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Abstract: In multi-energy power grids in which electric vehicles (EVs) participate in response, there
are significant differences in the power balance between multi-energy supply and load at different
time scales and spatial scales. To optimize the energy balance demand of each region, this paper
proposes a dynamic partition coordination model for power grid energy regulation demand that
considers the willingness of electric vehicles to respond and the uncertainties related to sources, loads,
and storage. Firstly, the charging and discharging characteristics of multi-energy conversion devices
in power grids, as well as the response uncertainties of these devices, are studied, and a source, load,
and storage uncertainty model is established. Then, based on the Markov random field theory and
the energy prior model, the dynamic partition model and its solution algorithm for the multi-energy
power grid are proposed. Finally, a simulation system is established based on the actual operating
data of a multi-energy power grid, and the proposed method is simulated and analyzed. The results
indicate that the energy balance partition optimization method proposed in this article is effective.
The application of the method proposed in this article can fully leverage the regulatory potential of
energy conversion equipment, effectively reduce the proportion of traditional energy supply and
peak shaving capacity, and improve the utilization rate of renewable energy.

Keywords: multi-energy power grid; energy balance; power grid partition; multi-energy storage;
electric vehicle response

1. Introduction

With the development and utilization of new energy, the large-scale grid connection
of new energy has brought many challenges to the smooth and efficient operation of
traditional power grids, among which the energy exchange and balance issues between
regional interconnected systems of multiple energy grids are noteworthy [1,2]. When
the energy balance adjustment of a multi-energy grid is required at various time scales,
the energy imbalance often starts from a certain node or a local area of the multi-energy
grid. In most cases, it is neither necessary nor advisable to adjust the energy balance from
the overall perspective of the multi-energy grid network, and doing so may even lead
to an increase in network loss. Instead, according to the peak shaving demand of the
multi-energy grid in different peak shaving capacities and different energy forms, realizing
the peak shaving optimization of different energy forms of multi-energy grid will lead
to quickly and accurately judge the local areas or nodes with energy imbalances and the
energy forms of energy regulation demand of the multi-energy grid [3–6].

At present, domestic and foreign scholars have carried out a lot of research on the
energy regulation demand of multi-energy grids. Reference [7] proposed a multi-energy
participant (MEP) behavior prediction model based on signal price coupling that optimizes
the energy balance of multi-energy systems based on signal price. An energy control
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method based on a multi-energy energy storage system was proposed in [8] to optimize
power grids in consideration of economy and stability. The modified prediction percentage
of dissatisfaction (PPD) index, related to thermal environment parameters, was introduced
in [9] to realize a comprehensive evaluation of energy storage. Different power grid
optimization methods were analyzed in [10], considering the accuracy, complexity, and
stability of the studied models, and a dynamic optimal energy flow model was established
based on the multi-objective optimization method. Reference [11] mainly studied the
frequency regulation and carbon emission reduction regulation capabilities of multi-energy
storage devices in power systems.

In [12], a new flexible supply-demand balance analysis system for multi-energy sys-
tems was proposed considering the spatial correlation modeling and time sequence con-
nection of component states. Reference [13] proposed an economic dispatch model for
multi-energy systems based on marginal prices that enhanced the multi-energy comple-
mentary regulation capability of multi-energy systems by reducing the regulation cost of
multi-energy units.

EVs can play a flexible regulatory role in the power system with their schedulable
potential [14]. Reference [15] considered charging uncertainty and energy satisfaction
while modeling EVs, and took EVs to be the main flexible resources to participate in
the economic dispatch of the power system. However, under that study’s scheduling
architecture, the power system dispatch center needed to process a large amount of EV
user data and perform power system optimization scheduling, resulting in complex and
heavy computational tasks. Considering the small battery capacity and low charging and
discharging power of a single EV, the data volume of EV users is large. Reference [16]
proposed a charging-station-based electric vehicle scheduling strategy based on game
theory. In the proposed strategy, the charging time of electric vehicles was planned with
the goal of minimizing the imbalance between supply and demand in the power grid.

At present, the literature provides some theoretical support for energy regulation in
multi-energy grids, but it has not fully considered the response willingness and uncertainty
of electric vehicles [17] and the dynamic zoning coordination of multi-energy grids. There
is still great room for improvement in optimizing the coordination of energy regulation
demand in multi-energy grids [18].

