stiction index to detect valve stiction patterns [30]. However, the traditional data-driven
stiction detection methods mentioned above lack robustness when dealing with control loops
with high noise and abnormal behavior [16].

Compared with the limitations of traditional data-driven methods, ML algorithms,
such as convolutional neural network (CNN), have several advantages in the field of valve
stiction detection. Firstly, ML algorithms typically perform feature extraction and are able to
handle data with noise, thus showing better adaptability [31]. Secondly, with the widespread
application of DCS in factories, the amount of available process data has increased immensely.
This provides more training data for ML algorithms, thereby helping to improve detection
accuracy. Furthermore, ML algorithms can generate efficient detection models through
offline training. Once the model is trained, the computation time of ML will be significantly
reduced, enabling faster computation in real-time applications [16,26]. Therefore, ML-based
stiction detection methods have gained considerable attention from researchers in recent years.
Amiruddin et al. proposed a stiction detection network (SDN) model to detect valve stiction.
This model utilizes PV and OP as model inputs and trains a feed-forward neural network to
build a stiction detection model [26]. The framework developed by Henry et al. used CNN
and principal component analysis (PCA) to detect stiction and identify severity. The CNN is
utilized to extract characteristics from the time series data of control valve actions, whereas
the PCA is implemented to produce statistical process control maps derived from these
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features, which enables automated monitoring of control valve stiction [27]. Kamaruddin et al.
developed a simple butterfly-shape-based stiction detection (BSD) method that produces a
unique “butterfly” pattern in the presence of valve stiction to quantify stiction severity [28].
Yazdi et al. applied support vector machines (SVM) to statistical variables constructed from
OP and PV to detect valve stiction, and this method has the ability to distinguish between
stiction and other sources of oscillation [32].

The above traditional data-driven stiction detection methods work under the assump-
tion that the oscillation patterns in the control loop data are persistent and then detect
the presence of specific periodic characteristics, autocorrelations, or power spectra [33].
Therefore, the above methods will be ineffective when stiction causes irregular oscillations
in the control loop data. Among the ML-based stiction detection methods, the neural-
network-based methods do not provide a comprehensive means to examine the influence
resulting from the adjustment of stiction parameters between neurons, whether by augmen-
tation or reduction [32]. PCA and SVM rely on the assumption that the data are temporally
independent, disregarding the temporal dynamic properties in the data. However, the
actual process system is dynamic [31], and valve stiction often leads to the nonlinear dy-
namic behavior of the process, which makes the process data exhibit strong long-term
correlations. Unfortunately, the aforementioned methods rarely consider these two factors
when detecting valve stiction.

This paper presents a ML approach for detecting valve stiction utilizing dynamic slow
feature analysis (DSFA) and Hurst exponent, which considers the temporal dynamics and
long-term correlation of process data. This method overcomes the constraints imposed by
the assumptions of persistent oscillation patterns and the temporal independence of the
data. The proposed method involves the preprocessing and reconstruction of OP and PV
data from the control loop, followed by the application of DSFA to extract slow features
(SFs) that capture the temporal dynamic characteristics of the single-lag in the reconstructed
data. The Hurst exponent is utilized to measure the long-term correlation information of
the slowest SF, which is then employed for valve stiction detection. This paper is structured
as follows: Section 2 introduces the research problem of control valve stiction. Section 3
presents the theory and detailed steps of the proposed method. Section 4 presents the case
study. Finally, Section 5 summarizes the conclusions drawn in this paper.

2. Valve Stiction

A typical control loop structure diagram is shown in Figure 1, where SP, OP, MV, and
PV represent setpoint, controller output, valve position, and process output, respectively.
Figure 2 shows the structure diagram of the valve [9,32,34]. On the basis of Newton’s
second law, the force balance equation for the valve stem is as follows [9,15]:

Q
d2g
dt2 = Fa + Fr + Ff + Fp + Fi (1)

where Q and g denote the mass of the moving parts and the relative stem position, respec-
tively. Fa, Fr, and Ff are the actuator applied force, the spring force, and the friction force of
the valve, respectively. Fp is the force caused by fluid pressure drop and Fi is the extra force
that maintains the valve in the seat. Within the realm of forces under consideration, Fp and
Fi are ascribed a value of zero, owing to their insubstantial influence, while the friction
force Ff emerges as the pivotal determinant governing the dynamics of the valve [15].
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Valve stiction is one of the main causes of control loop oscillations. This phenomenon
is that the valve stem cannot move due to static friction when it is stressed, and the valve
stem slips and jumps after overcoming the static friction force [6]. According to the two-
parameter valve model defined by Choudhury, two parameters, S and J, are used to describe
valve stiction [6]. The OP-MV phase diagram of the valve under this model is shown in
Figure 3, where S = stick + deadband and J = stickband.

