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Abstract: Current performance analysis processes for drag-dominant tidal turbines are unsuitable
as disk actuator theory lacks support for varying swept blockage area, bypass flow downstream
interaction, and parasitic rotor drag, whereas blade element momentum theory is computably
effective for three-blade lift-dominated aerofoil. This study proposes a novel technique to calculate
the optimal turbine tip speed ratio (TSR) with a cost-effective and user-friendly moment balancing
algorithm. A reliable dynamic TSR matrix was developed with varying rotational speeds and fluid
velocities, unlike previous works simulated at a fixed fluid velocity. Thrust and idle moments are
introduced as functions of inlet fluid velocity and rotational speed, respectively. The quadratic
relationships are verified through regression analysis, and net moment equations are established.
Rotational speed was a reliable predictor for Pinwheel’s idle moment, while inlet velocity was a
reliable predictor for thrust moment for both models. The optimal (Cp, TSR) values for Pinwheel and
Savonius turbines were (0.223, 2.37) and (0.63, 0.29), respectively, within an acceptable error range for
experimental validation. This study aims to improve prevailing industry practices by enhancing an
engineer’s understanding of optimal blade design by adjusting the rotor speed to suit the inlet flow
case compared to ‘trial and error’ with cost-intensive simulations.

Keywords: drag-dominant tidal turbine; simulation validation; moment balancing method; Savonius;
pinwheel; blade shape optimization

1. Introduction

Tidal energy holds significant potential for growth as a dependable source of energy
worldwide to provide economic relief for communities near coastlines or tidal channels
generating well above 130,000 terawatt-hours of electricity per year [1–5]. The energy
generated could power residential, commercial, and tourism sectors through smart grid
infrastructure. Ocean energy technologies, such as tidal and wave energy, have the potential
to meet 10% of the EU’s power demand by 2050 [6].

Drag-dominated tidal turbines (DDTTs) feature simpler geometries and operate at
lower flow velocities, making them well-suited for deployment in slow water currents.
DDTTs consist of axial or crossflow turbines where the axis of rotation is horizontal or
vertical to the inflow direction, respectively. In this paper, the DDTTs of Pinwheel, as
a horizontal axis turbine, and Savonius, as a vertical axis turbine, were studied as two
typical examples. In the past numerical simulation process, [7] applied the blade element
momentum (BEM) theory to optimize the design of a small horizontal axis wind turbine
for low wind speed areas through Q-blade software and a MATLAB script. The authors
of [8] experimentally evaluated the performances of Pinwheel rotors with different cut-
ting styles in a wind tunnel, finding that the tip speed ratio (TSR or λ) decreased as the
number of blades increased and that Cp was maximum for the four-bladed rotor. The
authors of [9] compared the performances of eleven different configurations of Pinwheel
wind turbines to discover an optimal TSR of 5.5, with a cut-in speed of 1.65 m/s and a
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cut-off speed of 12.5 m/s, through computational fluid dynamics (CFD) simulation and
Weibull distribution.

In the exploration of blade optimization, [10] found that a two-bladed single-stage
Savonius tidal turbine achieved the highest experimental power coefficient in comparison
to those with three or four blades. The authors of [11,12] conducted experimental studies
in a wind tunnel and validated the inverse relation between performance and the overlap
ratio, i.e., the ratio of the area where the blades of the turbine overlap to the total area swept
by the blades. The authors of [13,14] investigated performance improvement by a parabolic
and Myring Equation-inspired blade design using two-dimensional transient simulations,
whereas [15,16] analyzed a helical and humpback whale-inspired blade design, respectively,
using ANSYS-CFX code.