This article proposes a dynamic zoning coordination model for energy regulation
demand in multi-energy grids, taking into account the willingness of electric vehicles to
respond and the uncertainty of grid source, load, and storage. Firstly, considering the
uncertainty of electric vehicle response willingness and new energy sources, loads, and
multi-energy storage, a source load storage uncertainty model is established. Then, the
energy balance correlation between the adjacent nodes of a multi-energy power system
network is measured according to the characteristic index of multi-energy balance corre-
lation measurement, and a regional division model of multi-energy balance based on a
high-order Markov random field of multi-energy balance correlation is established. Then,
by studying the high-order topological structure prior model and Markov random field
model of multi-energy balance characteristics, the dynamic division model of multi-energy
balance area and its solution algorithm are proposed. Finally, the effectiveness of the
proposed model in this paper is verified by constructing a simulation of multi-energy bal-
ance zoning characteristics and optimizing the energy regulation demand of multi-energy
power systems.

2. Source, Load, and Storage Uncertainty Model
2.1. Uncertainty Model of Electric Vehicles

(1) EV Energy Boundary Model

The feasible range of charging and discharging for EVs can be described by their
energy and power boundaries, that is

{
e+/(−)

i (t), p+/(−)
i (t)

}
, the feasible set representing
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all possible charge and discharge trajectories. The corresponding electricity and power
boundaries are represented as follows:

ei(t) = es
i +

∫ t

ts
i

pi(t)dt = QiSs
i +

∫ t

tξ
i

pi(t)dt (1)

e+i (t) =

min
(
ei(t− ∆t) + pc

i ηc∆t, emax
i
)

t ∈
[
ts
i , td

i
]

0 t /∈
[
ts
i , td

i
] (2)

e−i (t) =


max

(
ei(t− ∆t) + pd

i ∆t/ηd, emin
i , ed

i − pc
i ηc
(
td
i − t

))
0 t ∈

[
ts
i , td

i
]

0 t /∈
[
ts
i , td

i
] (3)

p+i (t) =

{
pc

i ηc t ∈
[
ts
i , td

i
]

0 t /∈
[
ts
i , td

i
] (4)

p−i (t) =


pd

i
ηd

t ∈
[
ts
i , td

i
]

0 t /∈
[
ts
i , td

i
] (5)

where i is the sequential number of the electric vehicle, ei(t) and pi(t) are the electric
quantity and power of the EV at time t, respectively, es

i is the initial battery level when the
EV is connected to the network, ed

i is the battery level when the EV is off the grid, Qi and

Ss
i are the rated capacity and initial SOC of the EV, respectively, e+/(−)

i (t) and p+/(−)
i (t)

are the upper and lower boundaries of the electric quantity and power of the EV at time
t, ts

i and td
i are the times when EV enters and leaves the network, respectively, emax

i is the
maximum value of EV power, emin

i is the minimum threshold of battery capacity to prevent
the excessive discharge of the EV, pc

i and pd
i are the rated charging power and discharge

power of the EV, and ηc and ηd are the charging efficiency and discharge efficiency of
the EV.

(2) Uncertainty Model of Electric Vehicle Response

In practice, the uncertainty of EV users’ response behavior is caused by factors such as
travel habits and sensitivity to incentive levels [19]. Taking into account this uncertainty,
the schematic diagram of EV users’ willingness to respond is shown in Figure 1. The
black solid line in the figure represents the EV user response willingness curve based on
consumer psychology principles, and the area in the figure can be divided into the dead
zone, linear zone, and saturation zone as the incentive price changes. The red dashed line
represents the maximum fluctuation curve of EV response willingness.
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From Figure 1, it can be seen that in the dead zone and linear zone, when the incentive
level is not high enough, the response uncertainty mainly depends on non-economic factors.
EV users’ willingness to respond increases with an increase in incentive prices, and the
response uncertainty also increases in this situation. In the saturation zone, the incentive
level is sufficiently attractive to users, and the response uncertainty is mainly determined
by economic factors. As the incentive level increases, the response willingness has reached
its upper limit, but the response uncertainty gradually decreases to zero.

EV users’ willingness to respond and response bias are calculated thus:

λ(Cinc) =


0± dλ 0 6 Cinc 6 a
k(Cinc − a)± dλ a < Cinc 6 b
λmax ± dλ b < Cinc 6 Cmax

inc

λmax Cinc > Cmax
inc

(6)

dλ =


k1Cinc 0 6 Cinc 6 b
k1b + k2(Cinc − b) b < Cinc 6 Cmax

inc

0 Cinc > Cmax
inc

(7)

Here, λ(Cinc) is the willingness of EV users to respond under incentive compensation
Cinc, and λ(Cinc) ∈ [0, 1]. The larger the value of λ(Cinc) is, the stronger the user’s willing-
ness to respond becomes. dλ is the maximum fluctuation range in response to willingness,
a and b are the excitation levels for the dead zone inflection points and saturation zone
inflection points, respectively, Cmax

inc is the upper limit of the incentive level, λmax and λmin

are the maximum and minimum response willingness coefficients of users, respectively,
and k , k1, and k2 are constant coefficients.

