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Abstract: The intermediate fluid thermoelectric generator (IFTEG) represents a novel approach to
power generation, predicated upon the principles of gravity heat pipe technology. Its key advantages
include high-power output and a compact module area. The generator’s performance, however, is
influenced by the variable exhaust parameters typical of automobile operation, which presents a
significant challenge in the design process. The present study establishes a mathematical model to
optimize the design of the IFTEG. Our findings suggest that the optimal module area sees substantial
growth with an increase in both the exhaust heat exchanger area and the exhaust flow rate. Inter-
estingly, the optimal module area appears to demonstrate a low sensitivity to changes in exhaust
temperature. To address the challenge of determining the optimal module area, this study introduces
the concept of peak power deviation. This method posits that any deviation from the optimal module
area results in an equivalent power deviation. For instance, with an exhaust heat exchanger area
of 1.6 m2, the minimum peak power deviation is 27.5%, corresponding to a design module area of
0.124 m2. As such, the actual output power’s deviation from the maximum achievable output power
will not exceed 27.5% for any given set of exhaust parameters. This study extends its findings to
delineate the relationship between the optimal design module area and the exhaust heat exchanger
area. These insights could serve as a useful guide for the design of future power generators.

Keywords: thermoelectric generator; intermediate fluid; power deviation; optimization

1. Introduction

The escalating energy scarcity has catalyzed the refinement of extant energy utiliza-
tion and the investigation of novel energy resources [1]. As a prominent sector of energy
consumption, environmental pollution engendered by the swift expansion of the trans-
portation industry is progressively worsening. The fuel efficiency of internal combustion
engines remains suboptimal, with an excess of 30% of fuel energy dispelled as exhaust [2].
The recovery and utilization of this fraction of energy would undeniably yield substantial
energy conservation and emission reduction benefits.

Technologies such as the organic rankine cycle system [3], turbomachinery [4], and
the thermoelectric generator (TEG) [5] have demonstrated the capacity to convert heat
energy from the automobile exhaust into usable, high-quality energy. These technologies
have garnered considerable attention in recent years. The exhaust thermoelectric generator
(ETEG) employs the Seebeck effect [6] to convert waste heat from the exhaust directly
into electricity [7]. This electricity can then be used to power auxiliary equipment in the
vehicle [8]. However, the efficiency deficit of ETEGs remains a significant barrier to their
broader application. An ETEG is composed of an exhaust heat exchanger (EHE), a heat sink,
and thermoelectric modules (TEMs). The efficiency of the ETEG hinges not only on the
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properties of the thermoelectric materials used but also on the heat transfer capacity of the
EHE. The heat transfer resistance between the exhaust and the EHE surface results in a TEM
hot-end temperature that is significantly lower than the exhaust temperature [9]. Given that
the temperature gradient between the hot and cold ends of the TEM is proportional to its
conversion efficiency, employing an EHE with superior heat transfer performance can sub-
stantially elevate the hot-end temperature. Consequently, this enhances the thermoelectric
conversion efficiency of the ETEG.

Enhancement of the heat transfer capacity in an EHE is commonly achieved through
the installation of fins within the exhaust channel. Lu et al. strategically arranged non-
uniform fins inside an EHE, resulting in a 177.4% increase in net output power, with an air
Reynolds number ranging from 3000 to 6400 and an inlet temperature between 523 and
553 K [10]. Similarly, Ma et al. incorporated four sets of fins, angled at 45◦ to the airflow
direction, in the exhaust channel, thereby augmenting the convective heat transfer of the
exhaust [11]. Chen et al. utilized conventional plate fins and square pin fins in an EHE flow
channel, noting that an optimal count of 78 square pin fins led to an ETEG output power of
24.14%, superior to the plate fin EHE [12]. Marvão et al. advocated for minimal fin thickness
in an EHE to maximize the net output power increase of the ETEG [13]. In a separate study,
Luo et al. constructed a multiphysics coupling model of an ETEG, achieving an output
power and conversion efficiency of 38.07 W and 1.53%, respectively, at a vehicle speed
of 120 km/h [14]. Liu et al. explored the impact of fin parameters on the thermoelectric
properties and pressure drop of an ETEG [15]. By optimizing these parameters, they were
able to elevate the average temperature of the EHE while simultaneously reducing flow
resistance by 20%. Similarly, Fernández-Yañez et al. [16] discovered that optimal ETEG
performance was achieved when the baffle arrangement angle in the exhaust channel was
in alignment with the exhaust inlet direction, a finding corroborated by other studies [17].
Su et al. divided an EHE into three sections and introduced a folding plate-reinforced
structure [18]. Their research aimed to find the optimal heat exchanger structure by
examining the length and thickness of the folded plate in relation to surface temperature and
thermal uniformity. However, the optimized structure significantly impaired the efficiency
of the internal combustion engine due to the substantial back pressure it generated. Karana
et al. employed an EHE equipped with a twisted strip to attain maximum output power
at an intercept ratio of 8, a torque ratio of 4, and an inclination angle of 60◦ [19]. Lesage
reported that flat inserts with notches outperformed spiral inserts in terms of heat transfer,
resulting in an over 50% increase in net output power compared to smooth channels [20].
Wang et al. [21] advocated for enhancing exhaust heat transfer with a circular sunken
surface, implementing this in an ETEG for the waste heat recovery of an off-road vehicle [22].
At a speed of 125 km/h, the system’s net power reached 133.46 W, marking an increase of
173.6% compared to the ETEG with a finned EHE.

