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Abstract: Interval forecasting has become a research hotspot in recent years because it provides richer
uncertainty information on wind power output than spot forecasting. However, compared with
studies on single wind farms, fewer studies exist for multiple wind farms. To determine the aggregate
output of multiple wind farms, this paper proposes an interval forecasting method based on long
short-term memory (LSTM) networks and copula theory. The method uses LSTM networks for spot
forecasting firstly and then uses the forecasting error data generated by LSTM networks to model the
conditional joint probability distribution of the forecasting errors for multiple wind farms through the
time-varying regular vine copula (TVRVC) model, so as to obtain the probability interval of aggregate
output for multiple wind farms under different confidence levels. The proposed method is applied to
three adjacent wind farms in Northwest China and the results show that the forecasting intervals
generated by the proposed method have high reliability with narrow widths. Moreover, comparing
the proposed method with other four methods, the results show that the proposed method has better
forecasting performance due to the consideration of the time-varying correlations among multiple
wind farms and the use of a spot forecasting model with smaller errors.

Keywords: interval forecast; multiple wind farms; LSTM network; regular vine copulas;
time-varying copula

1. Introduction

Owing to the intermittent and stochastic nature, the increasing penetration of wind
power poses a big challenge to the power grid operation. Interval forecasting is a type
of probabilistic forecasting that can provide the upper and lower boundaries of output
wind power under a given confidence level [1]. Compared with a spot forecast, an interval
forecast can provide more uncertain information for solving problems in power grid
operation, such as unit commitment optimization, reserve plan making and operational
risk assessment, and thus has been widely studied in recent years [2].

The methods of interval forecasting can be divided into three categories, namely,
methods based on fitting probability distribution function (PDF) of spot forecasting errors,
quantile regression methods and bound evaluation methods. Among them, a quantile
regression method [3–6] obtains the forecasting intervals by constructing a regression model
for multiple quantiles, and the complexity of the quantile regression model increases with
the number of quantiles required and is computationally intensive. A bound evaluation
method transforms the interval forecasting into an objective optimization problem [7,8],
which can directly output the upper and lower edge values of wind power, this method
usually requires machine learning algorithms because of the discontinuous optimization
objectives. At the same time, the above two methods need to be remodeled when the
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required confidence level changes. A method based on fitting PDF of spot forecasting errors
performs spot forecasting firstly and then calculates forecasting intervals by fitting the PDF
of the spot forecasting error [1]. Although this method has more steps than the previous
two methods, the wind power output intervals at all confidence levels can be obtained
after the PDF of forecast errors is modeled. In addition, since most power dispatching
departments already have the capability of short-term wind power spot forecasting, this
method is the easiest to implement and be understood by dispatchers and is the most
widely used.

For the methods based on fitting PDF of spot forecasting errors, both the spot forecast
model and the PDF model will affect the forecasting results. Spot forecast models can be
mainly categorized into physical models and the statistical learning models. A physical
model uses numerical weather forecast data and geographic information to predict wind
power [9]. The statistical learning model makes predictions by learning from historical data
and finding the relationship between relevant data and wind power output; examples of this
model include the time series model in ref. [10] and the Markov and autoregressive moving
average (ARMA) models in ref. [11]. In recent years, with the continuous development
of artificial intelligence theory, various artificial intelligence algorithms have also been
incorporated into statistical learning methods [12–16]. Specifically, ref. [17,18] constructed
a backpropagation (BP) neural network and ref. [19] constructed a support vector machine
(SVM) model for wind power forecasting. The authors of ref. [1,20,21] used long short-term
memory (LSTM) networks for spot forecasting, and ref. [22] established a spot forecasting
model based on a deep Boltzmann machine. The use of artificial intelligence algorithms
for the spot forecasting of wind power output has been a development trend. For the PDF
modeling of spot forecasting error, a Gaussian distribution is used in ref. [23,24], and a
beta distribution is used in ref. [25] to model the PDF of wind farm forecast error. The
work in ref. [26] established a conditional PDF for the prediction errors through the copula
function. In ref. [1], the nonparametric kernel density estimation was used to fit the PDF of
the wind power prediction errors.