2.2. Energy Uncertainty Model for Renewable Energy Sources

(1) Energy Uncertainty Model of Wind Power Supply

Assuming that the uncertainty of energy output for each wind farm station in the multi-
energy grid follows a normal distribution [20], the wind power energy output characteristics
considering uncertainty can be expressed thus:

XwPO(t) =


∫ t

t−∆t
[
PWPOη(t)± ∆εWPη

]
dt, ∀t ∈ [tvr, tvc]∫ t

t−∆t[PWPOr (t)± ∆εWPr]dt, ∀t ∈ [tvi, tvr]

0, ∀t ∈ [tv0, tvi]

(8)

where XwPO is the energy output of the wind power generation system within a time
interval ∆t, PWPOη is the wind power output under the condition that the wind speed in
the wind farm is higher than the inlet wind speed and lower than the rated wind speed,
PWPOr is the wind power output when the wind speed in the wind farm is higher than the
rated wind speed and lower than the cutout wind speed, ∆εWPη is the uncertainty of wind
power output when the wind speed inside the wind farm is higher than the wind speed
inside the wind farm and lower than the rated wind speed, ∆εWPr is the uncertainty of
wind power output when the wind speed in the wind farm is higher than the rated wind
speed and lower than the cutout wind speed, tvi is the moment when the wind speed in
the wind farm is higher than the start of the wind speed, tvr is the moment when the wind
speed in the wind farm is higher than the start time of the rated wind speed, and tvc is the
moment when the wind speed in the electric field is higher than the start time of the cutting
wind speed.
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The probability distribution function of the wind power output uncertainties ∆εWPη

and ∆εWPr can be expressed thus:
fWP

(
∆εWPη

)
= 1√

2πσWPη
exp

(
−

∆ε2
WPη

2σWPη

)

fWP(∆εWPr) =
1√

2πσWPr
exp

(
−

∆ε2
WPr

2σWPr

) (9)

where σWPη and σWPr represent the maximum uncertainties of wind power output under
different wind speed conditions.

(2) Energy Uncertainty Model of Photovoltaic Power Supply

It is assumed that the uncertainty of energy output for photovoltaic power stations in
the multi-energy grid follows normal distribution at time intervals ∆t. Then, the photo-
voltaic energy output characteristics considering uncertainty can be expressed thus:

XPVO(t) =


∫ t

t−∆t
[
PPVOη(t)± ∆εPVη

]
dt, ∀t ∈

[
tϕi, tϕr

]∫ t
t−∆t[PPVOr(t)± ∆εPVr]dt, ∀t ∈

[
tϕr, tϕc

]
0, ∀t ∈

[
tϕ0, tϕi

] (10)

where XPVO is the energy output of photovoltaic power generation system over time
intervals ∆t, PPVOη is the photovoltaic output power when the solar radiation intensity in
the photovoltaic power station is higher than the minimum intensity and lower than the
rated intensity, PPVOr is the photovoltaic output power when the solar radiation intensity
in the photovoltaic power station is higher than the rated intensity, ∆εPVη is the uncertainty
of photovoltaic power output when the solar radiation intensity in a photovoltaic power
station is higher than the minimum required intensity and lower than the rated intensity,
∆εPVr is the uncertainty of photovoltaic power output when the solar radiation intensity
of photovoltaic power station is higher than the rated intensity, tϕi is the starting time
when the solar radiation intensity in the photovoltaic power station is higher than the
minimum required intensity, tϕr is the moment when the solar radiation intensity in the
photovoltaic power station is higher than the initial rated intensity, tϕc is when the solar
radiation intensity in the photovoltaic power station is higher than the end of the rated
intensity, and tϕ0 is the starting time when the solar radiation intensity in the photovoltaic
power station is lower than the minimum required intensity.

The probability distribution function of the energy output uncertainties of the photo-
voltaic power generation system,∆εPVη and ∆εPVr, can be expressed thus:

fPV
(
∆εPVη

)
= 1√

2πσPVη
exp

(
−

∆ε2
PVη

2σPVη

)

fPV(∆εPVr) =
1√

2πσPVr
exp

(
−

∆ε2
PVr

2σPVr

) (11)

where σPVη and σPVr represent the maximum uncertainty of photovoltaic power generation
system output under different conditions of solar radiation intensity.

