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Abstract: In this paper, the effect of changes in the thermal conductivity of porous electrodes in three
coordinate directions on the capability of proton exchange membrane fuel cells is investigated on
the basis of current density versus voltammetry curves, and the temperature distribution and water-
carrying capacity distribution of the membrane. The results show that when the cell discharge voltage
of the PEMFC is 0.3 V, the thermal conductivity in the Z-direction of the porous electrode has a greater
effect on the performance of the PEMFC than in the other directions, with the thermal conductivity in
the X- and Y-directions of the porous electrode having less than a 5% effect on the performance of the
PEMFC, which can therefore be neglected. When the thermal conductivity of the porous electrode in
the Z-direction of the PEMFC is 500 W/(m·K) and 1000 W/(m·K), the performance of the PEMFC
is improved by 5.78% and 5.87%, respectively, and when the thermal conductivity of the porous
electrode in the X-direction of the PEMFC is 500 W/(m·K) and 1000 W/(m·K), the performance of
the PEMFC is improved by 2.09% and 2.89%, and the PEMFC performance is improved by 1.51%
and 2.00% when the Y-direction thermal conductivity of the porous electrode of the PEMFC is
500 W/(m·K) and 1000 W/(m·K), respectively. The improvement in performance decreases with
increasing thermal conductivity, because the thickness of the porous electrode is too thin. Since the
side of the model is set to adiabatic heat exchange conditions, while the top and bottom surfaces
are set to natural convection heat exchange conditions, the Z-direction thermal conductivity of the
porous electrode plays the most important role in the temperature distribution of the PEMFC. The
Z-direction thermal conductivity of the porous electrode causes the temperature distribution of
the PEMFC assembly to be more uniform, and the Z-direction thermal conductivity of the porous
electrode also causes the area of the high-water-content region on the proton exchange membrane to
significantly increase.

Keywords: proton exchange membrane fuel cell; heat conductivity; porous electrodes; mass transfer;
heat transfer

1. Introduction

The hydrogen fuel cell was invented in 1839. At first, this kind of fuel cell was only
used to generate electricity for lighting lamps. However, with the gradual consumption
of fossil energy, the earth’s environment is getting worse. The vigorous development of
renewable energy sources to reduce the loss of fossil energy resources has become the focus
of close attention around the world [1]. Fuel cells are a real method of utilizing renewable
energy because of their low carbon emissions and use of fuel from renewable sources. If
fuel cells are widely used, this will be of great help in a global energy crisis [2,3]. Hydrogen
fuel cells cause less pollution [4–7] than other types of fuel cell. Hydrogen fuel cells are
the most promising type of fuel cell to be used by people in daily life [8]. They have also
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been the focus of research in a number of different countries. If hydrogen fuel cells can be
commercialized, this would be of great help to developments around the world.

A numerical simulation method is used in this paper, and such methods have also
been widely used in academic fields for scenarios where carrying out experiments is
not convenient [9,10]. The porous electrode of a proton exchange membrane fuel cell
consists of a gas diffusion layer and a catalytic layer [11]. The gas diffusion layer is a
transport channel for the reaction gas and the produced water, as well as for charge and
heat transfer, and complex coupled heat and mass transfer and phase change processes
occur within it. The gas diffusion layer is generally made of carbon paper, and its structure
is characterized by significant anisotropy. However, most computational simulation models
in the literature use a homogeneous simulation model for gas diffusion layers [12–19], using
the same transfer coefficients in all directions. Only a few papers [20–24] have investigated
the effect of non-isotropic characteristics in the gas diffusion layer on the capabilities of
proton exchange membrane fuel cells. Zhou and Liu [20] used numerical simulations
to study the effect of different degrees of conductivity in the gas diffusion layer in the
thickness direction and in the plane direction on the overall and local capabilities of the
cell. Pasaogullari et al. [21] used a two-dimensional simulation model to study the effect
of using a non-isotropic gas diffusion layer on heat and mass transfer in the fuel cell.
Pharoah et al. [22] developed a two-dimensional single-phase simulation model and used
it to study the effect of using a non-isotropic gas diffusion layer on local current density
and overall cell capability. He et al. [23] used a three-dimensional numerical simulation
model to study the effect of non-isotropic heat conductivity in the gas diffusion layer on
cell temperature distribution and liquid water discharge. Han et al. [24] found that at low
operating temperatures, the output performance of the proton exchange membrane fuel
cell can be effectively improved with an appropriate non-isotropic heat conductivity, and
Han et al. [24] also proposed that many porous electrode materials can be prepared in
an anisotropic manner, and that this can be achieved with the current level of scientific
research and preparation.