Porous structures have been employed as a means of enhancing the thermoelectric
performance of the ETEG due to their proficient heat transfer capacities. Choi et al. in-
tegrated a porous plate with a porosity of 0.416 into an EHE, leading to a conversion
efficiency of 2.83% in the ETEG, a value that is 10.1% higher compared to that achieved
with a smooth exhaust channel [23]. Similarly, Negash et al. conducted a study on the
influence of the porosity and location of the porous plate on the thermoelectric performance
of ETEG systems, discovering that variations in porosity induced changes in the optimal
position of the porous plate [24]. In a separate investigation, Li et al. filled an EHE with
metal foam, thereby quadrupling the convective heat transfer coefficient [25]. However,
this also resulted in a significant amplification of the exhaust duct resistance. Bai et al.
noted that the incorporation of metal foam not only boosted the ETEG output power by
170% but also curtailed the average noise level by 16.6 dB [26]. Other researchers have
proposed the insertion of vertebral bodies into the EHE to augment the convective heat
transfer of the exhaust. Musial et al. managed to elevate the efficiency of an ETEG by
25% by incorporating a cone into the EHE [27]. Shu et al. added an air deflector to a
hexagonal EHE and coupled TEMs with diverse thermoelectric materials to accommodate
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the attenuation of exhaust temperature, which resulted in an output power of 78.9 W, a 30%
improvement over the use of a single thermoelectric material [28]. Shen et al. found that
the inclusion of hollow cylinders could effectively enhance the performance of an ETEG,
provided that the EHE diameter is equal to or greater than 75 mm [29].

During the operation of a vehicle, it is noted that exhaust parameters tend to fluctu-
ate [30], a factor that directly influences the performance of the ETEG. Aranguren et al.
discovered that an ETEG’s output power reached its peak of 24.59 W at an exhaust tem-
perature and flow rate of 560 ◦C and 170 kg/h, respectively [31]. Diminishing the exhaust
temperature to 525 ◦C led to an 11% reduction in power generation, while a decrement
in the flow rate to 133 kg/h resulted in a 6% decline in power generation. Garud et al.
conducted a study on the impacts of air inlet temperature on an ETEG’s power generation
performance. The ETEG’s efficiency reached 1.88% at an inlet temperature of 600 ◦C, a
stark contrast to the efficiency of 1.31% that was recorded at 500 ◦C [32]. Additionally,
He et al. observed a decrease in the performance of a TEM due to a gradual reduction
in exhaust temperature. The researchers found that there was an optimal TEM area for
maximizing output power, and that this optimal TEM area was influenced by the exhaust
parameters [33].

The authors have previously presented work on the intermediate fluid thermoelectric
generator (IFTEG) [34]. This system employs the gas–liquid phase transition of an interme-
diate fluid (IFD) to facilitate exhaust heat transfer. It offers the substantial increase in output
power of 32.6% while concurrently reducing the TEM area, leading to significant economic
benefits. However, given the variability in exhaust parameters, ensuring efficient generator
operation under all working conditions presents a design challenge. Therefore, the present
study commences by examining the impact of exhaust parameters on the optimal structural
parameters of the system. The pivotal design parameters of the IFTEG, along with their
influencing factors, are scrutinized using the minimum deviation method. This method
targets the limit output power while factoring in the fluctuation of exhaust parameters. The
insights derived from this analysis can inform and guide the optimal design of the IFTEG
system.