In the exploration of the hydrodynamic system, [17] presented an experimental and
computational design analysis of a direct drive-vertical axis Darrieus hydrokinetic turbine.
Through 2D simulations, their results showed improved energy extraction compared to
single rotor designs, good torque smoothing, flow velocity reduction, and lift generation.
Future work includes conducting 3D simulations to analyze vorticity flow patterns, uti-
lizing large-eddy simulations for recirculation regions, and performing an analysis of
multi-blade profiles and lag angles for design optimization. The study by [2] aimed to
develop a simplified analytical method for calculating the backwater and blockage effects
of hydrokinetic turbines in inland water systems. This was achieved by using CFD models
and a validated multiphase model. They provided a simplified tool for first-order analysis
of backwater in the deployment of inland turbine systems, which incorporated flow velocity
and thrust coefficient. The tool was validated through scaled model experiments. The
authors of [18] investigated diffuser-augmented tidal turbines and discovered an effective
reduction in blade tip losses using a diffuser. Furthermore, the practical evaluation of this
turbine conducted offshore at Daishan Island confirmed slightly higher energy efficiency
compared to the experimental model, thus validating its application potential. In their
work, [19] considered the optimized array layout of a hydrokinetic turbine farm in canals,
involving rotor geometry, turbine spacing, and array spacing while managing backwater
effects. This approach considered rotor fluid dynamics losses and overcame the limitations
of actuator disc models.

This research presents a novel optimization strategy for enhancing the blade design
and power generation of DDTTs by generating a preliminary result to enhance the en-
gineer’s understanding before choosing from a wide range of available computational
techniques. The strengths of this study are as follows:

• Dynamic TSR matrix: Varying TSR by adjusting turbine rotational speed with inflow
velocity for realistic conditions with a relatively simple experimental design [20,21].

• Net moment analysis: Balancing equation derived from the sum of idle and thrust
moments, aiding TSR calculation with 15.3% and 10.0% error rate (CFD model).

• Optimal power generation: Determining power coefficient and operating conditions
based on the torque–power relationship with experimental and numerical validation.

• Robust power coefficient finder: Zero net moment identifies optimal TSR, applicable
to turbines of any shape or orientation.

• Time and cost savings: Moment parameter collection using steady and K-ε turbu-
lence model, accessible on a standard laptop for 3D CFD models. Fast convergence
saves time.

2. Methodology
2.1. Channel Parametric Study

In this work, the commercial software Star-CCM+ was utilized for the analysis of
CFD models. The geometries of the Pinwheel and Savonius turbines were developed
using SolidWorks and subsequently imported into the Star-CCM+ platform. The fluid
domain was created in three dimensions (3D) and divided into a stationary region and a
rotating domain, which, respectively, housed the Pinwheel and Savonius turbine [17]. For



Processes 2023, 11, 1895 3 of 17

further investigation, Figures 1 and 2 depict the top view and 3D isometric view of the
computational flow domain, respectively.

Processes 2023, 11, x FOR PEER REVIEW 3 of 18 
 

 

was created in three dimensions (3D) and divided into a stationary region and a rotating 

domain, which, respectively, housed the Pinwheel and Savonius turbine [17]. For further 

investigation, Figures 1 and 2 depict the top view and 3D isometric view of the computa-

tional flow domain, respectively. 

 

Figure 1. Top view of the computation flow domain for the Pinwheel/Savonius CFD simulations 

(3D). 

To ensure accurate analysis results, the dimensions of the inlet, outlet, and surround-

ing walls of the stationary region were adjusted to facilitate the complete development of 

upstream and downstream flow without exerting any influence on the analysis. Both the 

inlet and outlet boundaries were positioned upstream and downstream from the centroid 

of the turbine system. The side, top, and bottom walls were assigned a symmetric bound-

ary condition. In all flow simulations, seawater was considered as the working fluid. It is 

worth noting that the flow domain for the Savonius turbine was designed with a longer 

downstream length of 12D (rotor diameter), whereas the Pinwheel turbine had a down-

stream length of 9D. This design choice was made to ensure the attainment of a fully ex-

tended vortex for the Savonius turbine, as its wake decay length is longer than that of the 

Pinwheel turbine [22–26]. 

 

Figure 2. Isometric view of the computation flow domain for the (left) Pinwheel and (right) Savo-

nius CFD simulations (3D). 

The domains’ actual scale was determined through a parametric study that aimed to 

equalize the blockage ratio of both models. The blockage ratio refers to the area occupied 

Figure 1. Top view of the computation flow domain for the Pinwheel/Savonius CFD simulations (3D).