The heat transfer characteristics of proton exchange membrane fuel cells constitute
one of the important properties affecting the cells’ capabilities. To date, a large number of
scholars have studied the heat transfer characteristics of fluids and solids. Sandip S [25–27]
studied the flow of nanofluids under a superimposed magnetic field and the flow field
and temperature field of the magnetic fluid were determined analytically. Deep C [28]
studied the effect of the position of a discrete heater in a cylindrical thermal system. Many
researchers have studied the heat transfer characteristics of proton exchange membrane
fuel cells in great depth [29,30]. Bock R [29] proposed that the catalytic layer is an area in
which heat conductivity research is scarce, and the heat conductivity of this area greatly
affects the temperature distribution inside the proton exchange membrane fuel cell, thus
affecting the performance of the proton exchange membrane fuel cell. Burheim OS [30]
concluded that proton exchange membrane fuel cells are non-isothermal during operation,
and the heat conductivity of proton exchange membrane fuel cell materials has received
extensive attention in the past decade, with many researchers having spent time and energy
on studying the effect of the heat conductivity of proton exchange membrane fuel cell
materials on the performance of proton exchange membrane fuel cells.

Based on the above literature, combined with the research aims of this paper, firstly,
physical and mathematical simulation models of proton exchange membrane fuel cells
were established, and then two different sets of heat conductivity values were selected to
study the effect of changes in heat conductivity in the X-, Y- and Z-directions on the current
density and volt relationship curve of the porous electrodes of proton exchange membrane
fuel cells, and a suitable set of heat conductivity values was selected for subsequent study
by comparing the two different sets of heat conductivity values. Subsequently, the effect
of non-isotropic heat conductivity on the temperature distribution and membrane water
carrying capacity distribution of the proton exchange membrane fuel cell was analyzed.
The simulation model results were used to analyze the reasons for the change in proton
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exchange membrane fuel cell capability in depth, and to propose methods for enhancing
the capabilities of the proton exchange membrane fuel cell. Although other scholars have
performed related research, that previous research has mostly been based on single com-
ponents. In other words, the effect of the gas diffusion layer or catalytic layer anisotropic
thermal conductivity on the cell has generally been analyzed separately. The research in
this paper is based on the concept of porous electrodes, in combination with an analysis of
the effects of anisotropic thermal conductivity in the gas diffusion layer and the catalytic
layer on the performance of the proton exchange membrane fuel cell and in combination
with the current reality of the rapid development of anisotropic materials such as PEMFC.
This simulation can provide a reference for the future of the use of advanced anisotropic
materials for PEMFC.

2. Simulation Model Specification
2.1. Physical Simulation Model

Figure 1 shows the component structure of the proton exchange membrane fuel cell.
PEM represents the key proton exchange membrane component, CL represents the catalytic
layer for chemical reaction, GDL represents the gas diffusion layer, which supports the
structure of the proton exchange membrane fuel cell, and BP represents the bipolar plate,
where current is collected. Air and hydrogen flow through the gas channel inlets of the
cathode and anode sides, respectively, and the diffusion of the catalytic layer reaction
is achieved through the gas channel, rather than the outlet of reaction gas and aqueous
vapor. When the electron moves to the cathode and anode side due to the external circuit,
the protons produced by the proton exchange membrane are transferred from the anode
to the cathode side. The simulation model used in this paper is a more realistic three-
direction reflection of the operation of proton exchange membrane fuel cells. The geometric
parameters used in this study are shown in Table 1. These geometric parameters are
consistent with the research results of Chen et al. [31], and have wide applicability.
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Table 1. Geometric parameters of the simulation model.

Height (m) Width (m) Length (m)

PEM 1 × 10−4 2 × 10−2 2 × 10−2

CL 5 × 10−5 2 × 10−2 2 × 10−2

GDL 3.8 × 10−4 2 × 10−2 2 × 10−2

GC 1 × 10−3 1 × 10−3 1.9 × 10−2

BP 2 × 10−3 2 × 10−2 2 × 10−2

The actual working conditions are complex and changeable, and four assumptions are
adopted in this paper:

(1) Set to the ideal gas reactants.
(2) Negligible contact resistance between resistive interfaces.
(3) The proton exchange membrane fuel cell simulation model runs in a steady state.
(4) PEM does not allow gas to pass through.
(5) Capillary-pressure-driven water transport is neglected.
(6) The simulation parameters in this paper do not change with temperature.