2.3. Load Uncertainty Model

Assuming that the load power consumption uncertainty follows normal distribution
in time intervals [21], the energy property considering uncertainty can be expressed thus:

XUCLΣ =
∫ t

t−∆t
(MUCLΣ ± ∆εUCLΣ)dt (12)
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where MUCLΣ is the total power demand curve for electric load, electric heating load, and
electric hydrogen production load in a multi-energy grid, ∆εUCLΣ is the uncertainty of the
total power demand of electric load, electric heating load, and electric hydrogen production
load in a multi-energy network, and XUCLΣ is the total energy demand of electric load,
electric heating load, and electric hydrogen production load in the multi-energy power grid.

∆εUCLΣ can satisfy the following probability distribution function:

fUCL,EL(∆εUCL,EL) =
1√

2πσUCL,EL
exp

(
−

∆ε2
UCL,EL

2σUCL,EL

)

fUCL,HE(∆εUCL,HE) =
1√

2πσUCL,HE
exp

(
−

∆ε2
UCL,HE

2σUCL,HE

)

fUCL,H2(∆εUCL,H2) =
1√

2πσUCL,H2
exp

(
−

∆ε2
UCL,H2

2σUCL,H2

) (13)

where ∆εUCL,EL, ∆εUCL,HE, and ∆εUCL,H2 represent the uncertainties of electric load, elec-
tric heating load and electric hydrogen production load in actual operation, respectively,
and σUCL,EL, σUCL,HE, and σUCL,H2 represent the maximum uncertainties of electric load,
electric heating load, and electric hydrogen production load that may occur in actual
operation, respectively.

2.4. Multi-Energy Storage Uncertainty Model

When considering the uncertainty of energy dissipation characteristics, as well as the
uncertainty of energy storage and release in the charging and releasing process, within a
given time ∆t, the charge states of heat storage, electricity storage, and hydrogen storage
facilities can be expressed as follows:

VHES(t) = CHEREVHES(t− ∆t) + ∆SOCHES

+KHECR
∫ t

t−∆t CHECRPHECR(t)dt

VELS(t) = CELREVELS(t− ∆t) + ∆SOCELS

+KELCR
∫ t

t−∆t CELCRPELCR(t)dt

VH2S(t) = CH2REVH2S(t− ∆t) + ∆SOCH2S

+KH2CR
∫ t

t−∆t CH2CRPH2CR(t)dt

(14)

where VHES(t), VHLS(t), and VH2S(t) represent the charge states of heat storage, electricity
storage, and hydrogen storage facilities at time t, respectively, CHERE, CELRE, and CH2RE
represent the energy dissipation coefficients of heat, electricity, and hydrogen storage
facilities, respectively, ∆SOCHES, ∆SOCELS, and ∆SOCH2S represent the uncertainties of
the charge states of heat storage, electricity storage, and hydrogen storage facilities corre-
sponding to time t, respectively, CHECR, CELCR, and CH2CR represent the energy conversion
efficiencies of heat storage, electricity storage, and hydrogen storage facilities within time
intervals ∆t, respectively, and KHECR, KELCR, and KH2CR represent the state variables of
heat, electricity, and hydrogen storage facilities within time intervals ∆t, respectively. When
KHECR, KELCR, and KH2CR are equal to +1, heat storage, electricity storage, and hydrogen
storage facilities operate in a charged state. When KHECR, KELCR, and KH2CR are equal to
−1, heat storage, electricity storage, and hydrogen storage facilities operate in a state of
discharge. PHECR, PELCR, and PH2CR represent the charging and discharging powers of
heat, electricity, and hydrogen storage facilities, respectively.
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In the above equation, the probability distribution of actual charge state deviations
∆SOCHES, ∆SOCELS, and ∆SOCH2S of electric, thermal, and hydrogen energy storage
facilities, respectively, in the multi-energy power system can be described thus:

f4SOCHES(∆SOCHES) =
1√

2πσHES
exp

(
−

∆SOC2
HES

2σHES

)

f4SOCELS(∆SOCELS) =
1√

2πσELS
exp

(
−

∆SOC2
ELS

2σELS

)

f4SOCH2S(∆SOCH2S) =
1√

2πσH2S
exp

(
−

∆SOC2
H2S

2σH2S

) (15)

where σHES, σELS, and σH2S represent the maximum uncertainties of the charge states of
heat storage, electricity storage, and hydrogen storage facilities in multi-energy power
system at time t, respectively.

3. Multi-Node Multi-Energy Correlation Measure with Higher-Order Markov Random
Field Model (MMCM-HMRF)

In order to achieve partitioned energy coordination in multi-energy grids, this section
studies the description method of heterogeneous energy balance in multi-energy grids and
proposes a multivariate multi-energy flow intensity measurement method based on the
Multi-energy Correlation Measure (MCM) feature index.