To ensure accurate analysis results, the dimensions of the inlet, outlet, and surrounding
walls of the stationary region were adjusted to facilitate the complete development of
upstream and downstream flow without exerting any influence on the analysis. Both
the inlet and outlet boundaries were positioned upstream and downstream from the
centroid of the turbine system. The side, top, and bottom walls were assigned a symmetric
boundary condition. In all flow simulations, seawater was considered as the working
fluid. It is worth noting that the flow domain for the Savonius turbine was designed with a
longer downstream length of 12D (rotor diameter), whereas the Pinwheel turbine had a
downstream length of 9D. This design choice was made to ensure the attainment of a fully
extended vortex for the Savonius turbine, as its wake decay length is longer than that of
the Pinwheel turbine [22–26].
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Figure 2. Isometric view of the computation flow domain for the (left) Pinwheel and (right) Savonius
CFD simulations (3D).

The domains’ actual scale was determined through a parametric study that aimed to
equalize the blockage ratio of both models. The blockage ratio refers to the area occupied by
the blades in relation to the turbine inlet area, while the aspect ratio represents the ratio of
a turbine blade’s length to the rotor’s radius. An experimental investigation and numerical
simulations were conducted by [27] to identify the optimal performance characteristics
of a miniature Savonius turbine operating in a water channel with a low in-flow velocity
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of 0.5 m/s. Their findings revealed that a TSR (tip speed ratio) of 0.7 yielded the highest
maximum power coefficient (Cp) value of 0.23. The selection of a 2 mm sheet thickness was
based on [28]. The blockage and aspect ratio were calculated using the Savonius blade and
channel area provided by [27], as outlined in Equations (1) and (2).

Aspect Ratio(Savonius) =
Channel Width = 0.6

Channel Height = 0.325
= 1.85 (1)

Channel Area(Savonius) = Channel Width.Channel Height
= (0.6 m).(0.325 m) = 2.36 m2 (2)

Then, these were applied to the Pinwheel’s domain as given in Equations (3) and (4).

Aspect Ratio(Pinwheel) =
Channel Width(X)

Channel Height(Y)
= 1.85 (3)

Channel Area(Pinwheel) = Channel Width(X).Channel Height(Y) = 2.36 m2 (4)

Upon multiplying LHS and RHS of Equation (3) by Y as given in Equation (5) and
substituting Y in Equation (4), the Pinwheel channel width and height were calculated as
(X, Y) = (2.09, 1.13) m.

X
Y

.
Y
Y

=
2.36
Y2 = 1.85, thus, Y =

√
2.36
1.85

= 1.13 m (5)

For the same aspect ratio and blockage, the significant lengths were the same, thereby
affecting only the fluid velocity, which influenced the Reynolds number (Re) of the flow
field [29]. The scales of the two models are tabulated in Table 1, along with the minimum
and maximum Reynolds numbers observed at different flow speeds. The design of the
channel blockage is illustrated in Figure 3.

Table 1. Scales of the CFD models.

Parameter Unit Pinwheel Savonius Parameter Unit Pinwheel Savonius

Blade Radius m 0.3 0.059 Channel
Height m 1.13 0.325

Rotor
Diameter m 0.6 0.118 Channel

Area m2 2.36 0.195

Rotor Height m 0.6 0.187 Aspect Ratio / 1.85 1.85

End-Plate
Diameter m - 0.130 Blockage

Ratio / 0.12 0.12

Blade Area m2 0.283 0.022 Min Re / 542 k 129 k

Channel
Width m 2.09 0.600 Max Re / 1354 k 323 k

2.2. Mesh Overview

The convergence rate and grid independence of results significantly influenced the
computational mesh’s effectiveness [30–32], as established previously. In this study, we
employed a combination of edge and face sizing techniques to determine the cell sizes of
the mesh. For Pinwheel, an unstructured tetrahedral meshing scheme was used, while for
Savonius, a polyhedral meshing scheme was employed. This approach is applicable to both
stationary and rotating scenarios. We selected this methodology based on the advantages
of unstructured grids, which allow for the efficient discretization of complex geometries
while minimizing the need for user intervention [33–35]. Figure 4 provides an overview of
the volume mesh, while Figure 5 shows cross-sectional views.
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For the Savonius and Pinwheel simulations, the fluid temperature is assumed to be at
the default values of 25 ◦C and 20 ◦C, respectively, with seawater densities of 997.56 kg/m3

and 1025 kg/m3, respectively. Both models utilized a K-ε turbulence steady-state segre-
gated solver, with the convergence criterion set to residuals of magnitude 10−3. The fluid
properties and flow models are summarized in Table 2. This consistent choice aided in
comparing the Cp-TSR performance curves of the two models.