However, all the aforementioned studies involved an interval forecasting method
for a single wind farm. With the introduction of the goals of carbon peaking and car-
bon neutrality, the proportion of wind power as clean energy in the power grid will be
further expanded [27–30], so compared with a single wind farm, the power grid will be
more concerned about the aggregate output of multiple wind farms. Interval forecasting
methods for multiple wind farms include the extrapolation method [31], the upscaling
method [32], the superposition method [33] and the high-dimensional copula method [34].
The extrapolation method predicts aggregate wind power by finding wind speed predic-
tions that are similar to the current ones in the historical dataset; thus, the accuracy of
prediction is strongly influenced by the accuracy of the weather forecasts. In the upscaling
method, reference wind farms are selected, and the weighted sum of the forecast outputs
of these reference wind farms is used as the aggregate output, but there is no standard
for how to select the reference wind farms and weights. Superposition method adds the
forecasting values of multiple single wind farms as the forecasting values of their aggregate
output. However, this method ignores correlations among multiple wind farms due to
their similar geographic locations and climatic conditions [35,36], and may have poor
forecasting accuracy.

The high-dimensional copula model performs better than other models in terms of
fitting the correlations of multidimensional variables and has been introduced into interval
forecasting for multiple wind farms to model the PDF of forecasting errors in recent years.
In ref. [34], the regular vine copula model was introduced to describe the joint PDF of
the spot forecasts and real outputs of multiple wind farms. Then, the aggregate output
for multiple wind farms can be derived from the joint PDF, and only one type of copula
function is used in this correlation model. The work in ref. [37] constructs a regular vine
copula model for multiple wind farms with more types of copula functions. The studies
in ref. [35,37] both use static copula functions, but in practice, the correlations between
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multiple wind farms vary with time. The authors of ref. [38] used time-varying copulas
to construct a drawable vine copula model, which considers time-varying correlations of
multiple variables of wind farms, but only one type of copula function is used in the model,
which may not be applicable to describe the correlation between multiple wind farms.

In summary, most of the existing interval forecasting studies focus on single wind
farms, there are few studies on aggregate output of multiple wind farms. Additionally, the
accuracy of the copula model used in interval forecasting of aggregate output for multiple
wind farms needs to be improved. Moreover, the studies mentioned above rarely provide
complete modeling processes stating how the copula model is combined with the spot
forecasting model to achieve interval forecasting. To address these problems, the main
contributions of this paper are as follows:

(1) A time-varying regular vine copula model is proposed to obtain the conditional joint
PDF of the forecasting errors of multiple wind farms. The proposed method not only
uses multiple types of copula functions and optimize the structure of vine copula
based on the Akaike information criterion (AIC), but also uses copula functions with
time-varying dependence parameters to improve the model’s ability to capture the
complex and time-varying correlations among multiple wind farms;

(2) Interval forecasting is achieved for the aggregate output for multiple wind farms by
combining the spot forecasting model based on LSTM networks and the time-varying
regular vine copula model. In this method, the historical outputs of multiple wind
farms are used to train the spot forecasting model based on LSTM networks. Then,
using the forecasting outputs and errors generated by the trained spot forecasting
model as modeling data, a time-varying regular vine copula model is established to
obtain the conditional joint PDF of the forecasting errors; then, the confidence interval
can be derived from this model. Finally, the confidence intervals of the aggregate
output are obtained by adding up the confidence intervals of forecasting errors and
the spot forecasting outputs. This modeling framework can also be applied to combine
the copula model with other spot forecasting methods.

This paper is organized as follows. Section 2 proposes a time-varying regular vine
copula model to obtain the conditional joint PDF of the forecasting errors. Section 3
proposes an aggregate output interval forecasting method based on LSTM networks and
time-varying regular vine copulas (LSTM-TVRVC). Section 4 provides a case analysis and
shows the experimental results and discussions, and Section 5 concludes the paper.

2. Conditional Joint PDF for the Forecasting Errors of Multiple Wind Farms Using
Time-Varying Regular Vine Copulas
2.1. Sklar’s Theorem

A copula function is defined as the connection function between the joint distribution
function of multiple variables and their marginal distribution functions [39]. For an s-
dimensional variable (g1, g2, · · · , gi, · · · , gs), according to Sklar’s theorem, there must be
a copula function that satisfies (1).

F(g1, g2, · · · , gi, · · · , gs) = C(u1, u2, · · · , ui, · · · , us) (1)

where ui = F(gi) is the cumulative probability distribution (CDF) of variable gi, F(·) is the
CDF and C(·) is the copula CDF.

The derivative of (1) is the corresponding s-dimensional joint PDF:

f (g1, g2, · · · , gs) = c(u1, u2, · · · us)
s

∏
i=1

f (gi) (2)

where c(·) is the copula PDF and f (gi) is the marginal PDF of variable gi.
Therefore, the joint PDF of multiple variables can be converted into a copula function

and marginal distribution functions for multiple variables.
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2.2. Regular Vine Copulas

As (1) shows, the copula function for multiple variables is equivalent to using only
one type of copula function to establish the dependence structure between multidimen-
sional variables; consequently, this function has great limitations. In addition, as the
dimensionality of the variables increases, the scale of the parameters to be estimated
for the high-dimensional copula function becomes larger, thus creating difficulties for
equation solving.