Processes 2023, 11, x FOR PEER REVIEW 4 of 18 
 

 

 

Figure 1. Control loop structure. 

 

Figure 2. The structure diagram of the valve. 

Valve stiction is one of the main causes of control loop oscillations. This phenomenon 

is that the valve stem cannot move due to static friction when it is stressed, and the valve 

stem slips and jumps after overcoming the static friction force [6]. According to the two-

parameter valve model defined by Choudhury, two parameters, S and J, are used to 

describe valve stiction [6]. The OP-MV phase diagram of the valve under this model is 

shown in Figure 3, where S = stick + deadband and J = stickband. 

 

Figure 3. OP-MV characteristic of a sticky valve. Figure 3. OP-MV characteristic of a sticky valve.

Figure 4 shows OP-MV and OP-PV plots with a sticky control valve. From Figure 4a,
it can be seen that, affected by the static friction of the valve, the OP-MV plot presents a
limit cycle shape instead of a linear relationship in the normal state. Similarly, OP-PV in
Figure 4b is also a limit cycle shape. Since the variable MV in most actual control loops
is difficult to measure [34], the proposed method uses OP and PV data to detect valve
static friction, which is more practical. Figure 5 shows the OP and PV curves with a sticky
control valve, taken from a simple numerical simulation example. The X-axis represents
the oscillation magnitude of OP and PV with respect to the steady-state point of the system,
and the Y-axis is the number of samples in time order.



Processes 2023, 11, 1913 5 of 18

Processes 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

Figure 4 shows OP-MV and OP-PV plots with a sticky control valve. From Figure 4a, 

it can be seen that, affected by the static friction of the valve, the OP-MV plot presents a 

limit cycle shape instead of a linear relationship in the normal state. Similarly, OP-PV in 

Figure 4b is also a limit cycle shape. Since the variable MV in most actual control loops is 

difficult to measure [34], the proposed method uses OP and PV data to detect valve static 

friction, which is more practical. Figure 5 shows the OP and PV curves with a sticky 

control valve, taken from a simple numerical simulation example. The X-axis represents 

the oscillation magnitude of OP and PV with respect to the steady-state point of the 

system, and the Y-axis is the number of samples in time order. 

   
(a) (b) 

Figure 4. OP-MV and OP-PV plots with a sticky control valve: (a) OP-MV plot; (b) OP-PV plot. 

  

Figure 5. OP and PV curves with a sticky control valve. 

3. Methodology 

This section contains the principle and the steps of the proposed method in detail. 

Firstly, the OP and PV data were preprocessed and reconstructed. Then, the SFs of the 

reconstructed data were extracted by the DSFA method, and the long-term correlation of 

the slowest SF sequence was calculated by the Hurst exponent. Finally, a new valve 

detection index was defined. 

  

Figure 4. OP-MV and OP-PV plots with a sticky control valve: (a) OP-MV plot; (b) OP-PV plot.

Processes 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

Figure 4 shows OP-MV and OP-PV plots with a sticky control valve. From Figure 4a, 

it can be seen that, affected by the static friction of the valve, the OP-MV plot presents a 

limit cycle shape instead of a linear relationship in the normal state. Similarly, OP-PV in 

Figure 4b is also a limit cycle shape. Since the variable MV in most actual control loops is 

difficult to measure [34], the proposed method uses OP and PV data to detect valve static 

friction, which is more practical. Figure 5 shows the OP and PV curves with a sticky 

control valve, taken from a simple numerical simulation example. The X-axis represents 

the oscillation magnitude of OP and PV with respect to the steady-state point of the 

system, and the Y-axis is the number of samples in time order. 