Then, the MMCM-HMRF model based on the Markov Random Field (MRF) [22]
is established. This model can achieve the quantitative description of the multivariate
topological structure relationship between adjacent nodes in multi-energy power systems,
reflecting the energy balance characteristics.

3.1. Multi-Energy Correlation Measure Model (MCM)

The set of state variables for multi-energy injection or consumption at nodes in a
multi-energy power system can be described thus:

Xws = {x1, x2, xi, . . . , xN−1, xN} (16)

where xi represent the electricity, heat, and hydrogen energy injection values or consump-
tion value of node i in the multi-energy power system and N is the total number of nodes
in the multi-energy power system.

Suppose xp, xq ∈ Xws represent the state variables of multi-energy energy interaction
between any two adjacent nodes in the network. The more energy interaction there is
between two adjacent nodes p, q(p, q ∈ N) and s(s ∈ N), the stronger the multi-energy
energy correlation between nodes p, q and s will be. The multi-energy energy balance
correlation between two adjacent nodes p, q can be defined as shown below:

MCMpq =

NPQpq +
N
∑

i=1
NPQpi NPQqi

1− NPQpq + min
{

N
∑

i=1
NPQpi,

N
∑

i=1
NPQqi

} (17)

where NPQpq represents the Euclidean distance between the two adjacent nodes p, q of the
multi-energy power system network and the multi-energy energy injection or consumption
state variable xp, xq, 0 ≤ MCMpq ≤ 1.
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The MCM index matrix MCM(Xws) of Xws is depicted below:

MCM(Xws) =


MCM11 MCM12 · · · MCM1N
MCM21 MCM22 · · · MCM2N

...
...

. . .
...

MCMN1 MCMN2 · · · MCMNN

 (18)

MCM(Xws) is a symmetric and non-negative energy balance correlation matrix. This
matrix transforms the correlation degree matrix of the energy balance relationship be-
tween adjacent nodes in a multi-energy power system network into a multi-variable high-
order multi-energy energy state variable MCM matrix. Based on the MCM index of the
multi-energy energy state variable, a high-order multi-energy energy balance correlation
constraint of the energy balance relationship between adjacent nodes in the network is estab-
lished, so as to introduce the high-order topological spatial correlation of the energy balance
relationship between adjacent nodes in the multi-energy power system network, which
in turn will achieve a better expression of the local spatial characteristics of multi-energy
state variables.

3.2. MMCM-HMRF Model Based on MRF

In order to measure the multi-energy balance correlation of adjacent nodes in a multi-
energy power system, firstly, the Euclidean Distance d(xp, xq) between nodes p and q is
calculated, and the energy balance correlation between adjacent nodes is normalized, so
that 0 ≤ dpq ≤ 1. The normalization function is as follows:

d
(

xp, xq
)
= exp

{
−
(∥∥xp − xq

∥∥
2

)2/
(

ρmax
r∈N

∥∥xp − xq
∥∥

2

)2
}

(19)

where
∥∥xp − xq

∥∥
2 represents the Euclidean distance between adjacent nodes in a multi-

energy power system and ρ ≤ 0.2 is the normalized scaling parameter such that the smaller
the value of ρ is, the smaller the correlation of energy balance between adjacent nodes in
the multi-energy power system network will be at the same distance.

The Euclidean distance measurement vector of the local region of the multi-energy
power system can be calculated thus:

Dws(Xws) =
{

d
(
xp, x1

)
, . . . , d

(
xp, xq

)
, . . . , d

(
xp, x|p|×|p|

)} (20)

In order to convert the multi-energy energy balance correlation between adjacent
nodes in a multi-energy power system network into a connection strength, Dws(Xws) is
converted into an adjacency strength measurement vector, Aws(Xws), by using the power
adjacency function. The power adjacency function is defined as follows:

apq
(

xp, xq
)
=
∣∣d(xp, xq

)∣∣γ (21)

where apq
(

xp, xq
)

represents the adjacency matrix weight of p, q between adjacent nodes in
a multi-energy power system network. γ ≥ 1, the power adjacency parameter between
adjacent nodes in a multi-energy power system network, can enhance the connection
strength of adjacent nodes in a strongly correlated multi-energy power system network.