The regular vine copula model transforms a high-dimensional copula function into a
cascade of bivariate copula models [40], thus allowing for more types of copula functions to
be used and making the correlation modeling process for multiple variables more flexible.

The regular vine copula model for s variables consists of s − 1 trees denoted as
T1, · · · , Tj, · · · Ts−1. The j − th tree contains s − j nodes connected by s − j − 1 edges.
Each node corresponds to a CDF, and each edge corresponds to a bivariate copula model
calculated from two nodes connected to the edge.

The node set and edge set of Tj are denoted as Nj and Ej, respectively, and regular
vine copulas should satisfy the following conditions [37]:

1© T1 has s nodes, with a node set N1 = {1, 2, · · · , s} and an edge set E1. 2©Concerning
Tj (2 ≤ j ≤ s− 1), Nj equals Ej−1. 3© If two edges in Tj are joined in Tj+1, the edges need
to share a common node in Tj.

An edge in Ej is denoted as e = a(e), b(e)|D(e) , where a(e)|D(e) and b(e)|D(e)
are two nodes connected by e and D(e) is the conditioning set. The copula PDF corre-
sponding to this edge is denoted as ca(e),b(e)|D(e)

(
ua(e)|D(e), ub(e)|D(e)

)
, where ua(e)|D(e) and

ub(e)|D(e) denote CDFs corresponding to the two nodes connected by e; then, (2) can be
transformed into:

f (g1, g2 · · · , gs) =
s−1

∏
j=1

∏
e∈Ej

ca(e),b(e)|D(e)

(
ua(e)|D(e), ub(e)|D(e)

) s

∏
i=1

f (gi) (3)

where ua(e)|D(e) = F
(

ga(e)

∣∣∣gD(e)

)
and gD(e) denotes the variables corresponding to D(e)

(the D(e) of the tree T1 is empty).
Figure 1 shows a possible structure of a six-dimensional regular vine copula model,

where blocks denote nodes and lines denote edges.
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Figure 1. A possible structure of the six-dimensional regular vine copulas.

As (3) and Figure 1 show, the regular vine copula model not only has more options in
terms of the type of bivariate copula corresponding to each edge but can also freely adjust
structures of trees as needed.
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2.3. Time-Varying Copula Functions

When constructing the regular vine copula model, the type of bivariate copula cor-
responding to each edge needs to be determined. Copula functions can be divided into
elliptical copulas and Archimedean copulas [41]. Elliptical copulas, which include Gaussian
and t copulas, have symmetric tail correlations. Archimedean copulas, which include Gum-
bel and Clayton copulas, have asymmetric tails correlations. The dependence parameters
of traditional copula functions are static; that is, these parameters do not change over
time. However, the nonlinear correlations among the outputs of multiple wind farms often
exhibit time-varying characteristics. Therefore, when constructing regular vine copulas,
this paper uses the time-varying copula functions proposed by Patton as alternative copula
functions, whose dependence parameters are akin to a restricted ARMA process [42,43].

The time-varying copula functions used in this paper and their evolution equation of
the dependence parameters are as follows.

(3) Time-varying Gaussian copula.

This copula has a symmetric distribution but does not reflect tail correlations. The
functional form of this copula is shown in (4).

CN(u1, u2; ρN,t) =

Φ−1(u1)∫
−∞

Φ−1(u2)∫
−∞

1

2π
√

1− ρ2
N,t

exp

(
−
(
r2 + q2 − 2ρN,trq

)
2(1− ρN,t2)

)
drdq (4)

where u1 and u2 are the marginal CDFs of two variables, Φ−1(·) is the inverse of the
standard Gaussian CDF and ρN.t is the dependence parameter. The evolution equation of
this copula is as follows:

ρN,t = Λ

(
ωN + βNρt−1 + αN

1
10

10

∑
j=1

Φ−1(u1,t−j
)
Φ−1(u2,t−j

))
(5)

where Λ(x) = (1− e−x)/(1 + e−x) is designed to keep ρN,t ∈ (−1, 1), and u1,t−j and u2,t−j
are the CDFs of the two variables at moment t − j; the parameters to be estimated are
{ωN , βN , αN}.
(4) Time-varying t copula.