2. Intermediate Fluid Thermoelectric Generator

Figure 1 depicts the structure of the IFTEG, a novel type of thermoelectric generator
grounded in the principles of the gravity heat pipe. The IFTEG primarily comprises an
EHE, a phase change cavity, TEMs, and a cooling water heat exchanger [34]. The phase
change cavity is filled with an IFD and is maintained in a sealed state. The EHE tube is
submerged in the IFD, functioning analogously to the boiling section of a heat pipe. The
apex of the cavity, designed as a vertical square cavity to enable the flow of condensed
fluid back to the liquid pool, represents the condensing section of the heat pipe. The TEM
is positioned between the condensing section of the cavity and the cooling water heat
exchanger, which respectively function as the hot and cold ends of the module. When the
exhaust enters the EHE tube, the high-temperature exhaust induces the IFD within the
phase-change cavity to vaporize. This vapor then dissipates heat in the condensing section,
leading to condensate formation, which flows back to the liquid pool under gravity. The
heat from condensation is introduced into the TEM to generate electrical energy, with any
residual heat being removed with the cooling water heat exchanger.
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Figure 1. Intermediate fluid thermoelectric generator.

3. Mathematical Model

In the present study, a steady-state mathematical model of the IFTEG is established. To
streamline the model, several aspects are neglected, including irradiation heat transfer and
the lateral heat conduction of the EHE, the cooling water heat exchanger, and the cavity,
which has little influence on the prediction of results [33]. It is assumed that the cavity
contains no impurities apart from the IFD, thereby ensuring a gas–liquid phase equilibrium
within the IFD. If impurities such as non-condensable gas are mixed into the cavity, it will
cause the condensing heat transfer coefficient to decrease, thus lowering the temperature of
the hot end of the module and reducing the power generation performance of the module.
All TEMs are envisaged as being identically sized and connected in series. Contact thermal
resistance and contact resistance at each interface are disregarded, and the Thomson effect
is not taken into consideration [35].

As depicted in Figure 1, the entire IFTEG system can be segregated into two sections:
the boiling section and the condensing section. In the boiling section, the surface area of the
EHE is represented as SEHE. The EHE is subdivided into nx units, each possessing a surface
area of AEHE, along the direction of the exhaust flow. The ith exhaust heat transfer unit is
selected for the analysis. The heat Qh

i, originating from the exhaust, instigates the boiling
of the IFD, concurrently reducing the exhaust temperature from Tf

i to Tf
i+1. Assuming the

mean temperature of the exhaust inlet and outlet of the unit as the exhaust temperature
and the temperature of the IFD as Tif, the energy equation of the boiling section control
unit can be expressed as follows [34]:

Qi
h = mfcp,f(Ti

f − Ti+1
f ) = (

Ti
f + Ti+1

f
2

− Tif)/(
1

hf AEHE
+

δEHE

λEHE AEHE
+

1
he AEHE

) (1)

In the above equation, mf, cp,f, and hf denote the mass flow, specific heat, and heat
transfer coefficient of the exhaust, respectively. Meanwhile, δEHE and λEHE represent the
thickness and thermal conductivity of the EHE, respectively. The boiling heat transfer
coefficient of the IFD on the EHE surface is indicated by he, which can be calculated using
Rohsenow’s dimensionless correlation, and the physical properties of the IFD are calculated
from the saturated temperature Tif.