   
(a) (b) 

Figure 4. OP-MV and OP-PV plots with a sticky control valve: (a) OP-MV plot; (b) OP-PV plot. 

  

Figure 5. OP and PV curves with a sticky control valve. 

3. Methodology 

This section contains the principle and the steps of the proposed method in detail. 

Firstly, the OP and PV data were preprocessed and reconstructed. Then, the SFs of the 

reconstructed data were extracted by the DSFA method, and the long-term correlation of 

the slowest SF sequence was calculated by the Hurst exponent. Finally, a new valve 

detection index was defined. 

  

Figure 5. OP and PV curves with a sticky control valve.

3. Methodology

This section contains the principle and the steps of the proposed method in detail.
Firstly, the OP and PV data were preprocessed and reconstructed. Then, the SFs of the
reconstructed data were extracted by the DSFA method, and the long-term correlation
of the slowest SF sequence was calculated by the Hurst exponent. Finally, a new valve
detection index was defined.

3.1. Data Preprocessing and Reconstruction

In this step, the collected data were subjected to standardization preprocessing and
reconstruction. Magnitude issues often arise due to variations in variable units and the
nature of the process. To prevent bias in subsequent analysis, it was imperative to establish
a consistent scaling magnitude for each data set [35]. Therefore, the OP and PV data were
standardized to zero mean and unit variance, respectively, according to Equation (2):

v(k) =
x(k)− x

σ
(2)

where x(k) (k = 1, · · · , N) represent N time series samples, and x and σ are the mean and
sample standard deviation of time series samples.
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As can be seen from Figure 5, PV and OP exhibited periodic oscillations with a certain
phase difference after static friction occurred in the valve. Therefore, we used the difference
between PV and OP, which also had periodic oscillation characteristics, to construct a new
time series for detecting valve stiction.

d(k) = vPV(k)− vOP(k) (3)

where vPV(k) and vOP(k) are standardized time series PV and OP, respectively.

3.2. Dynamic Slow Feature Analysis
3.2.1. Slow Feature Analysis

As an up-and-coming ML algorithm, slow feature analysis (SFA) has been widely applied
in control performance evaluation [36,37] and the detection of process faults [38–41]. SFA is
mainly used to extract SFs from time series data xT(t) = [x1(t), x2(t), · · · xM(t)], and the
goal of SFA is to find a set of mapping functions qT(t) = [q1(t), q2(t), · · · qM(t)], whose
output has the largest single-lag autocorrelation [42]. The objective function of SFA is:

min
〈 .

s2
j

〉
t

(4)

and the constraints are as follows: 〈
sj
〉

t = 0 (5)〈
s2

j

〉
t
= 1 (6)

∀i 6= j,
〈
sisj
〉

t = 0 (7)

where
.
sj(t) = sj(t)− sj(t− 1), 〈·〉t is time averaging and is defined as:

〈 f 〉t =
1

t1 − t0

∫ t1

t0

f (t)dt (8)

The SFs extracted by SFA are sorted from slow to fast, that is, s1 is the slowest feature,
s2 is the second, and so on. Linear SFA represents these features as a linear combination of
time series data columns. The corresponding equation is given as

s = Wx (9)

where W = [w1, · · · , wM]T is the transformation matrix, and wj(j = 1, · · · , M) denotes
coefficient vector. W can be obtained by solving the following generalized eigenvalue problem:

AW = BWΩ (10)

where A =
〈 .

x
.
xT
〉

t
, B =

〈
xxT〉

t, and Ω = diag{ω1, · · · , ωM} is a diagonal matrix of
generalized eigenvalues. The solution to the above generalized eigenvalue problem is
summarized below:

1. Standardized input data to zero mean and unit variance, x̃;
2. Singular value decomposition (SVD) is employed on the covariance matrix of x̃ in

order to obtain spherical data Z.〈
x̃x̃T
〉

t
= UAUT (11)

Z = A−1/2UTx̃ (12)

By applying SVD to the covariance matrix of
.
Z, W can be computed as follows:〈

.
Z

.
Z

T
〉

t
= PΩPT (13)

W = PA−1/2UT (14)
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3.2.2. Dynamic SFA

In order to better extract the dynamic features in the oscillating time series, the input
data of SFA were further expanded using l lag samples to derive a dynamic SFA (DSFA) [37].
Meanwhile, through data expansion, d(k), which is the input of SFA, was expanded from a
single-dimensional vector to a multi-dimensional matrix, which matched the SFA algorithm.
The data matrix is stacked as shown in Equation (15):

Dd(k) =


d(k) d(k− 1) · · · d(k− l)

d(k + 1) d(k) · · ·
...