Figure 6 illustrates the variation of grid elements and the corresponding power coeffi-
cient of the two turbines for a steady-state model. For the Pinwheel turbine, a grid number
of 2,080,945 cells was selected based on a fluid velocity of 0.9 m/s, rotational velocity of
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7.5 rad/s, and TSR of 2.5. For the Savonius turbine, a grid number of 1,069,955 cells was
selected based on a fluid velocity of 0.5 m/s, rotational velocity of 6 rad/s, and TSR of 0.7.

Table 2. Properties of fluid in the CFD models.

Fluid
Temperature 25 ◦C Density 997.56 kg/m3 Turbulence K-ε turbulence

Dynamic
Viscosity 0.00108 Pa/s Flow

properties
Steady

incompressible flow

Solver Segregated flow Target
Residuals 10−3
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Figure 7 depicts the cross-sectional mesh view of the prism layer mesh applied to
the surface of the two hydrofoil blades. To maintain consistency, three prism layers were
utilized, with the first prism thickness set at 0.005 m and a stretching ratio of 1.2. This
approach ensured the inclusion of the boundary layer in all mesh simulations, consequently
reducing variability. For the blade surface, a relative target cell size of 0.2 m was selected,
and the relative minimum cell size was established at 0.005 m. Given the presence of
turbulent flow in the trailing edge of the hydrofoil, it necessitated a high-quality mesh.
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2.3. Boundary Conditions with Dynamic TSR Matrix

The two varying independent variables in this study, i.e., U1 and ω comprise a dynamic
TSR matrix using Equation (6) summarized for both turbines as Tables 3 and 4. This method
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can provide a series TSR range to find the turbine’s optimal TSR by the Cp -TSR curve. The
outlet pressure is set to 0 for all cases.

TSR =
ωR
U1

(6)

Table 3. Dynamic TSR matrix in different initial conditions for Pinwheel rotor.

TSR Rotational Speed ω (rad/s)

6.67 7.50 8.00 8.17

Inlet speed
U1

(m/s)

0.40 0.80 0.80 0.79 0.81

0.50 1.08 1.15 1.16 1.19

0.60 1.49 1.52 1.55 1.57

0.70 1.94 1.99 2.03 2.06

0.80 2.56 2.57 2.58 2.62

0.90 3.26 3.23 3.26 3.29

1.00 4.18 4.02 4.00 4.03

Table 4. Dynamic TSR matrix in different initial conditions for Savonius rotor.

TSR Rotational Speed ω (rad/s)

4.50 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75

Inlet
speed

U1 (m/s)

0.33 0.8 0.89 0.94 0.98 1.03 1.07 1.12 1.16 1.21

0.42 0.63 0.7 0.74 0.77 0.81 0.84 0.88 0.91 0.95

0.46 0.58 0.64 0.67 0.71 0.74 0.77 0.8 0.83 0.87

0.50 0.53 0.59 0.62 0.65 0.68 0.71 0.74 0.77 0.80

0.54 0.49 0.55 0.57 0.60 0.63 0.66 0.68 0.71 0.74

0.58 0.46 0.51 0.53 0.56 0.58 0.61 0.64 0.66 0.69

0.67 0.40 0.44 0.46 0.48 0.51 0.53 0.55 0.57 0.59

0.75 0.35 0.39 0.41 0.43 0.45 0.47 0.49 0.51 0.53

0.83 0.32 0.36 0.37 0.39 0.41 0.43 0.44 0.46 0.48

2.4. Derivation of Characteristic Equation

Moment analysis of a single turbine configuration has been investigated in either
horizontal or vertical axis cases. This study introduces two new moment definitions, the
idle and thrust moments, derived mathematically from previous literature equations with
respect to BCs, i.e., the rotational velocity ω and fluid velocity U1. The aim is to establish
an equilibrium state and describe its moment balancing equation to determine the optimal
power coefficient Cp,opt. Prior research utilized a fixed inlet flow speed scheme; however,
this study employs a dynamic TSR matrix for the simulations.