The total heat exchange Qh and area SEHE across the entire boiling section can be
expressed in the following manner:

Qh =
nx

∑
i=1

Qi
h (2)
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Within the condensing section, the thermoelectric module (TEM) is distributed across
two sides of the section. Given the perfect symmetry on both sides, a single-sided con-
densing section can be selected for analytical purposes. The complete condensing section
encompasses 2ny × nz TEMs, signifying that the number of modules on a single side
is ny × nz. Here, ny denotes the number of TEMs distributed along the direction of the
cooling water flow, while nz represents the TEMs arranged in the vertical direction of the
cooling water flow. In the cooling water flow direction, the thermoelectric performance of
the module varies due to the gradual increase in cooling water temperature. However, the
module performance is considered consistent in the vertical direction. Therefore, for the
purposes of this analysis, the TEM in column j is selected as the research subject. The IFD
condenses at the hot end of the TEM, with the released heat (Qcon

j) generating electricity
(Pj) within the module. The residual heat (Qc

j) is absorbed by the cooling water, leading to
a rise in the cooling water temperature from Tc

i to Tc
i+1. Consequently, the energy equation

for the TEM in column j can be delineated as follows [34]:

Qj
c = nz

[
(αp − αn)IT j

l +
(λp + λn)lw

z
(T j

h − T j
l )− 0.5I2 z(ρp + ρn)

lw

]
= (Tif − Tcw)/(

1

nzhj
conF

+
δshell

nzFλshell
) (3)

Qj
c = nz

[
(αp − αn)IT j

l +
(λp+λn)lw

z (T j
h − T j

l ) + 0.5I2 z(ρp+ρn)
lw

]
= (T j

l −
T j

c+T j+1
c

2 )/
(

1
nzFhc

+ δCHE
nzFλCHE

)
= cp,cmc(T

j+1
c − T j

c)
(4)

Pj = Qi
con −Qi

c (5)

The parameters αp/n, λp/n, and ρp/n denote the Seebeck coefficient, thermal conduc-
tivity, and resistivity of the P/N thermoelectric materials, respectively. The dimensions l, w,
and z represent the length, width, and height of the P/N thermoelectric leg, respectively.
F, δCHE, and λCHE correspond to the surface area, thickness, and thermal conductivity
of the ceramic sheet, respectively. Meanwhile, δshell and λshell refer to the thickness and
thermal conductivity of the cavity, respectively. I represents the current, while Th

j and Tl
j

symbolize the hot- and cold-end temperatures of the TEM, respectively. The condensation
heat transfer coefficient of the IFD in the cavity hcon can be calculated in accordance with
the Nusselt theory [34], and the physical properties of the IFD are calculated from the
saturated temperature Tif. The parameters cp,c, mc, and hc represent the specific heat, mass
flow rate, and heat transfer coefficient of the cooling water, respectively.

The heat (Qcon) released by the IFD within the condensing section of the cavity can be
formulated as follows:

Qcon =
ny

∑
j=1

Qj
con (6)

According to the conservation of energy, the heat absorbed and heat released in the
cavity are the same when equilibrium is reached [35]:

Qh = Qcon (7)

Then, the TEM area, output power, and efficiency of the IFTEG can be expressed as:

STEM = 2nxnyF (8)

P =
ny

∑
j=1

Pj (9)

η = P/Qh × 100 (10)
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In the present study, water is selected as the IFD, and the principal boundary conditions
are delineated in Table 1. The focus of this study is on the impact of exhaust parameters on
the structural optimization of the IFTEG. The variation range of the exhaust parameters is
established in accordance with the literature [35]. During the calculation process, an initial
assumption is made for the temperature (Tif) of the IFD. Subsequently, the boiling heat
transfer coefficient (he) and the condensation heat transfer coefficient (hcon) are calculated,
factoring in the exhaust parameters and the cooling water parameters. This leads to the
computation of the condensation heat transfer (Qcon) and the boiling heat transfer (Qh). The
temperature (Tif) is progressively corrected by ensuring the equivalence of Qcon and Qh.
Model validation, as previously articulated in the literature, will not be reiterated here [34].

Table 1. Main parameters of the system [27,29].

Unit Values

Exhaust temperature, Tfin
◦C 250–550

Exhaust flow, mf g/s 5–55
Hot-side heat transfer coefficient, hf W/m2K 80

Cooling water temperature, Tcin
◦C 70

Cooling water flow, mc g/s 200
Cooling water heat transfer coefficient, hc W/m2K 1000
Seebeck coefficient of P/N materials, αp/n VK−1 2.037 × 10−4/−1.721 × 10−4

Resistance of P/N materials, ρp/n Ω·m 1.314 × 10−5/1.119 × 10−5

Thermal conductivity of P/N materials, λp/n Wm−1K−1 1.265/1.011
Structure size of P-N leg, l/w/z mm 5/5/5