Therefore, the adjacency matrix enhances the multi-energy energy balance correlation
of strongly correlated multi-energy power system nodes, and effectively maintains the
continuity of expression information of adjacent nodes in the multi-energy power system
network. The adjacency strength measurement vector Aws(Xws) of the local region of the
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multi-energy power system established with multi-energy energy balance characteristics is
expressed as follows:

A
(
xp, x1

)
, . . . , a

(
xp, xq

)
, . . . , aws(Xws)

=
{

a
(

xp, x|ws||ws|

)} (22)

Let the high-order topological space prior MCMws(xs, xNs) of the local region ws of
the multi-energy power system be expressed thus:

MCMws(xs, xNs) = MCMup
(
xs, xup

)
+ MCMdown(xs, xdown)

+MCMle f t

(
xs, xle f t

)
+ MCMright

(
xs, xright

) (23)

where MCMup(•), MCMdown(•), MCMle f t(•), and MCMright(•) represent adjacent nodes
of MCM which have energy interaction in MRF.

The higher order MRF prior energy term based on MMCM is defined as follows:

Eh(xws | γ) = ∑
p∈Ns ,q∈Ns


∑

u 6=p,q
apuaqu + bpq

min

{
∑

u 6=p
apu, ∑

u 6=q
aqu

}
+ 1− bpq

 (24)

where Eh(xws | γ) represents the prior energy of the higher-order topological structure in
the local region ws and bpq represents the connection strength of the nodes p and q.

4. Multi-Energy Power Grid Partition Model Based on Energy Balance Demand

On the basis of the MMCM-HMRF model established earlier, this section studies the
energy balance demand characteristics of the multi-energy power grid and establishes a
second-order MRF model for the equilibrium state of multi-energy regions. Then, a second-
order MRF model for the equilibrium state of multi-energy regions is established, and a
dynamic partitioning method for multi-energy balance demand based on the Weighted
Gaussian Mixture Model (WGMM) model is proposed.

4.1. Second-Order MRF Model for Equilibrium States of Multi-Energy Regions

Before establishing the second-order MRF model for the multi-energy power grid, it is
necessary to study the probability characteristics of regional energy balance states in the
multi-energy power grid. This section analyzes the energy balance status of nodes in the
multi-energy power grid and establishes a Weighted Gaussian Mixture Model (WGMM)
that can reflect the consistency of label classification for different types of energy forms [23].

For node s in a multi-energy power grid area, the set of adjacent node state variables
with energy interaction is defined as xr, such that:

xr = {xr | r ∈ Ns} (25)

The WGMM likelihood model consistent with the label classification of the node
energy balance state of the multi-energy power system and different energy forms is:

P(X | Y, θ) =
Ns

∏
s=1

P(xs | ys, θ) ∏
r∈Ns

P(xr | yr, θ)

w(yr)

wr

 (26)

where θ represents the label classification parameter of the node’s energy balance state
and its different energy forms, θ =

{
µl , σ2

l
}

l∈Λ, µl and σl are the mean and variance of
the distribution for the l-th label classification, Λ = {0, 1, · · · , L}, L represents the total
number of labels for multi-energy energy balance region division, and wr = ∑

r∈Ns

w(yr) is
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the normalization function. When w(yr) = 1, wr is the number of multi-energy power
system nodes in the region. w(yr) is a weight function containing spatial information.

Next, a second-order MRF model for the equilibrium state of multi-energy regions is
established. In local region ws of the multi-energy power system network, label field Yws
of the multi-energy energy imbalance classification is an MRF based on the multi-energy
energy balance state within the region. The label field is described by the Potts prior model,
and the second-order Potts prior model based on the multi-energy energy imbalance region
in the multi-energy power system network is obtained as follows:

P(ys | yws, β) = exp

{
−β ∑

s,r∈Ns

[1− δ(ys, yr)]

}
/Z(β) (27)

where Z(β) is the normalized constant of the multi-energy energy imbalance probability,
β is the multi-energy imbalance probability parameter, and δ(ys, yr) is a function delta
such that:

δ(ys, yr) =

{
1 ys 6= yr

0 ys = yr
(28)

In local region ws of the multi-energy power system, when the center energy balance
label ys is not equal to the adjacent energy balance label yr, punishment is administered thus:

β ∑
s,r∈Ns

[1− δ(ys, yr)] (29)

The penalty value is 0 only if ys and yr are equal. Therefore, the second-order Potts
prior energy model for the multi-energy unbalanced region in the multi-energy power grid
is as follows:

Es(ys, yws) = lgP(ys | yws) =

{
β ∑

s,r∈Ns

[1− δ(ys, yr)], ys 6= yr

0, ys = yr
(30)

As can be seen from the above equation, in local region ws of the multi-energy power
system network, when labels of more network nodes in the region tend to be consistent,
the penalty value tends to 0. For the local area of the multi-energy power system with
different kinds of tags, the inconsistency penalty value increases with an increase in the
number of inconsistent values of nodes or expected tags of energy imbalance. This kind
of regional category consistency constraint can effectively improve the edge effect of the
multi-energy energy balance region division results, and it is robust to the interference of
the multi-energy energy balance characteristic noise or texture signal.