CT(u1, u2; ρT,t, dT,t) =

T−1(u1)∫
−∞

T−1(u2)∫
−∞

1

2π
√

1− ρ2
T,t

(
1 +

r2 + q2 − 2ρT,trq
dT,t(1− ρT,t2)

)− dT,t+2
2

drdq (6)

where T−1(·) is the inverse of the t CDF, ρT,t and dT,t are the dependence parameters and
the evolution equations of these parameters are as follows:

ρT,t = Λ

(
ωρT + βρT ρT,t−1 + αρT

1
10

10
∑

j=1
T−1(u1,t−j

)
T−1(u2,t−j

))

dT,t = Λ

(
ωdT + βdT dT,t−1 + αdT

1
10

10
∑

j=1
T−1(u1,t−j

)
T−1(u2,t−j

)) (7)

and the parameters to be estimated are
{

ωρT , βρT , αρT

}
,
{

ωdT , βdT , αdT

}
.

(5) Time-varying Clayton copula.
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This copula is suitable for variables with a strong lower tail correlation. The functional
form is shown as (8).

CC(u1, u2; θc,t) = max
((

u−θC,t
1 + u−θC,t

2 − 1
)− 1

θC,t , 0
)

(8)

where θC,t is the dependence parameter and its evolution equation is as follows:

θC,t = Λ

(
ωC + βCθC,t−1 + αC

1
10

10

∑
j=1

∣∣u1,t−j − u2,t−j
∣∣) (9)

and the parameters to be estimated are {ωC, βC, αC}.
(6) Time-varying Gumbel copula.

This copula is suitable for variables with a strong upper tail correlation. The functional
form is shown as (10).

CG(u1, u2; θG,t) = exp
{
−
[
(− log u1)

θG,t + (− log u2)
θG,t
] 1

θG,t

}
(10)

where θG,t is the dependence parameter and its evolution equation is as follows:

θG,t = Λ

(
ωG + βGθG,t−1 + αG

1
10

10

∑
j=1

∣∣u1,t−j − u2,t−j
∣∣) (11)

and the parameters to be estimated are {ωG, βG, αG}.
(7) Time-varying symmetrized Joe Clayton copula (SJC copula).

This copula is suitable for variables with different upper tail and lower tail correlations.
The functional form of this copula is as follows:

CSJC(u1, u2) =
1
2
(
CJC(u1, u2)+ CJC(1− u1, 1− u2) + u1 + u2 − 1

)
CJC(u1, u2) = 1−

{
1−

{[
1−

(
1− uκt

1
)]−γt +

[
1− (1− u2)

κt
]−γt − 1

}− 1
γt

} 1
κt

κt =
1

log2

(
2−τU

SJC,t

)
γt =

−1
log2

(
τL

SJC,t

)
(12)

where τU
SJC,t and τL

SJC,t are the upper and lower tail dependence parameters, respectively,
and their evolution equations are as follows:

τU
SJC,t = Λ

(
ωU

SJC + βU
SJCτU

SJC,t−1 + αU
SJC

1
10

10
∑

j=1

∣∣u1,t−j − u2,t−j
∣∣)

τL
SJC,t = Λ

(
ωL

SJC + βL
SJCτL

SJC,t−1 + αL
SJC

1
10

10
∑

j=1

∣∣u1,t−j − u2,t−j
∣∣) (13)

and the parameters to be estimated are
{

ωU
SJC, βU

SJC, αU
SJC

}
and

{
ωL

SJC, βL
SJC, αL

SJC

}
.

2.4. Modeling the Conditional Joint PDF for the Forecast Errors of Multiple Wind Farms Using
Time-Varying Regular Vine Copulas

For adjacent regions, where multiple wind farms have similar geographical and
meteorological environments, there is a statistical correlation between the spot forecasting
values and the forecasting errors; this correlation is the basis for constructing the conditional
PDF of the forecasting error by using the copula model.
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According to Section 2.2, three problems need to be solved when constructing regular
vine copulas: (1) The marginal distribution function of each variable needs to be estimated.
(2) The edge set Ej needs to be determined for tree Tj; that is, the structure of tree Tj needs
to be selected. (3) The type of copula function for constructing the bivariate copula model
corresponding to each edge needs to be chosen. By using five kinds of copula functions
in Section 3, this paper proposed a time-varying regular vine copulas (TVRVC) model to
obtain the conditional joint PDF of the forecasting errors for multiple wind farms. Suppose
that the number of wind farms is M; p1, p3, . . . , p2M−1 denote the spot forecasting outputs
of M wind farms and p2, p4, . . . , p2M denote the forecasting errors of the M wind farms.
Then, the M wind farms contain 2M variables, and the modeling process is as follows:

1. Fit the marginal distribution of the 2M variables. Kernel density estimation is used to
fit the marginal PDFs of the 2M variables, and the estimation formula is as follows:

f (pi) =
1

nh

n

∑
t=1

K
(

pi − pi,t

h

)
(14)

where fi(pi) is the PDF of variable pi, h is the length of the sliding window, n is the
sample numbers of samples of variable pi, and K(·) is the kernel function. The CDF
of pi is obtained through a computing integral for f (pi);

2. j = 1;
3. Form the node set Nj for tree Tj, and calculate the CDFs corresponding to the nodes

in Nj. If j = 1, then N1 = {1, 2, · · · i · · · , 2M} and the CDF corresponding to node i is
F(pi). If j > 1, then Nj = Ej−1; the formula for calculating the CDFs corresponding to
the nodes in Nj is shown in reference [39];

4. Form all possible edge sets for tree Tj;
5. Construct bivariate copula models for each possible edge set. For each edge in a

possible edge set, construct bivariate copula models by using five alternative types
of time-varying copula functions and calculate the AIC indices of these models. The
optimal model is selected as the final bivariate copula model corresponding to this
edge. The AIC index calculation formula is as follows:

AIC = 2k− 2 ln L (15)

where k is the number of model parameters and L is the likelihood. The smaller the
AIC, the better the bivariate copula;

6. Choose the optimal edge set as the edge set Ej for tree Tj. The sum of the AICs of all
edges in a possible edge set is used as the evaluation index, and the edge set with the
smallest AIC is selected as the edge set Ej for tree Tj;

7. Determine whether j = 2M− 1. If not, j = j + 1, calculate the node set Nj for tree Tj
and return to 3; otherwise, proceed to 8;

8. Calculate the joint PDF of the spot forecasting outputs and errors of the M wind farms
by using (3);

9. Calculate the conditional joint PDF of the forecasting errors of the M wind farms by
using (16).

f (p2, p4, · · · , p2M/p1, p3, · · · , p2M−1) =
f (p1, p2, · · · , p2M)

f (p1, p3, · · · , p2M−1)
(16)

The flow chart for modeling the conditional joint PDF by TVRVC is displayed in
Figure 2.
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3. Interval Forecasting Method for the Aggregate Output of Multiple Wind Farms
Using LSTM Networks and Time-varying Regular Vine Copulas
3.1. Interval Forecasting Method

The TVRVC model proposed in the previous section requires spot forecasting errors
as modeling data. An LSTM network is a special kind of recurrent neural network (RNN)
that was proposed by Sepp Hochreiter and Jurgen Schmid Huber in 1997 [1]. The LSTM
network changes the way of gradient transmission during backpropagation by adding
a memory cell to the hidden layer unit of the RNN, thereby effectively alleviating the
problems of gradient disappearance and gradient explosion. Many studies have shown
that LSTM performs well in terms of wind power spot forecasting [44,45], so this paper
uses the combination of spot forecast model based on LSTM works and TVRVC model
to realize interval forecasting of aggregate output for multiple wind farms. If there are a
total of M wind farms, the modeling process of interval forecasting method using LSTM
networks and the time-varying regular vine copulas (LSTM-TVRVC) is as follows:

1. Construct the spot forecasting model based on LSTM networks for M wind farms.
First, the historical output data of the M wind farms are divided into a training set
and a test set. The training dataset is used to train the LSTM networks, and the test
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dataset is used to verify the effectiveness of the model. Then, M LSTM networks
are trained, and the i− th LSTM network is trained for the i− th wind farm, where
i ∈ [1, M]. After training, the test dataset can be fed to the trained LSTM networks to
obtain spot forecasting outputs for each wind farm. The spot forecasted aggregate
output for the M wind farms is obtained by adding up the spot forecasting outputs of
the M wind farms at the same moment;

2. Generate modeling data for the time-varying regular vine copula model based on the
trained spot forecasting model. The test set of the spot model is divided into subsets
A and B. The spot forecasting outputs and the errors of subset A generated by the
trained spot forecasting model are used as modeling data to construct the TVRVC
model, while subset B is used to test the effectiveness of the proposed method;

3. Construct the time-varying regular vine copula model for multiple wind farms, and
obtain the conditional joint PDF of the forecasting errors;

4. Calculate the conditional joint PDF of the spot forecasting error corresponding to
subset B. Input the spot forecasting outputs obtained for the M wind farms at the
same moment belonging to subset B into the conditional joint PDF of the forecasting
errors to obtain the conditional joint PDF of the forecasting errors for the correspond-
ing moment;

5. Transform the conditional joint PDF of the forecasting errors into the conditional PDF
of the sum of the forecasting errors by using the convolution formula [38];

6. Calculate the confidence interval of the sum of the forecasting errors at the given
confidence level;

7. Calculate the forecasting interval for the aggregate output of the M wind farms. This
interval is obtained by adding the confidence interval of the sum of the forecasting
errors to the corresponding spot forecasted aggregate output.