Ceramic sheet size, F mm2 15 × 7.5

4. Results and Discussion
4.1. Effect of Exhaust Gas Parameters

In the present study, an initial examination of the thermoelectric characteristics of the
novel generator is undertaken, with the findings illustrated in Figure 2. Given a constant
EHE area (SEHE), the output power displays an initial increase followed by a decrease with
an increment in the TEM area (STEM), indicating the existence of an optimal TEM area
(STEM,opt). This phenomenon can be attributed to the interplay between the exhaust heat
exchange process in the boiling section and the thermoelectric conversion process within the
module in the condensing section. As the STEM escalates, the condensation area within the
chamber expands, enhancing the condensation heat transfer and leading to a reduction in
the temperature of the IFD within the chamber. This temperature decrease elevates the heat
transfer temperature differential between the liquid IFD and the exhaust, augmenting the
boiling heat transfer, thereby resisting any further decline in the IFD temperature. Therefore,
when a new equilibrium is established, the IFD temperature drops, which in turn reduces
the hot-end temperature of the module and diminishes the thermoelectric performance
of individual modules. The generator’s overall output power is the cumulative total of
all modules. Thus, under the combined influence of an increasing module number and a
declining module generation performance, an optimal STEM (STEM,opt) exists to maximize
the output power [34].



Processes 2023, 11, 1853 7 of 13Processes 2023, 11, x FOR PEER REVIEW 7 of 13 
 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.05

0.10

0.15

0.20

0.25

0.30
P (W)

 

S TE
M

 (m
2 )

SEHE (m2)

50.10

65.10

80.10

95.10

110.1

125.1

140.1

150.4

 
Figure 2. Effect of STEM and SEHE on IFTEG performance (mf = 20 g/s, Tfin = 350 °C). 

As illustrated in Figure 2, the output power escalates progressively with an increase 
in the EHE area (SEHE). This can be ascribed to the fact that an increment in SEHE enhances 
the boiling heat transfer of the IFD, which in turn increases the IFD temperature within 
the chamber, leading to a rise in the output power. As the heat transfer capacity within 
the chamber increases, the area of the condensing section required to establish a new equi-
librium also increases; consequently, STEM,opt escalates. Furthermore, since the temperature 
of the IFD surpasses the exhaust outlet temperature, the performance improvement re-
sulting from an increase in SEHE gradually diminishes. Therefore, selecting an appropriate 
SEHE is of paramount importance. 

In real-world applications, exhaust parameters fluctuate in response to variations in 
vehicle operating conditions. Figure 3 further elucidates the influence of these exhaust 
parameters on the performance of the IFTEG. It can be observed that as both the exhaust 
temperature (Tfin) and flow rate (mf) escalate, the maximum output power of the IFTEG 
incrementally increases. For instance, when Tfin equals 500 °C and mf equals 50 g/s, the 
output power can reach an impressive 746 W. This can be attributed to the fact that an 
increase in either Tfin or mf augments the boiling heat transfer, which subsequently raises 
the temperature of the IFD, leading to an increase in the hot-end temperature of the TEMs 
and thus enhancing the generation performance. Moreover, the optimal TEM area 
(STEM,opt) exhibits a significant increase with a rise in mf, while the effect of Tfin on the opti-
mal TEM area is comparatively minor. This indicates that maintaining optimal operating 
conditions for the IFTEG becomes challenging as exhaust parameters fluctuate, thereby 
complicating the optimization process of the IFTEG. Consequently, a pivotal issue to ad-
dress in this study is how to design an efficient IFTEG that takes into account both exhaust 
parameters and the EHE area. 

Figure 2. Effect of STEM and SEHE on IFTEG performance (mf = 20 g/s, Tfin = 350 ◦C).

As illustrated in Figure 2, the output power escalates progressively with an increase in
the EHE area (SEHE). This can be ascribed to the fact that an increment in SEHE enhances
the boiling heat transfer of the IFD, which in turn increases the IFD temperature within
the chamber, leading to a rise in the output power. As the heat transfer capacity within the
chamber increases, the area of the condensing section required to establish a new equilib-
rium also increases; consequently, STEM,opt escalates. Furthermore, since the temperature of
the IFD surpasses the exhaust outlet temperature, the performance improvement resulting
from an increase in SEHE gradually diminishes. Therefore, selecting an appropriate SEHE is
of paramount importance.