...
. . .

...
d(k + n− 1) d(k + n− 2) · · · d(k + n− l − 1)

 (15)

where Dd(k) is the stacked matrix.
According to the SFA principle, the slowest SF corresponds to the smallest generalized

eigenvalue, and the smaller the eigenvalue, the stronger the single-lag autocorrelation of
the extracted SF. In the proposed method, we estimated the Hurst exponent for the slowest
SF. In order to ensure that the slowest SF could more fully extract dynamic features, we
selected the l value when the ratio of the generalized eigenvalue of the slowest SF to the
sum of the generalized eigenvalues of all SFs was less than 5%.

The oscillation signal due to valve stiction had high autocorrelation, and DSFA was
able to extract the largest single-lag autocorrelation of the oscillation signal. In addition, the
lagged autocorrelation of some noise was zero, indicating that DSFA mitigated the effect of
noise to some extent [41]. Therefore, we chose the slowest SF s1 to detect valve stiction.

3.3. Hurst Exponent

The DSFA method only extracts the dynamic feature information of single-lag, and
in order to further extract the long-term correlation information, the Hurst exponent was
used to analyze the slowest SF s1. The Hurst exponent can quantify the extent of long-term
correlation in a time series, where the influence of current or past values of the series
extends significantly into the future. This influence surpasses what random fluctuations
alone can produce. The Hurst exponent is capable of detecting and analyzing nonlinear
dynamics in systems and has been widely used in financial market analysis [42], controller
performance evaluation [43], and hydrological data analysis [44].

The detrended fluctuation analysis (DFA) algorithm is a very effective method for
estimating the Hurst exponent of a time series x(k), (k = 1, · · · , N), and it is divided into
the following steps [43]:

1. Calculate a cumulative time series X(i) by following equation:

X(i) =
i

∑
k=1

(x(k)− x)i = 1, 2, · · · , N (16)

where x is the mean of x(k);
2. Split X(i) into d non-overlapping windows of length n, each of which is then fitted

with a first-order least-squares line X̂j(i), j = 1, · · · , d;
3. Calculate the variance f 2

j for each window as follows:

f 2
j =

1
n

n

∑
i=1

(Xj(i)− X̂j(i))
2, j = 1, · · · , d (17)

4. The calculation of the root mean square fluctuation should be performed as a function
of the window size by:

F(n) =

√√√√1
d

d

∑
j=1

f 2
j (18)

5. Perform steps 2–4 repeatedly with varying window lengths n;
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6. Plot F(n) versus n on a log-log graph. Determine the slope of this log-log graph,
which represents an approximation of the Hurst exponent, denoted as He.

In the case of a time series, the value He varied from 0 to 1. If He was close to 0.5, it
indicated that the long-term correlation of the time series approaches zero; on the contrary,
if He was far from 0.5, it indicated that the time series had long-term persistence/positive
correlation, i.e., there were potential nonlinear dynamics in the system [43,44].

3.4. Stiction Detection Index and Algorithm Steps Based on DSFA-Hurst Exponent

Inspired by the performance evaluation method [43], the stiction detection index Hs is
defined as:

Hs =
{

He/0.5 if He ≤ 0.5
(1− He)/0.5 if He > 0.5

(19)

Hs values range from 0 to 1, with values closer to 0 indicating higher long-term
correlation in the time series, which is a sign of valve stiction. A threshold of 0.5 was used
in this paper to diagnose valve stiction. If Hs was less than 0.5, it indicated that a valve
stiction fault had occurred.