Figure 3 shows the interval forecasting method by using LSTM-TVRVC.
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3.2. Evaluation Indices

Reliability and sharpness are two aspects of evaluating a forecasting interval [46].
Generally, reliability is the primary factor that needs to be guaranteed for interval forecast-
ing, and the average coverage deviation (ACD) is a commonly used index for evaluating
reliability. The nominal mean prediction interval width (NMPIW) is a commonly used
index for evaluating sharpness.

For a given nominal confidence level 1− α, the formula of the ACD is as follows:

ACD = PICP− (1− α) (17)

where PICP is the probability that the test samples lie within the forecasting intervals at the
given confidence level; PICP is calculated by:

PICP =
1
N

N

∑
i=1

λi (18)

where λi is an indicator variable that is defined as follows:

λi =

{
1 q̂(α/2)

i < xi < q̂(1−α/2)
i

0 otherwise
(19)

where q̂(α/2)
i and q̂(1−α/2)

i are the lower and upper boundaries of the forecasting intervals,
respectively, and xi is the i − th test sample. Forecasting intervals with small absolute
values of the ACD values are more reliable.

The formula of the NMPIW is as follows:

NMPIW =
1

RN

N

∑
i=1

(
q̂(1−α/2)

i − q̂(α/2)
i

)
(20)

where N is the number of test samples and R is the difference between the maximum
and minimum real wind power output values. Reliable forecasting intervals with smaller
NMPIWs are preferred.

The skill score (SS) is a comprehensive index that considers both reliability and sharp-
ness [37]; the SS is positively oriented and computed as follows:

SS =
1
N

N

∑
i=1

K

∑
j=1

(
ξ
(αj)

i − αj

)(
xi − q̂

(αj)

i

)
(21)

where ξ
(αj)

i is an indicator variable that equals 1 when xi ≤ q̂
(αj)

i and that equals 0 otherwise.
When K = 2, α1 = 1− α

2 and α2 = α
2 , (21) is the SS for the confidence level 1− α.

4. Results and Discussion

The proposed method is applied to three adjacent wind farms in Northwest China to
verify its effectiveness. Each wind farm has an installed capacity of 50 MW, and the data
resolution is 15 min. The distance between any two of the three wind farms is no more
than 50 km, and Kendall’s tau coefficients for the real outputs of the three wind farms are
shown in Table 1, demonstrating strong correlations.

Table 1. Kendall’s tau coefficients for the three wind farms.

Wind Farm 1 and 2 Wind Farm 1 and 3 Wind Farm 2 and 3

Kendall’s tau
coefficients 0.944 0.907 0.888
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The historical data of the three wind farms for the whole year of 2017 are divided into
four datasets (datasets 1–4), and each dataset contains three months of wind power output
data. The proposed method is applied to these four datasets to verify its effectiveness.

For each dataset, the training set of the spot forecasting model contains the historical
data of the three wind farms over the first two months, and the test dataset contains the
historical data of the third month. The modeling data for the TVRVC are the spot forecasting
data and the forecasting error data of the three wind farms over the first three weeks of
the third month (generated by the spot forecast model based on LSTM networks), and
confidence intervals for the aggregate output of the fourth week of the third month are
finally calculated to verify the validity of the interval forecast method.

4.1. Spot Forecasting Results and Discussion

The LSTM networks have two hidden layers with 32 and 8 hidden units, and the
learning rate is set as 0.005. To conduct a comparison with the LSTM networks, a spot
forecasting model based on BP neural networks is also created, and the modeling steps are
the same as those in Section 3.1, only the LSTM networks are replaced by the BP networks.
The BP networks also have two hidden layers with 32 and 8 hidden units, and the learning
rate is set as 0.005. The root mean square error (RMSE) is taken as the evaluation index, and
its formula can be found in [1]. The RMSEs of the two spot forecasting models are shown
in Table 2.

Table 2. RMSEs of different spot forecasting models.