4.2. Dynamic Partitioning Solution for Multi-Energy Power Grid Based on Energy
Balance Demand

Based on the established WGMM model and the second-order MRF model of the
multi-energy region equilibrium state, the network can be divided into regions according
to the energy balance requirements. A power grid division model is established as follows:

FG(Y | X, Θ) = Fd(X | Y, θ) + FS(Y | β)
+Fh(X | γ) (31)

where Fd(X | Y, θ) represents the likelihood energy of local area consistency in the multi-
energy power grid, FS(Y | β) represents the second-order Potts prior energy, Fh(X | γ)
represents the prior energy of the higher-order topological structure, and Θ = (θ, β, γ).
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The process of dividing the power grid into regions based on energy balance require-
ments, which is done to solve the optimal estimated label field Y∗, can be expressed thus:

Y∗ = argmin
Y

FG(Y | X, Θ)

= argmin
Y

[Fd(X | Y, θ) + FS(Y | β) + Fh(X | γ)]
(32)

The steps for dividing the power grid into regions based on energy balance require-
ments are as follows:

Step 1: Input the set of state variables of nodes in the multi-energy power system
Xws. Given that the number of classification labels, the mean and variance of WGMM,
and

{
µl , σ2

l
}

l∈Λ are randomly initialized, the prior parameter β is given by an experiment
where ρ = 0.2, γ = 4.

Step 2: Calculate the higher-order topological structure prior energy Eh(xws | γ) of the
local area of the multi-energy network based on the pre-partition results of the multi-energy
network region ws.

Step 3: Calculate the mean and variance of WGMM model label distribution{
µl , σ2

l
}

l∈Λ in the local region ws.
Step 4: For each multi-energy power system node, calculate the energy allocated to

the label in its local area: Ews
(
ys | xws, µl , σ2

l , ρ, β, γ
)
.

Step 5: Calculate the global energy F(n)
G (Y) = ∑

s
E(n)

ws (ys). If
∣∣∣F(n)

G (Y)− F(n−1)
G (Y)

∣∣∣ ≤ ε

is a small constant, then Y∗ = Y(n) and the algorithm terminates, outputting the optimal
label field Y∗ = {ys | ys ∈ Λ, s ∈ NS}. Otherwise, go back to Step 2 to continue the process
of iteration.

5. Example Analysis

This section establishes a simulation system based on the actual operating data of
the Liaoning power grid, the multi-energy power system topology structure that includes
flexible adjustment resources such as new energy sources represented by wind and solar
power generation, electric heat storage, electric hydrogen storage and hydrogen fuel cells,
chemical battery energy storage, thermal power and hydropower, and other traditional
synchronous power sources, as shown in Figure 2, there are 30 multi-energy nodes in the
power grid. In Figure 2, nodes 1, 2, and 3 are new energy nodes, and nodes 3, 4, and 5 are
electric heat storage nodes, electric hydrogen storage and fuel cell nodes, and chemical cell
nodes, respectively. Nodes 13 and 27, 23, and 22 are thermal power, hydropower, and gas
power generation nodes, respectively. It is assumed that the central control center is located
at six nodes—6, 7, 8, 17, 18, and 27—with 200 electric vehicles in each area.

According to the topology structure in Figure 2, with reference to the actual power
supply and load situation of the power grid, the simulation example parameters are set as
shown in Tables 1 and 2. The typical new energy power output, load, and energy storage
power curves of the system are shown in Figures 3 and 4, and the uncertainty curves of
the power supply, load, energy storage, and electric vehicle in the system are shown in
Figure 4.
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Table 1. Parameter table of multi-energy power system.

Node
Number Source Type Power Capacity (MW) Energy Storage Type Energy Storage

Capacity (MW)

1 Wind power 600
2 Photovoltaic power 480
3 Wind power 500 Electric heating and heat storage facilities 620

4 Electric hydrogen production facilities
and hydrogen fuel cell 32

5 Chemical battery 100
13,27 Thermal power 3650

22 Gas power 150
23 Hydropower 300
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Table 2. Electric Vehicle Parameter Table.

Parameter Name Data

Electric vehicle capacity 32 kw·h
Charging and discharging power 4 kw

Charging and discharging efficiency 0.9
Power consumption per 100 km 15 kw·h
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5.1. Simulation Analysis of Multi-Energy Power Grid Partition

The following is a simulation verification of the dynamic partitioning method for
energy balance in multi-energy networks that is proposed in this article. Before solving the
partitioning problem, the pre-partitioning results of the multi-energy network are shown
in Figure 5.