Figure 6 depicts the flowchart of this algorithm. The detailed steps are as follows:

1. Collect OP and PV data from DCS;
2. Standardize the collected OP and PV according to Equation (2);
3. Use Equations (3) and (15) to calculate the difference between OP and PV, and stack

the difference to obtain Dd;
4. Use the DSFA algorithm in Section 3.2 to extract the slowest SF s1 of Dd;
5. Calculate the Hurst exponent He of the slowest SF s1 using the DFA method in 3.3;
6. Calculation of valve stiction index Hs using the Equation (19).
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4. Case Study

In this section, the proposed Hs index is tested and compared with the R index
in three different scenarios, including the benchmark numerical simulation of a simple
control loop [4,31], a mixed-model simulation of a continuous stirred tank heater (CSTH)
benchmark system [45], and the real process data from an international stiction database
(ISDB) [9]. The R index is a classical method for detecting persistent oscillations using
zero-crossings of the ACF and has been used to detect valve stiction [19,35].

R =
1
3

(
Tp

σTp

)
(20)

where Tp and σTp are the mean and standard deviation of the ACF oscillation period,
respectively. If R > 1, this indicates that the control loop has regular oscillation, which may
be caused by valve stiction or by persistent external disturbance. The two-parameter valve
model, as defined by Choudhury, which is presented in Section 2, is used in Scenario one
and Scenario two.

4.1. Scenario One

In this scenario, the proposed Hs index is tested on a benchmark numerical simulation
process; the process model and controller transfer functions are given by Equations (21)
and (22) [4,31]:

Gp =
3

10s + 1
e−10s (21)

Gc = 0.2× 10s + 1
10s

(22)

where the simulation step interval is 0.1, and the number of samples is 2000. The noise at
follows a standard Gaussian distribution and at ∼ N(0, 0.52).

Figure 7 shows the oscillation curves and limit cycle plots with the valve stiction
parameter S = 2, J = 1. It can be seen from the curves in Figure 7a that both vPV and
vOP exhibit a periodic oscillation trend, and there is a phase gap between them, so their
difference signal d presents a periodic oscillation. From the plots in Figure 7b, vOP-d and
vOP-vPV are both limit cycle shapes, which shows the presence of nonlinearity between vOP
and d, just like that between vOP and vPV.
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Table 1 lists the detection results under five valve stiction parameters in the numerical
simulation process. It can be observed that, for all five cases, the Hs indices of the proposed
method were less than 0.5, indicating the presence of valve stiction. Similarly, the R indices
were also greater than 1, indicating the detection of oscillations in the loop resulting from
valve stiction.

Table 1. The detection results of Hs index and R index under five valve stiction parameters.

Case R Hs

S = 2, J = 1 75.9120 0.4383

S = 2, J = 1.5 13.4174 0.2988

S = 2, J = 2 83.0315 0.1232

S = 2, J = 2.5 18.8464 0.2458

S = 2, J = 3 26.8159 0.2850

Table 2 lists the detection results under external unit step disturbance and different
sinusoidal disturbances in the numerical simulation process. The sinusoidal disturbance
signal expression is shown in Equation (23):

Ed = A× sin(ωt) (23)

where A and ω are the amplitude and frequency of the sinusoidal disturbance signal,
respectively. From the results, it can be seen, that when a unit step disturbance is introduced,
R = 0.4963, which is less than 1. This indicates that no oscillation occurs in the loop in this
case, and the result is correct. For other cases, when sinusoidal disturbance signals are
added, the values of R are greater than 1, indicating oscillations occur in the loop. When
A = 1 and ω = 3, Hs = 0.2861, which is less than 0.5. This indicates the presence of valve
stiction in this case, and the result is incorrect. The values of Hs in other cases are greater
than 0.5, indicating the absence of valve stiction, which aligns with the simulation cases.

Table 2. The detection results of Hs index and R index under external step disturbance and sinu-
soidal disturbances.

Case R Hs

unit step disturbance 0.4963 0.7410

A = 1, ω = 3 19.9481 0.6550

A = 3, ω = 3 6.7425 0.7082

A = 5, ω = 3 5.9312 0.7317

A = 3, ω = 2 19.5162 0.2861

A = 3, ω = 4 45.5180 0.9590

4.2. Scenario Two

The CSTH benchmark process is a heat exchanger system commonly applied in chem-
ical process fault diagnosis [46–48] and safety analysis [49]. Its dynamic model describes
the behavior of the CSTH system in terms of fluid flow, heat transfer, and temperature
dynamics. Thornhill et al. employ a combination of measured data extracted from a process
and a physical mechanism model, developing a hybrid model [45]. It incorporates the
detailed characterization of valves, sensors, and the heat exchanger, resulting in more
sophisticated and realistic features. Refer to Figure 8 for its structural representation. In
the experiment, u1 and u2 were treated as manipulated variables, while y1 and y3 were
considered as controlled variables. Specifically, y1 was controlled by u1, while y3 was
controlled by u2.
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Figure 8. The structure of CSTH.