RMSE(MW)

Dataset 1 Dataset 2 Dataset 3 Dataset 4

LSTM
Wind Farm 1 2.2742 2.3768 2.5133 2.1485
Wind Farm 2 2.4184 2.4868 2.5812 2.2508
Wind Farm 3 2.5702 2.7155 2.7471 2.4642

BP
Wind Farm 1 3.4114 3.5652 3.7699 3.2227
Wind Farm 2 3.6276 3.7301 3.8717 3.3762
Wind Farm 3 3.8554 4.0732 4.1206 3.6962

For each wind farm, the RMSE of the spot forecasting model based on the LSTM
networks does not exceed 5% of the installed capacity and is smaller than that of the BP
neural networks. The results demonstrate the effectiveness of the spot forecasting model
used in this paper.

4.2. Structures of the Time-Varying Regular Vine Copulas for the Three Wind Farms

The structure of each tree and the type of bivariate copula model corresponding to
each edge in the TVRVC of the three wind farms for dataset 1 are shown in Figure 4.
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Table 3 shows the AIC values produced when fitting edge 1,2 and edge 3,6|5 with five
types of time-varying copula functions.

Table 3. AIC indices produced when fitting edge 1,2 and edge 5,2|1 with five types of copula functions.

AIC (×103)

Gaussian t Clayton Gumbel SJC

1,2 −6.105 −6.222 −8.204 −7.074 −7.673
5,2|1 −0.177 −0.306 −0.744 −0.163 −0.823

Table 3 shows that the optimal bivariate copula for edge 1,2 is the Clayton copula and
for edge 5,2|1, it is the SJC copula.

4.3. Interval Forecasting Results and Discussion

Figure 5 shows the aggregate output intervals, the real aggregate output values and
the spot-forecasted aggregate output values at different confidence levels for the three wind
farms on days 1–2 of the fourth week of the third month in dataset 1.
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As Figure 5 shows, the forecasting interval of the proposed method can effectively
envelop the real aggregate output of the three wind farms and can reflect uncertainty
characteristics well even when the real output fluctuates greatly. The figure also shows that
the width of the interval is narrower when the wind power output is smaller and wider
when the output is larger, which indicates that the uncertainty of the aggregate output of
the three wind farms is smaller at lower wind power output levels.

Figure 6 shows the means and fluctuation ranges of the absolute values of the ACD
for each of the four datasets at different confidence levels.
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Regarding reliability, the means of the absolute values of the ACD indices obtained
for the four datasets do not exceed 4% at all confidence levels and fluctuates within 3%.
Regarding sharpness, the interval width of the 90% confidence interval is only 10% and
fluctuates within 5%. The forecasting results show that the method proposed in this paper
is highly adaptable, has good performance during different periods of the year and has
small interval widths while remaining highly reliable.

The following methods are designed for comparison with the methods proposed in
this paper:

• BP networks and time-varying regular vine copulas (BP-TVRVC) method: The forecast
error data generated by BP networks are used for time-varying regular vine copulas
modeling, and the RMSE of the BP networks is shown in Table 2.

• LSTM networks and time-varying copulas (LSTM-TVC) method: This is a superposi-
tion method. After performing spot forecasting with the LSTM networks, modeling
the time-varying bivariate copula of the spot forecasting outputs and forecasting er-
rors for each wind farm to obtain their respective forecasting intervals, the forecast
intervals are superimposed as their aggregate output interval. This method ignores
the spatial correlation between multiple wind farms.

• LSTM networks and static regular vine copulas (LSTM-SRVC) method: LSTM net-
works are still used for spot forecasting, but the time-varying copula functions used
in the time-varying regular vine copula model are replaced by the corresponding
static copula functions. This method considers the correlations among the outputs of
multiple wind farms but does not consider the time-varying nature of the correlations;
this method was also used in ref. [37].

• LSTM networks and time-varying regular vine Gaussian copulas (LSTM-TVRVGC)
method: After the LSTM networks are used for the spot forecasting, the regular vine
copula model is constructed with the time-varying Gaussian copulas. This method
corresponds to the method used in [38].

The absolute values of the ACD, NMPIW and SS obtained by the method proposed in
this paper and the four methods mentioned above are shown in Figure 7a,b and Table 4,
respectively. For presentation purposes, the index scores in Figure 7a,b and Table 4 are the
mean index scores of the forecasting intervals obtained for the four datasets.
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Table 4. SSs of different interval forecast methods.

Nominal
Confidence

SS

LSTM-
TVRVC BP-TVRVC LSTM-TVC LSTM-
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LSTM-

TVRVGC

90% −1.325 −1.984 −1.454 −1.504 −1.384
80% −2.016 −2.998 −2.093 −2.211 −2.121
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mean −2.774 −4.288 −2.902 −2.983 −2.927

Comparing the proposed method with the BP-TVRVC method, the absolute values of
the ACDs of both methods are less than 6% at all confidence levels, thus indicating that
these two methods are both reliable. Since the absolute values of the ACDs of these two
methods are small and do not differ significantly, more attention is given to sharpness.
As Figure 7b shows, the method proposed in this paper has smaller NMPIW values, thus
indicating that using a spot forecasting model with a small error in combination with the
copula model helps improve the sharpness of the forecast interval.