2.4.1. Net Moment Balancing Equation

The authors of [36] studied the performance dependence of VAWTs on the moment
of inertia in an unsteady wind tunnel and proposed Equation (7) with the net angular
momentum ∆L as a sum of torque of wind turbine τw, brake τB and load τL. The authors
of [37] proposed Equation (8) for calculating the net torque on a turbine under a set optimal
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rotational speed operation as the motor generates a counterbalancing torque on the turbine
rotor under fluid loading.

∆L = I
dw
dt

= (τw − τB)− τL (7)

J
..
θ = τRotor − D

( .
θ
)
− τMotor (8)

The net moment when the turbine is stationary, but the fluid motion exerts load to
rotate the turbine, is defined as the thrust moment, MThrust(U1, 0), governed by the thrust
coefficient CT and fluid velocity U1. Idle moment, MIdle(0, ω), is defined as when the
turbine is rotating at constant speed in still water; hence, a load is exerted on the turbine. It
is governed by the viscosity and centrifugal force of the fluid. Applying the principle of
conservation of angular momentum and assuming steady operation in Equation (7), the
sum of the external moments (Στ) is zero as derived in Equation (9) or the form of moment
balancing equation in Equation (10):

Στ = ∆L = τw − (τL + τB) = 0 (9)

Mnet,opt(U1, ω) = MThrust(U1, 0) + MIdle(0, ω) = 0 (10)

where the thrust moment is the torque generated by the wind turbine, i.e., MThrust = τw,
and the idle moment is equal to the sum of the load torque and the braking torque, i.e.,
MIdle = τL + τB. In the case of the horizontal axis Pinwheel turbine, the simulation result
finds that the braking torque τB is zero, thus noted as MIdle

*.
In addition, from Equation (7), assuming steady operation and negating damping fac-

tor D, it is found that the torque produced by the motor, i.e., τMotor = MIdle counterbalances
the torque experienced by the rotor blades, i.e., τRotor = MThrust during steady operation in
the tank. This indicates that the optimal power performance is achieved when Mnet,opt is
zero, i.e., the neutral point, where the thrust and idle moment are equally offset. The sig-
nificance of the moment balancing equation is to replace the unsteady cyclic volume force
analysis with a simplified steady moment analysis. This method is useful in simulations for
determining the values of U1 and ω to achieve equilibrium. Engineers can determine the
optimal power coefficient by observing their model results for the net moment approaching
zero, indicating a neutral point where the idle and thrust moment are equal and can be
used interchangeably to calculate the power coefficient using Equation (11).

Cp,opt =
Pextracted

Pin
=

ω·MThrust/Idle
1
2 ρAU1

3 (11)

2.4.2. Thrust and Idle Moment Equation

The following mathematical derivations demonstrate the reason, in Equation (9), why
thrust and idle moment are solely dependent on U1 or ω, respectively. The classic equation
for determining the moment on a rotor plate due to the thrust force applied is given in
Equation (12).

MThrust = FThrust.l =
1
2

ρACTU1
2 × l =

{
( ρπD3CT

16 )·U1
2(Pinwheel)

( ρabCT
2 )·U1

2(Savonius)
(12)

The RANS mean mass and momentum transport equations in the moving rotational
frame (MRF) system were written as Equations (13) and (14) in integral form. The steady-
state and incompressible flow during the idle moment is governed by the modified Navier–
Stokes equations in the MRF [38]. These equations include additional centrifugal force
terms in the momentum conservation, resulting in the derivation of Equation (14) as
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Equation (15). This term contributes to the source term of the relative coordinate system,
allowing for the derivation of the idle moment on the actual disc through integration. In
a steady state with static inflow velocity, the MIdle is expressed as the force arm r times
the sum of pressure difference and the centrifugal force’s term indicated as Equation (16).
Hereby the MIdle is linearly related to only the ω2.

∂

∂t

y
ρdV +

{
ρ
(
Ur −Ug

)
da =

y
SudV (13)

∂

∂t

y
ρUdV +

{
ρU

⊗(
Ur −Ug

)
da =

{
σda +

y
fbdV +

y
ρω×UdV (14)

ρ(
∂U1

∂t
+ U1∇2U1) = −∇P + µ∇2U1 + ρ(ω2r + 2ωUrotational) (15)

MIdle =
∫

(
∫

PdA +
∫

τdA)dr (16)

2.4.3. Governing Equations with Turbulence Equations

STAR-CCM+ offers a Realizable K-Epsilon model known as the two-layer (RKE 2L)
method. This model incorporates a new transport equation for turbulence dissipation
rate, dividing the computation into two layers. It ensures that the critical coefficient of the
model varies as a function of mean flow and turbulence properties rather than remaining
constant [39–41].