The following displays the dynamic volumetric and heat balances of the CSTH:

dV(l)
dt

= fcw + fhw − fout(l) (24)

dH
dt

= Wst + hhwρhw fhw + hcwρcw fcw − houtρout fout(l) (25)

Table 3 provides a description of the parameters for the CSTH system, and Table 4
displays the operational situation. In this case, the simulation step interval is 1, the number
of samples is 2000. The noise εt follows a standard Gaussian distribution and εt ∼ N(0, 0.42).
The PI controller parameters for the temperature control loop are Kp = 1.5 and Ti = 0.04.
The steam valve u2 is set with stiction, resulting in temperature oscillation inside the tank.

Table 3. Description of parameters for CSTH.

Parameter Description Parameter Description

u1 Input of the steam valve u2 Input of the cold water valve

u3 Input of the hot water valve u4 Input of the water outlet valve

y1 Level y3 Temperature

V The volume of water hhw The specific enthalpy of hot water feed

l The level of water hcw The specific enthalpy of cold water feed

fcw The cold water flow into the tank ρhw The density of incoming hot water

fhw The hot water flow into the tank ρcw The density of incoming cold water

fout The outflow from the tank ρout The density of water leaving the tank

H The total enthalpy in the tank Wst The heat inflow from steam

Table 4. The operational situation of the CSTH system.

Variable Operating Point

Temperature 42.52 ◦C

Level 20.48 cm

Steam valve 12.57 mA

Cold water valve 12.96 mA

Cold water flow 90.38 cm3/s

Hot water flow 0 cm3/s

Hot water valve 0 mA
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The oscillation curves and limit cycle plots with the valve stiction parameter S = 1,
J = 0.5 are shown in Figure 9. From the curves in Figure 9a, we find that both vu2

and vy3
oscillate, but the oscillations are not periodic and have a certain randomness. There is also
a phase difference between the two. Hence, the signal d also exhibits irregular oscillation.
In Figure 9b, the limit cycle shapes, plotted by vu2

-vy3
and vu2

-d, also display irregular
patterns, indicating the presence of nonlinearity.
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The detection results under different valve stiction parameters are presented in Table 5.
It can be noted that the Hs indices were below 0.5 for all five cases, indicating the presence
of valve stiction. However, the R indices were less than 1, indicating that no oscillations
were detected and these results were failures. Figure 10 provides the ACF curves of the
system output when the parameters S = 1, J = 0.5 in Scenario two, and the parameters
S = 2, J = 1 in Scenario one. Compared with the ACF in Scenario one shown in Figure 10b,
the intervals between the ACF zero-crossing points of the irregular oscillation time series
also have a certain degree of randomness, as shown in Figure 10a. This is the reason
for the detection failure of the R index. Meanwhile, the proposed method calculated the
long-term correlation over the entire sample data range, and therefore accurately detected
this irregular oscillation signal, i.e., the valve stiction was successfully detected. According
to the experimental results mentioned above, the proposed method had better detection
performance when valve stiction led to irregular oscillation.

Table 5. The detection results of the proposed Hs index and R index under five valve stiction parameters.

Case R Hs

S = 1, J = 0.5 0.1786 0.2255

S = 1, J = 0.75 0.1296 0.3265

S = 1, J = 1 0.0810 0.2938

S = 1, J = 1.25 0.0919 0.2130

S = 1, J = 1.5 0.1748 0.2696
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Table 6 presents the detection results in CSTH under external unit step disturbance
and various sinusoidal disturbances. Upon examining the results, it is evident that when
a unit step disturbance was added, R = 0.3045, which was less than 1. This suggests that
no oscillation occurred in the loop in this case, yielding a correct outcome. Conversely,
in the remaining cases, where sinusoidal disturbance signals were added, the R values
exceeded 1, indicating the presence of oscillations in the loop. For valve detection index Hs,
when A = 1 and ω = 0.75, Hs = 0.4093, which falls below 0.5. This signifies the existence
of valve stiction in this case, rendering the result inaccurate. Conversely, the Hs values
surpassed 0.5 in other cases, denoting the absence of valve stiction, thus aligning with the
simulated cases.