2.2. Governing Equations

COMSOL Multiphysics uses the finite element method as the numerical calculation
method, and the creation and solution of partial differential equations or systems of equa-
tions are used to simulate real physical processes, using mathematical methods to achieve
the solution of real physical processes. Multiphysics provides a large library of case studies,
flexible 1D to 3D modeling, and free mesh dissection, as well as multiple interfaces for
real-time linkage with other software, greatly reducing the software learning time for
researchers.

The control equations used by the software in the simulation process are as follows:

(1) Equation for conservation of mass:

∇·(ερu) = Sm (1)

Sm is the mass source term.

(2) Equation for conservation of momentum:

∇·(ερuu) = −ε∇p +∇·(εµ∇u) + Su (2)

Su is the momentum source term.

(3) Equation for conservation of energy:

∇·
(
ερcpuT

)
= ∇·(ke f f∇T) + SQ (3)

SQ is the energy source term.

(4) Equation for conservation of components:

∇·(εuck) = ∇·(De f f
k ∇ck) + Sk (4)

Sk is the component source term, and the component source items for gas in the
catalytic layer are:

SH2 = −MH2
2F ia

SO2 = −MO2
4F ic

SH2O = −MH2O
2F ic

(5)
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The electrochemical equations:

(1) The anode- and cathode-side Butler–Volmer equations are:

Sa = ja, re f

(
cH2

cH2, re f

)γa(
e

αa Fηa
RT − e−

αc Fηc
RT

)
Sc = jc, re f

(
cO2

cO2, re f

)γc(
e

αa Fηc
RT − e−

αc Fηa
RT

) (6)

(2) The current conservation equation:

∇·(σe∇∅e) + Se = 0

∇·(σm∇∅m) + Sm = 0
(7)

The membrane proton conductivity can be expressed as:

σm = (0.514λ− 3× 10− 126)e(1268( 1
303−

1
T )) (8)

Water present on the PEM is generated in several different ways, namely pressure,
concentration difference, and electromigration.

(1) Water flux produced by electromigration on membrane:

N = nd
I
F

(9)

The electromigration coefficient is nd = 2.5λ
22

(2) Water flux caused by unbalanced pressure on both sides of the membrane:

Pressure migration refers to the amount of water transferred from the high-pressure
side to the low-pressure side under the action of pressure differences between the two sides
of the membrane, or when there is zero difference between the pressure values set on the
two sides of the membrane; therefore, this does not take into account water flow occurring
due to pressure.

(3) Water flux produced by differences in concentration between the two sides of the membrane:

J = −Dm
∂c
∂y

(10)

where Dm = Dλ

[
2416

(
1

303 −
1
T

)]
is the water diffusion coefficient of the PEM [26].

The water phase transition equation:

(1) On the cathode side:

SH2O = 0.208× 1000× 18×
PH2O − Psat

R× T
× uc (11)

(2) On the anode side:

SH2O = 0.346× 1000× 18×
PH2O − Psat

R× T
× ua (12)

2.3. Boundary Conditions

Interface conditions involving the inlet and outlet of the flow channel and the upper
and lower surfaces of the PEMFC:

(1) Inlet boundary:
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Given the inlet velocity, molar fraction of the reaction gas and temperature:

uin =
ξ

x
I0 A1

nFA2

RT0

p
(13)

Xin = X0, Tin = T0 (14)

(2) Outlet boundary:

Back pressure at the outlet is set to 0 Pa.

(3) Upper and lower boundaries:

Convective heat exchange between the upper and lower surfaces of the cell and
the environment.

q0 = h(Text − T) (15)

2.4. Simulation Model Validation

The current density of the proton exchange membrane fuel cell is important, so the
calculation results of the simulation model are transformed into the current density of
the studied simulation model. Figure 2 compares the current densities of six simulation
models with different mesh numbers at 0.6 V. A comparison of the results shows that the
cell tends to be stable with increasing number of grids. Considering the requirements
of computational efficiency and accuracy, in this paper, the fifth grid is chosen, and the
number of grids in the fifth simulation model is 730,000.
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Figure 2. Grid verification.