In the near-wall layer, turbulence dissipation rate (ε) and turbulence viscosity (µt) are
determined as functions of the distance from the wall. These near-wall values smoothly
merge with the values obtained from solving the transport equations away from the wall.
Throughout the fluid domain, the turbulent kinetic energy equation is solved. This explicit
specification of ε and µt has been found to be as effective as the damping functions method
and can produce comparable or even superior results [42].

Next, the segregated solver is applied to discretize and solve the mass and momentum
integral conservation equations, which can be found in the STAR-CCM+ user manual.
Equation (17) gives the calculation of µt by combining the turbulence kinetic energy k and
ε together.

µt = ρCµ fµ
k2

ε
(17)

where, Cµ-Model coefficient, equal to 0.9 in RKE 2L, fµ-Damping coefficient, equal to 1 in
RKE 2L.

The k and ε are obtained from the following transport equations Equation (17) and
Equation (18), where the velocity and direction are derived along the x direction:

∂(ρk)
∂t

+
∂(ρkUi)

∂xi
=

∂

∂xi

[(
µ +

µt

σk

)
∂k
∂xi

]
+ fcGk + Gb − ρε−YM + Sk (18)

∂(ρε)

∂t
+

∂(ρεUi)

∂xi
=

∂

∂xi

[(
µ +

µt

σε

)
∂ε

∂xi

]
+ C1εε− C2ε

ρε2

k +
√

Uiε
+

ε

k
C3εGb + Sε (19)

where Gk-Turbulent kinetic energy generation coefficient, Gb-Turbulence dissipation rate
generation coefficient, YM-Specific dissipation rate to turbulent kinetic energy ratio, C1ε,
C2ε, C3ε-Model constants, equal to max

(
0.43, Sk

5ε+Sk

)
; 1.9 and 1.0, respectively, in RKE 2L,

Sk, Sε-User-defined source terms, σk , σε-Turbulent Prandtl numbers, equal to 1.0 and 1.2,
respectively, in RKE 2L.
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3. Results and Discussion

The simulations were performed on a 64-bit Windows operating system. The details
of the computing setup and the average computational time for one simulation case are
summarized in Table 5 below.

Table 5. Computer configuration, setup, and computation time.

Processor Brand Intel Core i7th Gen

Clock Speed 2.8 GHz (Max 3.8 GHz)

Graphic Processor (GPU) NVIDIA GeForce GTX 1060

Dedicated Graphic Memory Type GDDR5 (6 GB RAM)

RAM DDR4 16 GB

RAM Frequency 2400 MHz

Total Solver CPU Computation Time 6965.78 sec (≈1.9 hrs) for Pinwheel, TSR = 0.24
2814.98 sec (≈0.8 hrs) for Savonius, TSR = 0.71

3.1. Idle and Thrust Moment Relationship Quadratic with U1 and ω

For internal validation of the simulation findings, the regression equations for the
idle and thrust moment were calculated using multivariate linear regression analysis in
Microsoft Excel, and the goodness of fit of the regression model was checked by the R2

value. The rotational speed of the Pinwheel was found to be an exceptional predictor
variable, with R2 ≈ 1. However, in the case of Savonius, it was a weak predictor owing to a
low R2 ≈ 0.25, as given in Figure 8.
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For thrust moment, inlet velocity was found to be an exceptional predictor variable
for both models, with an R2 ≈ 1 as shown in Figure 9. Thus, to calculate the optimal power
coefficient, the thrust moment’s regression equation is selected.

The two moments were identified as independent variables and the net moment as the
dependent variables. The algebraic equation of thrust and idle moment with a net moment
is known as the net moment balancing equation in calculating the corresponding turbine’s
power coefficient for Table 6.

Table 6. Characteristic net moment balancing equation for Pinwheel and Savonius turbines.

Equations Model

MNet = (1.0)MThrust + (1.0)MIdle
∗ + ε Pinwheel

MNet = (0.85)MThrust + (0.85)MIdle + ε Savonius
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Figure 9. MThrust −U1 quadratic relationship for (left) Pinwheel and (right) Savonius turbine.