Table 6. The detection results of Hs index and R index under external step disturbance and sinu-
soidal disturbances.

Case R Hs

unit step disturbance 0.3045 0.6988

A = 0.5, ω = 0.5 31.6027 0.8209

A = 1, ω = 0.5 39.1983 0.7796

A = 1.5, ω = 0.5 57.6984 0.7626

A = 1, ω = 0.75 52.2941 0.4093

A = 1, ω = 0.25 56.2201 0.5388

4.3. Scenario Three

The real process data, provided by ISDB under the valve stiction faults in temperature
control loop 6 and loop 7 in buildings, are used in this section, and control loop 6 and loop 7
are abbreviated as ‘Buildings-6’ and ‘Buildings-7’, respectively.

Figures 11 and 12 show the oscillation curves and limit cycle plots of Buildings-6 and
Buildings-7. It can be observed that the two cases had periodic oscillation due to the valve
stiction, and there was a phase difference between OP and PV. In addition, the OP and PV
plots were the limit cycle shapes, indicating that both loops had severe nonlinearity. The
detection results in Table 7 show that the proposed method successfully detected valve
stiction. Additionally, the method based on R index also detected loop oscillations caused
by valve stiction.
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Table 7. The detection results of the proposed Hs index and R index of Buildings-6 and Buildings-7.

Case R Hs

Buildings-6 4.4380 0.3719

Buildings-7 5.4544 0.3361

The comprehensive experimental results led to the conclusion that the proposed Hs
index can effectively detect valve stiction. By considering the temporal dynamic charac-
teristics and long-term correlation information of the process data, the method was also
accurate in detecting non-periodic random oscillations caused by static friction and exhib-
ited a better performance compared with the R index. Meanwhile, through simulation
tests on external sinusoidal disturbances of different amplitudes and frequencies, it was
observed that the proposed Hs index had a certain ability to distinguish between valve
stiction and external sinusoidal disturbances. However, it also had false alarms, meaning
that it incorrectly identified external sinusoidal disturbance as valve stiction.

The proposed method has its limitations. Firstly, the method requires a phase differ-
ence between OP and PV data. Secondly, the calculation of the Hurst exponent requires an
adequate number of samples to ensure accuracy, thus making it unsuitable for datasets with
small sample sizes. Thirdly, the proposed method may generate false alarms in detecting
external sinusoidal disturbances. To reduce such false alarms, it can be combined with
other methods such as cross-correlation function or SVM. Alternatively, further research
and improvement in the proposed method are needed to achieve this goal, which will be
our future research work.

5. Conclusions

In this paper, an ML method for valve stiction detection based on the DSFA–Hurst
exponent is proposed, aiming to detect valve stiction by utilizing dynamic features and
long-term correlation information in process data. This method mainly involves two layers
of ML algorithms: in the first layer, the DSFA method is implemented to extract the SFs,
which can characterize the slow change information from the differential reconstruction
data between the OP and the PV. Then, in the second layer, the long-term correlation of
the slowest SF information is calculated based on the Hurst exponent. Finally, a new valve
stiction detection index Hs is defined. The experimental results indicate that the proposed
method can effectively detect the stiction of the valve, even when the valve stiction causes
irregular oscillations. It also demonstrates a certain capability to differentiate between
valve stiction and external sinusoidal disturbances.
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Abbreviations

ACF auto-correlation function
BSD butterfly-shape-based stiction detection
CNN convolutional neural network
CSTH continuous stirred tank heater
DCS distributed control systems
DFA detrended fluctuation analysis
DTW dynamic time warping
DSFA dynamic slow feature analysis
ISDB international stiction database
ML machine learning
ODE ordinary differential equation
OP controller output
PV controlled process variable
PCA principal component analysis
PSD power spectral density
SFA slow feature analysis
SF slow feature
SVD singular value decomposition
SDN stiction detection network
SVM support vector machines
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