The energy balance zoning optimization model established in this article is used
to solve the zoning problem. Based on the pre-partitioning results shown in Figure 5,
combined with the system source, load, and storage operating states and uncertainties
shown in Figures 3 and 4, the multi-energy system is partitioned according to the energy
balance adjustment requirements. The result of the multi-energy power grid partition is
shown in Figure 6.
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Due to the configuration of heat storage, electricity storage, and hydrogen storage
facilities at certain nodes of a multi-energy power system, the energy balance regulation
capabilities for different types of energy in different regions of the power grid are also
different. The characteristic of energy balance regulation in multi-energy power systems
determines that when optimizing and scheduling multi-energy flexible resource peak
shaving, it is necessary to fully consider the distribution characteristics of multi-energy
loads, multi-energy storage, and new energy sources in the power grid in order to effectively
improve the efficiency and economy of multi-energy peak shaving.

5.2. Energy Balance Analysis of Multi-Energy Power Grid under Partitioned Operation

Based on the energy supply and demand situation, and its uncertainty characteristics
in the systems shown in Figures 3 and 4 combined with the power grid pre-partitioning
results shown in Figure 5, the corresponding peak shaving capacity curves of the multi-
energy power grid can be obtained as shown in Figures 7–9.
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Figure 9. Peak shaving capacity allocation of hydrogen energy.

From Figures 7–9, it can be seen that in order to ensure a high level of power balance
in a multi-energy power grid under high uncertainties, it is necessary to configure more
flexible resource adjustment units when scheduling plans. At the same time, the reserved
adjustment capacity of each flexible resource adjustment unit is also relatively large. At this
point, in order to cope with a higher proportion of new energy and with uncertainty, the
total adjustment cost of the power grid is high. The large proportion of traditional energy
supply methods also brings significant pressure to the improvement of the system’s carbon
reduction capacity.

Based on the energy balance partitioning results of the multi-energy power grid shown
in Figure 6, the allocation of flexible resource peak shaving capacity in the network after
partitioning optimization is shown in Figures 10–12.
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From Figures 10–12, it can be seen that the adjustment depth of the multi-energy
conversion device in the optimized network significantly increases throughout the day.
The peak shaving reserve capacity of various energy sources decreases by varying degrees
throughout all energy supply periods. Overall, the proportion of capacity allocation for
traditional energy supply units in these figures has decreased.

Therefore, allocating the peak shaving capacity of a multi-energy power grid based on
the optimized partitioning results can effectively coordinate the complementary charac-
teristics of multi-energy regulation resources in different regions or nodes of the system.
Furthermore, the regulatory potential of energy conversion equipment is fully utilized
in such a scenario, effectively reducing the proportion of traditional energy supply meth-
ods and peak shaving capacity and improving the utilization rate of renewable energy.
Moreover, after partition optimization, the system can coordinate and dispatch multiple
energy sources and storages across the entire network based on the different types of energy
regulation characteristics in different regions, effectively reducing the overall peak shaving
demand of the entire network.
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6. Conclusions

This article proposes a dynamic partitioning model for energy balance in multi-energy
power grids that considers the willingness of electric vehicles to respond, and the uncer-
tainties of source, load and storage, to address the significant differences in power and
energy balance at different time and spatial scales in multi-energy power grids.

This model is based on a prior model of higher-order topology structure for multi-
energy interaction, and can divide the network into regions according to the energy balance
requirements of the multi-energy network in consideration. To verify the effectiveness of
this model, this paper constructed a simulation model based on actual operating power
grid data. The simulation results indicate that:

(1) The energy balance zoning method proposed in this article can fully consider the
uncertainties of source, load, and storage in the network and quickly and accurately
identify local areas of the multi-energy grid where energy imbalance exists. Further-
more, it can optimize the partitioning of multi-energy networks to achieve the peak
shaving optimization of different energy forms and maximize energy utilization.

(2) After partitioning the multi-energy power grid based on the energy balance require-
ments, the complementary coordination ability between multiple types of energy
equipment in the multi-energy network can be fully utilized, effectively reducing
the startup mode and peak shaving capacity of traditional energy supply units and
improving the utilization rate of renewable energy.

(3) After optimizing the demand for multi-energy balance regulation, the system can
coordinate and dispatch the load and storage of multiple energy sources in the entire
network based on the different types of energy regulation characteristics in different
regions, effectively reducing the total peak shaving demand of the entire network and
thus achieving the efficient and stable operation of the multi-energy grid.
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