Note that for Pinwheel, the MIdle
∗ is the moment recorded by the simulation, while

for Savonius, MIdle is intercepted with a braking torque of −0.0812 N.m. This offset value
represents the counterbalancing negative and positive torque during the intrinsic rotation
of the VATs. ε is the uncertainty term produced by the second-order polynomial regression
and is smaller than 5% for both. The fluid flow characteristics can be compared in the
two models based on the same blockage and aspect ratio. The difference between the
two models lies in the MIdle

∗ intercept for the VATs and the gradient of the net moment
equation. These differences cause lower Cp for the Savonius than the Pinwheel turbine.

3.2. Net Moment Plots

The relationship between the three moments is visualized in Figure 10. It can be
demonstrated that the idle moment exhibits minimal deviation from a constant value with
the growth of TSR, whereas the thrust moment curve closely adheres to the shape of the
net moment curve. The rotor’s balanced state is represented when the net moment is zero,
that is, the neutral point of the simulation.
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3.3. Cp vs. TSR Curve

For the external validation of the simulation findings, the optimal Cp and TSR are
found and compared with the reference studies for Pinwheel and Savonius, which lie in
the acceptable range of experimental validation. The results are summarized in Table 7 and
shown in Figure 11.
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Table 7. Verification of the simulation results and reference studies for Pinwheel and Savonius turbine.

Model Reference Study Simulation Result Error Percentage

Pinwheel
2.0 [8] 2.37 (Optimal TSR)

(
2.37−2.0

2.37

)
× 100 = 15.6%

0.17 [8] 0.223 (Optimal Cp)
(

0.223−0.17
0.223

)
× 100 = 23.8%

Savonius
0.7 [27] 0.63 (Optimal TSR) ( 0.63−0.7

0.63

)
× 100 = 10.0%

0.23 [27] 0.29 (Optimal Cp) ( 0.29−0.23
0.29

)
× 100 = 20.7%
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3.4. Turbine Wake Streamline Plots

The blade tip of the Pinwheel exhibited a maximum speed value of 2.0 m/s, as
indicated by the red glyphs. As one progresses towards the center of the Pinwheel, the
speeds gradually decrease and approach zero at the incident edge, which is highlighted by
the dark blue glyphs in Figure 12. Figure 12 also illustrates the presence of the whirling
phenomenon within the wake area of the Savonius turbine. Specifically, the downstream
portion of the wake exhibits a gradual reduction in tangential velocity, with a maximum
value of 1.5 m/s, as denoted by the red glyphs. It should be noted that the high fluid velocity
predominantly occurs on the near-surface of the blade for both turbines. At the curved
surfaces of the blades, the fluid generates rotational motion for the turbine. Regarding the
wake decay length, the Pinwheel demonstrates a notable recovery of downstream flow
compared to the Savonius turbine.

3.5. Blade Load Distribution by Pressure Analysis

The pressure field scene depicted in Figure 13 (left) illustrates the fatigue condition
of the blades. As the inlet speed increases, the central region of the pinwheel experiences
a growing thrust. The pressure direction at the blade tip edge is opposite to that at the
root of the trailing edge. In a cyclic loads test, it is anticipated that the bending moment
will twist the tip in the rotating direction, causing forward bending (indicated by the blue
arrow) and pushing the root of the trailing edge backward (indicated by the red arrow). To
enhance the blade shape, it is recommended to smoothly trim the root of the trailing edge
along the isobar (shown as the blue line) to mitigate high compressive stress. Additionally,
utilizing unidirectional laminate materials for the blade tip is advised to enhance flapwise
bending strength and stiffness. Figure 13 (right) presents a lateral view of the blades. The
red and blue areas on the surface of the arc blade indicate a significant pressure difference,
approximately 1910 Pa. The arc region of the blades experiences an impact extrusion
between the upstream and downstream sections.
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For Savonius, the inherent nature of crossflow turbines is revealed through the pressure
plot shown below in Figure 14. The pressure contrast between the concave (high pressure)
and convex (low pressure) blades is approximately 520 Pa. This value is notably lower than
the surface pressure of the Pinwheel, thus reducing the risk of blade crack issues compared
to the Pinwheel. As depicted in Figure 14 (left), half of Savonius’ blade experiences fully
negative pressure, while the other half has positive pressure. The cyclic moment is more
suitable for an unsteady solver, which makes the resulting Savonius idle moment less
correlated with the square of rotational speedω2.
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3.6. Error and Uncertainty Discussion