In real-world applications, exhaust parameters fluctuate in response to variations in
vehicle operating conditions. Figure 3 further elucidates the influence of these exhaust
parameters on the performance of the IFTEG. It can be observed that as both the exhaust
temperature (Tfin) and flow rate (mf) escalate, the maximum output power of the IFTEG
incrementally increases. For instance, when Tfin equals 500 ◦C and mf equals 50 g/s, the
output power can reach an impressive 746 W. This can be attributed to the fact that an
increase in either Tfin or mf augments the boiling heat transfer, which subsequently raises
the temperature of the IFD, leading to an increase in the hot-end temperature of the TEMs
and thus enhancing the generation performance. Moreover, the optimal TEM area (STEM,opt)
exhibits a significant increase with a rise in mf, while the effect of Tfin on the optimal TEM
area is comparatively minor. This indicates that maintaining optimal operating conditions
for the IFTEG becomes challenging as exhaust parameters fluctuate, thereby complicating
the optimization process of the IFTEG. Consequently, a pivotal issue to address in this
study is how to design an efficient IFTEG that takes into account both exhaust parameters
and the EHE area.
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4.2. Optimal Design

The preceding analysis reveals that the optimal TEM area is influenced by the exhaust
temperature, the flow, and the area of the EHE. Given that the range for the exhaust
temperature, flow, and EHE area is predetermined, it is feasible to ascertain the STEM,opt
range. For instance, under the stipulated conditions, when the exhaust flow varies from 5 to
55 g/s, the exhaust temperature fluctuates between 250 and 550 ◦C, and the EHE area spans
between 0.2 and 1.6 m2, the optimal TEM area lies within the range of 0.042 to 0.383 m2.
Thus, during the generator’s design phase, the designated thermoelectric module area
(STEM,d) must fall within the range of 0.042 to 0.383 m2.

In practical implementations, to assure adequate heat exchange between the exhaust
and the IFD, thereby securing a larger power output, it is preferable to design an EHE area
as large as permissible conditions allow. Therefore, in the subsequent analysis, SEHE is
assumed to be a constant value. Once SEHE is set, the power output of the IFTEG becomes
a function of the TEM area, exhaust flow, and exhaust temperature. When STEM,d is fixed,
the power output will fluctuate in response to changes in the exhaust temperature and
flow. Given that STEM,d cannot satisfy STEM,opt under all exhaust flow or temperature
conditions, the power output P (STEM,d, Tfin, mf, SEHE) of the system with the designed
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TEM area STEM,d must be lower than the maximum power output Pmax (STEM,opt, Tfin, mf,
SEHE) achieved when the system utilizes STEM,opt. This results in a deviation between the
actual power output P and the maximum power output Pmax. The power deviation is
denoted as devd and defined as follows:

devd =
Pmax

(
STEM,opt, Tfin, mf, SEHE

)
− P(STEM,d, Tfin, mf, SEHE)

Pmax
(
STEM,opt, Tfin, mf, SEHE

) × 100 (11)

The aforementioned equation indicates that, as STEM,opt is determined with the exhaust
temperature (Tfin), the exhaust flow (mf), and the area of the EHE (SEHE), the power
deviation is consequently a function of the designed thermoelectric module area (STEM,d),
the exhaust temperature (Tfin), the exhaust flow (mf), and the area of the EHE (SEHE). The
power deviation intensifies with an increasing disparity between the actual and maximum
power outputs.

Upon the selection of STEM,d, a power deviation corresponds to each specific tempera-
ture and flow. Consequently, within the range of fluctuating flow and temperature, a peak
power deviation is inevitably present. This can be expressed as:

devd,max = max{devd}
mf ∈ {5 g/s, 55 g/s}

Tfin ∈ {250 ◦C, 550 ◦C}
(12)

In the quest for the optimally designed thermoelectric module area, a smaller peak
power deviation is preferable. This implies that the selected thermoelectric module area
can closely approximate the maximum power output under all operational conditions.