The accuracy verification of the simulation model is the key link in the simulation. The
simulation results are compared with the experimental results reported by Freire et al. [32].
By comparing the current density and volt relationship curves of the two simulation models,
it is found that the simulation model employed in this paper demonstrated a deviation
of less than 10% when compared to the experimental measurements of the performance
of the proton exchange membrane fuel cell. The data in Figure 3 present a comparison
of the simulated data with the experimental data obtained from the literature. Since the
error is within a reasonable range, the simulation model is chosen in this paper to perform
simulation research.
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The parameters presented in Table 2 are used in the numerical simulation. The physical
parameters of the materials used are shown in Table 3. These parameters were derived
from Liu H.J. [33], and are the basis for subsequent research and analysis.

Table 2. Basic parameters.

Parameter Value

Operating temperature 353 K

Porosity of Acatalytic layer and Ccatalytic layer 0.3

Permeability of Acatalytic layer and Ccatalytic layer 2.36 × 10−12 m2

Porosity of gas diffusion layer 0.5

Permeability of gas diffusion layer 1.18 × 10−11 m2

Density of current exchange on the cathode side 1 × 10−3 A·m−2

Density of current exchange on the anode side 1 × 102 A·m−2

Relative humidity of gas 100%

Active specific surface area of catalytic layer 1 × 107 m−1

Anode hydrogen measurement number 4.8

Cathode-side air measurement number 8

Inlet pressure 1 atm

Table 3. Physical parameters of material.

cp ρ σs k

J·kg−1·K−1 kg·m−3 S·m−1 W/(m·K)

BP 691 1880 83,000 85.5

GDL 710 440 1000 1.6

CL 710 2010 1000 8

PEM 2000 1980 1 × 10−16 2



Processes 2023, 11, 1713 8 of 14

3. Results and Discussion

Two kinds of heat conductivity were selected for the X-, Y- and Z-direction in the
porous electrode, where the X-, Y- and Z-direction coincide with the width, length and
height of the channel. These seven working conditions correspond to isotropic heat con-
duction. The heat conductivity in one direction is set to be 500 W/(m·K) or 1000 W/(m·K).
In this paper, only one of these two heat conductivities is selected, in order to analyze the
effect on temperature and membrane water carrying capacity by comparing the simulation
results. According to the research of Balandia A et al. [34–36], the heat conductivity of
suspended graphene at room temperature varies in the range of 1500–5000 W/(m·K). The
results of our literature research show that, while 500 W/(m·K) is reasonable, the thermal
conductivity of this material could reach 1000 W/(m·K) in the future, and the research
being performed in this paper is more forward-looking.

3.1. Cell Capability

Figure 4 shows a comparison of the performance curves of the proton exchange
membrane fuel cell in three directions under seven heat conduction working condition
scenarios. In Figure 4, when the cell output voltage is lower than 0.6 V, it can be seen that
the non-isotropic heat conductivity simulation model with values of heat conductivity of
500 W/(m·K) and 1000 W/(m·K) along the Z-direction has the best capability, and the
proton exchange membrane fuel cell capability is improved by 5.78% and 5.87%. When
the cell output voltage is 0.3 V and the X-direction heat conductivity is 500 W/(m·K) and
1000 W/(m·K), the capability of proton exchange membrane fuel cell increases by 2.09%
and 2.89%, respectively. When the cell output voltage is 0.3 V and the heat conductivity in
the Y-direction is 500 W/(m·K) and 1000 W/(m·K), the performance of the proton exchange
membrane fuel cell increases by 1.51% and 2.00%, respectively.
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ity scenarios.

Comparing the results in Figure 4, it can be seen that the heat conductivity in the Z-
direction plays the most important role in the capability of the proton exchange membrane
fuel cell, while the heat conductivity in the X- and Y-direction has little effect on the
capability of the proton exchange membrane fuel cell. The increase in heat conductivity in
Z-direction causes the temperature distribution in the catalytic layer and the gas diffusion
layer to be more uniform, and the heat generated by the catalytic layer reaction can be
transferred out in time to ensure that the capability will decrease as a result of the high
temperature of the catalytic layer. The heat conductivity in the X- and Y-direction only
causes the temperature of the porous electrode on the XY plane of the proton exchange
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membrane fuel cell to be relatively uniform, and does not have much effect on its capability.
By comparing the current density and voltage relationship curves of two different heat
conductivity scenarios in the same direction, it can be seen that when the heat conductivity
exceeds 500 W/(m·K), the increase in heat conductivity has no obvious effect on improving
the capability of the proton exchange membrane fuel cell. This is because the thickness of
the porous electrode is too small, the thickness of the catalytic layer is 5 × 10−5 m, and the
thickness of the gas diffusion layer is 3 × 10−3 m. If the heat conductivity is too great, the
effect will not be obvious, so there must be a range of different values of heat conductivity
that are the most economical.