The deviations in optimal Cp and TSR could be due to the relative viscosity, which is a
measure of the fluid’s resistance to flow and decreases as its temperature increases. The
water temperatures for Pinwheel and Savonius models were assumed to be 20 ◦C and 25 ◦C,
as it was not specified in the literature. K-ωmodel has been increasingly popular due to
its accuracy in simulating rotating machinery [43]. The optimal TSR obtained with K-ω
turbulence is 0.55, whereas the optimal TSR given in [27] is 0.7. Hence, the K-ω turbulence
model was found less accurate with a higher error, i.e.,

( 0.55−0.7
0.55

)
× 100 = 22.2%, as shown

in Figure 15, and K-ε turbulence was used for the two models.
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Figure 15. Cp vs. TSR curve for the Savonius turbine (K-ω model).

Additionally, the computation results indicated that the domain channel used for the
Savonius simulation had a narrower space between its up and down plates compared to the
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channel walls. This narrower gap was a result of maintaining the same blockage ratio in our
parametric study, which led to the formation of a slender and tall shape for the Savonius
turbine. Consequently, this caused a reduction in the upper and lower clearances of the
channel. When the incoming flow velocity was high, it could create a flow enhancement
effect similar to that of a diffuser, potentially exacerbating the instability of idle and thrust
moments. However, due to the inherent design of vertical-axis generators, the uncertainty
in torque analysis results for Savonius turbines was higher compared to horizontal-axis
turbines.

4. Conclusions

The goal of this work was to derive and validate a moment analysis method for drag-
dominant tidal/hydrodynamic turbine performance testing. The parametric design was
required to control the same blockage ratio of the two turbines for moment comparison.
This study established algebraic equations between newly introduced parameters and
the net moment on a turbine. Results, including the dynamic TSR, thrust moment, idle
moment, and net moment, along with the optimal and corresponding power coefficients,
were statistically collected and verified with the current experimental study. The pressure
and velocity plots were also examined. The proposed net moment balancing method offers
several advantages:

1. It was found that at the neutral point, the idle and thrust moments offset each other
in the optimal state. By using this method, the optimal TSR and Cp for the Pinwheel
turbine were 2.37 and 0.223, respectively, while for the Savonius turbine, they were
0.63 and 0.160, respectively.

2. Rotational speed was found to be an excellent predictor for Pinwheel’s idle moment,
while the inlet velocity was an excellent predictor for the thrust moment in both models.

3. Pinwheel was observed to have a greater blade load, especially on the trailing edge
of the blade. The turbine blade shape can be optimized by trimming the area with a
greater pressure difference.

4. The moment balancing method is suitable for the preliminary application of turbine
configuration design and machinery testing using commercial software, as it reduces
computation time and cost.

Finally, in the subsequent stage of the study, it is crucial to examine the suitability
of the NACA series blade configuration for the lift-dominant turbine through moment
analysis. This presents additional challenges and opportunities since the current BEM
method is widely employed, offering a balance between accuracy and computational cost.
Furthermore, it is essential to investigate and test the CFD model that incorporates multiple
turbine array alignments, considering significant flow interaction and wake loss.
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Nomenclature

L Angular momentum, kg.m2/s Greek Letters
A Cross-section area of a rotor plate, m r Density, kg/m3

U1 Inflow speed, m/s λ Tip Speed Ratio
R Rotor radius, m ω Turbine’s rotation speed, rad/s
Cp Power Coefficient µ Dynamic Viscosity, Pa.s
CT Thrust Coefficient
R Rotor radius, m Subscripts

CFD Computational Fluid Dynamics opt Optimal case
EU European Union

DDTTs Drag-dominated tidal turbines Superscripts
K-ε Kappa-Epsilon Turbulence Model * Offset condition
K-ω Kappa-Omega Turbulence Model
SST Shear-Stress Transport Turbulence Model

VATs Vertical Axis Turbines
DDTTs Drag-Dominant Tidal Turbines
BEM Blade Element Method
MRF Moving Reference Frame
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