Figure 4 illustrates the relationship between power deviation and the designed TEM
area (STEM,d) under varying exhaust flow conditions, given a constant EHE area (SEHE) of
1.6 m2 and an exhaust temperature (Tfin) of 350 ◦C. In scenarios where STEM,d is relatively
small, the power deviation escalates with an increasing exhaust flow. Conversely, with a
larger STEM,d, the power deviation diminishes as the exhaust flow increases. The red line
within the figure marks the evolution of peak power deviation against the differing STEM,d
under various flow conditions. The peak power deviation initially contracts and subse-
quently expands with the escalation in STEM,d. When STEM,d is 0.135 m2, the peak power
deviation minimizes to 24.3%. This suggests that when SEHE is 1.6 m2 and the exhaust
temperature is 350 ◦C, the optimally designed thermoelectric module area (STEM,d,opt) is
0.135 m2. This configuration ensures that the power output deviation from the system,
within the exhaust flow range of 5 to 55 g/s, remains less than 24.3% from the maximum
power output.
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Figure 5 demonstrates the variation in power deviation with the designed TEM area
(STEM,d) at distinct exhaust temperatures, given a constant EHE area (SEHE) of 1.6 m2 and an
exhaust flow rate of 10 g/s. As STEM,d is reduced, the power deviation gradually increases
with the rise in exhaust temperature, whereas an inverse pattern is observed when STEM,d
is substantial. This trend mirrors the changes observed in relation to the exhaust flow rate.
Nevertheless, the overall impact of exhaust temperature on power deviation is relatively
minor.
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From the preceding analysis, it is discerned that for a fixed SEHE, regardless of the
STEM,d chosen, the power deviation will fluctuate in response to changes in the exhaust
temperature and flow rate, but within certain constraints. Consequently, a peak power
deviation materializes. Figure 6 delineates the variation of the peak power deviation of
the IFTEG in relation to STEM,d. As STEM,d enlarges, the peak power deviation initially
contracts and subsequently expands. An optimal STEM,d of 0.124 m2 minimizes the peak
power deviation to 27.5%. Hence, when designing the IFTEG with a SEHE of 1.6 m2, the
optimal STEM,d should be set at 0.124 m2.
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As previously discussed, the area of the exhaust heat exchanger (SEHE) plays a pivotal
role in the design of the novel thermoelectric generator. The preceding analysis was
conducted assuming SEHE to be constant. Despite a larger area being desirable in the design
process, practical constraints such as exhaust channel installation limits may preclude
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the fabrication of a sufficiently expansive EHE. Thus, it becomes essential to analyze
the impact of SEHE on the optimal design of the thermoelectric module area (STEM,d,opt).
Figure 7 illustrates the variation in STEM,d,opt as a function of SEHE. As the area of the EHE
escalates, the optimally designed TEM area incrementally expands, although the extent
of this increase progressively diminishes. Moreover, the following fitting formula for the
optimal STEM,d,opt can assist in the design of the IFTEG:

STEM,d,opt = 0.12498− 0.09031 ∗ 0.97199hfSEHE (13)
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5. Conclusions

The intermediate fluid thermoelectric generator (IFTEG) has demonstrated remarkable
efficiency in harnessing waste heat from exhaust gases for power generation. Nevertheless,
its intricate structure and the variable nature of operating parameters complicate the design
process. This study employed the peak power deviation approach to optimize this novel
system and determine the ideal design parameters. The key conclusions drawn from the
results are as follows:

(1) Within the IFTEG system, an optimal thermoelectric module (TEM) area exists that
maximizes output power. Both the maximum output power and the optimal TEM
area progressively increase with the enlargement of the exhaust heat exchanger (EHE)
area.

(2) As the exhaust temperature ascends, the maximum output power exhibits a corre-
sponding rise, whereas the optimal TEM area remains relatively stable. Conversely,
an increase in the exhaust flow rate amplifies both the maximum output power and
the optimal TEM area.

(3) The peak power deviation methodology is proposed to ascertain the optimal TEM
area for design. A smaller peak power deviation implies that the designed TEM area
is in closer alignment with the optimal TEM area.

(4) As the designed TEM area expands, the peak power deviation initially reduces before
experiencing an upswing. An optimally designed TEM area exists, corresponding to
a minimum value, which allows the exhaust operation to approach the best working
conditions within a certain range as closely as possible. A 1.6 m2 EHE area yields
an optimally designed TEM area of 0.124 m2. As the EHE area grows, the optimally
designed TEM area is expected to follow a similar trend.
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