Comparing the proposed method with the LSTM-TVC method, the NMPIW values of
the LSTM-TVC method are smaller than those of the proposed method at all confidence
levels, thus indicating that the former method has higher sharpness. However, in terms of
reliability, the absolute values of the ACDs of the LSTM-TVC method are greater than those
of the proposed method at all confidence levels, especially at 90% confidence levels. The
values of the ACD of the LSTM-TVC method are 4 times as large as those of the proposed
method, thus indicating that considering the spatial correlation of multiple wind farms is
beneficial to compensating for the single wind farm forecasting errors, thus improving the
reliability of the forecasting intervals. Although the sharpness of the LSTM-TVC method is
higher, its reliability, which is the most important for interval forecasting, is not as good as
that of the method proposed in this paper.

Comparing the proposed method with the LSTM-SRVC method, the absolute value
of the ACDs of the proposed method are smaller than that of the LSTM-SRVC method
at all confidence levels, thus indicating that the proposed method has higher reliability.
Additionally, the absolute values of the ACDs of the proposed method do not vary much;
with a minimum value of 0.982% at the 10% confidence level and a maximum value of
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3.087% at the 30% confidence level, the difference between the maximum and minimum
values is 2.117%, while the absolute values of the ACDs of the methods using static copula
functions vary greatly at different confidence levels, with a minimum value of 3.325% at
the 90% confidence level and a maximum value of 16.723 at the 40% confidence level. The
difference between the maximum and minimum values is 13.398%. This result indicates
that it is difficult to accurately capture the correlations of multiple wind farms and maintain
high reliability at different confidence levels by using static copula functions that ignore the
time-varying characteristics of the correlations. Regarding sharpness, the NMPIW values
of the proposed method at all confidence levels are smaller than those of the LSTM-SRVC
method. Figure 8 shows the forecasting intervals of the LSTM-SRVC method for days 1–2
of the fourth week of the third month in dataset 1.
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Comparing Figure 8 with Figure 5 shows that the forecasting intervals can effectively
envelop the real aggregate wind power regardless of whether static copula functions or time-
varying copula functions are used, but the width of the intervals produced by the method
using static copula functions is significantly larger than that of the proposed method,
indicating that the forecasting result of the LSTM-SRVC method are more conservative.

Comparing the proposed method with the LSTM-TVRVGC method, the absolute
values of the ACDs of the LSTM-TVRVGC method are larger than those of the proposed
method at all confidence levels, and the values of the ACDs vary greatly at different
confidence levels. This indicates that it is also difficult to accurately model the correlation
of multiple wind farms and achieve high reliability at different confidence levels by using
only one type of copula function. In terms of sharpness, the NMPIW values of the proposed
method are smaller than those of the LSTM-TVRVGC method at all confidence levels.

In terms of the comprehensive index, the SS values of the proposed method are closer
to 0 than those of the other four methods, thus indicating that the proposed method has
the best overall performance.

5. Conclusions

This paper proposes an interval forecasting method by combining a spot forecast
model based on LSTM networks and a time-varying regular vine copula model. Case
analysis shows that the proposed method can provide high-reliability forecast intervals
with reasonable interval widths.

In the case study, comparing the proposed method with the method using only a
single type of copulas, the method using static copulas (which thus ignores time-varying
characteristic of correlations among multiple wind farms), and the superposition method
(which thus ignores spatial correlations among multiple wind farms), the results show that
the proposed method strikes a good balance between reliability and sharpness and has



Processes 2023, 11, 1530 16 of 18

good comprehensive performance because of consideration of the temporal and spatial
correlation of multiple wind farms and the use of multiple types of copula functions.
Furthermore, the copula model was combined with a different spot forecasting model to
interval forecasting in the case analysis, and the result shows that a spot forecasting model
with smaller errors leads to sharper forecasting intervals.

In conclusion, by combining a spot forecast model with a small error and an im-
proved copula model that considers the temporal and spatial correlation of multiple wind
farms, the proposed method can provide accurate uncertain information on wind power
for scheduling plans, thus improving the economic benefit and reliability of the system
operation. Future research will focus on how to further improve spot forecast accuracy and
apply the interval forecast result to scheduling decisions.
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