3.2. Temperature Distribution

A single cell has two catalytic layers, one is the Acatalytic layer and the other is the
Ccatalytic layer, but the Ccatalytic layer is more important for proton exchange membrane
fuel cells, so this section focuses on the Ccatalytic layer. Since the capability of the proton
exchange membrane fuel cell is basically the same for values of heat conductivity of
500 W/(m·K) and 1000 W/(m·K), only heat conductivity of 500 W/(m·K) will be studied
in the subsequent sections. Figure 5 shows the temperature distribution of the Ccatalytic
layer for four thermal conductivity operating conditions when the operating temperature
of the proton exchange membrane fuel cell is 353 K and the cell output volt is 0.3 V. In
Figure 5a–d, the temperature maxima are 365.36 K, 364.14 K, 365.00 K and 364.15 K, and
the temperature minima are 357.83 K, 360.69 K, 358.74 K and 353.04 K. The area in the
blue box of Figure 5 is the maximum temperature area, and Figure 5a, i.e., isotropic heat
conduction, exhibits a relatively uniform temperature distribution, and the proportion of
the maximum temperature area is small, so it is not clearly marked. Figure 5b presents
the case in which the heat conductivity is increased in the X-direction, from which it can
be seen that when the heat conductivity increases in the X-direction, a clear temperature
gradient along the Y-direction appears on the catalytic layer. Figure 5c shows the case in
which the heat conductivity is increased in the Y-direction, from which it can be seen that
when the heat conductivity is increased in the Y-direction, there is no obvious temperature
gradient on the catalytic layer, and the cell temperature distribution is more uniform, and
the maximum temperature is concentrated in the middle region of the catalytic layer.
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The Y = 1 × 10−2 m cross-section temperature distribution for the four settings of
heat conductivity when the operating temperature of the proton exchange membrane
fuel cell is 353 K and the cell output volt is 0.3 V is shown in Figure 6. The total length
of the proton exchange membrane fuel cell along the Y-direction is 2 × 10−2 m, so the
Y = 1 × 10−1 m cross-section is the central cross-section of the proton exchange membrane
fuel cell. Figure 6a shows the case of isotropic heat conductivity, and the temperature
distribution in this case is consistent with the research results of many authors [37,38], the
temperature presents the highest temperature in the catalytic layer, and the temperature
spreads outward from the highest region. Figure 6b shows the case in which the heat
conductivity is increased in the X-direction, from which it can be seen that high temperature
only appears inside the porous electrode, and the heat generated by the reaction does not
diffuse to other components. Figure 6c shows the case in which the heat conductivity is
increased in the Y-direction, from which it can be seen that when the heat conductivity is
increased in the Y-direction, the heat diffuses in the X-direction, and the heat accumulates
on the side of the proton exchange membrane fuel cell outlet. Figure 6d shows the case in
which the heat conductivity is increased in the Z-direction.
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3.3. Membrane Water Carrying Capacity Distribution

The proton exchange membrane, also known as the hydrogen ion exchange membrane,
is an ion-selective membrane that provides channels for proton migration and transport,
separates gas reactants, and blocks electrolytes in batteries. The proton exchange membrane
is at the most central position of the membrane electrode. As a proton transfer carrier, it
transfers the protons generated by the anode catalytic layer to the cathode catalytic layer
and reacts with oxygen to form water. At the same time, the proton exchange membrane
acts as a physical barrier separating the anode fuel from the cathode fuel to avoid direct
contact between the two. In addition, the proton exchange membrane does not conduct
electrons, forcing electrons to conduct through an external circuit to achieve the purpose of
providing energy, and has the advantages of good heat resistance, high proton conductivity,
and high mechanical strength [39–41].
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Figure 7 shows the distribution of membrane water carrying capacity near the cathode
side under four heat conductivity working conditions with a working temperature of the
proton exchange membrane fuel cell of 353 K and a cell output volt of 0.3 V. In Figure 7a–d,
the membrane water carrying capacity maxima are 15.17, 15.23, 15.51 and 16.04, and the
temperature minima are 4.20, 4.21, 4.30 and 4.31. It is obvious from Figure 7 that the
water carrying capacity of the proton exchange membrane increases the most when the
heat conductivity of the porous electrode increases in the Z-direction. By comparing
Figure 7a–d, it can be seen that when the heat conductivity increases in the X-, Y- and
Z-direction, the water carrying capacity of the PEM increases to different degrees, and the
water carrying capacity increases the most when the heat conductivity increases in the
Z-direction, thus improving the performance of the proton exchange membrane fuel cell
the most.
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4. Conclusions

In this paper, a simulation model of a proton exchange membrane fuel cell was
established according to our research needs. After verifying the accuracy of the simulation
model, the influence of the heat conductivity of the non-isotropic porous electrode on the
capability, temperature and membrane water carrying capacity of the proton exchange
membrane fuel cell was studied by varying the value of heat conductivity along three axes.
The conclusions of this paper can be summarized as follows:

(1) When the cell output voltage of the proton exchange membrane fuel cell was 0.3 V, the
heat conductivity of the porous electrode in the Z-direction had a greater impact on
proton exchange membrane fuel cell performance compared to the other directions,
and the heat conductivity in the X-direction and Y-direction had less influence on the
performance of the proton exchange membrane fuel cell. When the heat conductivity
in the Z-direction of the proton exchange membrane fuel cell was 500 W/(m·K) and
1000 W/(m·K), the proton exchange membrane fuel cell performance was improved
by 5.78% and 5.87%; when the heat conductivity in the X-direction of the proton
exchange membrane fuel cell was 500 W/(m·K) and 1000 W/(m·K), the proton ex-
change membrane fuel cell performance was improved by 2.09% and 2.89%; and
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when the heat conductivity in the Y-direction of the proton exchange membrane fuel
cell was 500 W/(m·K) and 1000 W/(m·K), the proton exchange membrane fuel cell
performance was improved by 1.51% and 2.00%. Since the thickness of the porous
electrode was too thin, the improvement in capability decreased with increasing
heat conductivity.

(2) The heat conductivity in the Z-direction played the most important role in the tempera-
ture distribution in the proton exchange membrane fuel cell, and the Z-directional heat
conductivity caused the temperature distribution of the proton exchange membrane
fuel cell components to be more uniform. The heat conductivity in the X-direction
and Y-direction had less influence on the temperature distribution.

(3) The Z-direction heat conductivity increased the water carrying capacity of the thin
film, which represented a significant increase in the high-water-carrying-capacity
region, while X- and Y-direction heat conductivity had no significant effect on the
water carrying capacity of the thin film. From the analysis presented here, it was
found that the capability of the proton exchange membrane fuel cell was proportional
to the membrane water carrying capacity.

According to this paper, the performance of the proton exchange membrane fuel cell
was most affected by the heat conductivity of the porous electrode in the Z-direction, and
current technology also is also able to realize the preparation of non-isotropic materials, so
specially prepared non-isotropic heat-conductive porous electrodes can be considered for
use in proton exchange membrane fuel cells.

The research in this paper still has great shortcomings. In the future, the most cost-
effective point between heat conductivity and material production cost will be studied on
the basis of the results in this paper in order to guide the production of anisotropic materials.

Author Contributions: Writing-original draft, L.Z.; Writing-review&editing, K.S.; Software, J.W.;
Project administration, Z.C. All authors have read and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China (No. 52074040).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A area (m2)
c molar concentration (mol·m−3)
D diffusion coefficient (m2·s−1)
F Faraday’s constant (C·mol−1)
h heat transfer coefficient (W·m−2·K−1)
H height (m)
iref reference exchange current density (A·m−2)
I cell current density (A·m−2)
k thermal conductivity (W·m−1·K−1)
masp mean absolute surface slope
M molar mass (kg·mol−1)
Mgas gas parameter (m)
P pressure (Pa)
PH2O vapor pressure (Pa)
Psat The saturation pressure of water (Pa)
R universal gas constant (8.314 J·mol−1·K−1)
S source term of governing equations
t time (s)
T temperature (K)
u velocity vector (m·s−1)
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V potential (V)
X, Y, Z coordinate (m)
X species mass fraction
α transfer coefficient
ε porosity
ζ stoichiometric flow ratio
η overpotential (V)
λ membrane water content
γ concentration index
µ viscosity (kg·m−1·s−1)
ρ density (kg·m−3)
σ electrical conductivity (S·m−1)
∅ potential (V)
BP bipolar plate
CL catalytic layer
GC gas channel
GDL gas diffusion layer
PEM proton exchange membrane
PEMFC proton exchange membrane fuel cell
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