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Abstract: In this study, the chemical composition and the antioxidant and antidiabetic properties
of S. elaeagnifolium flower (SEFl), fruit (SEFr), and leaf (SEFe) extracts were investigated in vitro
and in silico. HPLC-DAD analysis was used to determine the chemical components. Colorimetric
techniques were used to identify polyphenols and flavonoids. The antioxidant capacity was deter-
mined using DPPH and TAC assays. The antidiabetic activity was examined using the enzymes
α-amylase and α-glucosidase. Molecular docking methods were used to assess the anti-dipeptidyl
peptidase IV (DPP-IV) activity. According to HPLC findings, extracts of S. elaeagnifolium flow-
ers, leaves, and fruits are rich in salicylic acid, sinapic acid, chlorogenic acid, naringin, quercetin,
quercetin-3-O-beta-glucoside, kaempferol, and chalcone. The IC50 for flower, leaf, and fruit ex-
tracts were 132 ± 5.59 µg/mL, 43.19 ± 1.46 µg/mL, and 132 ± 5.59 µg/mL, respectively. The total
antioxidant capacity of SEFr, SEFe, and SEFl were determined to be 900.06 ± 4.01 µg AAE/mg,
792.10 ± 6.72 µg AAE/mg, and 681.10 ± 3.02 µg AAE/mg, respectively. Importantly, SEFe, SEFl,
and SEFr displayed significant anti-α-amylase activity, with IC50 values of 79.16 ± 2.35 µg/mL,
99.16 ± 1.17 µg/mL, and 40.31 ± 2.04 µg/mL, respectively. The results also showed that SEFr, SEFe,
and SEFl all exhibited potent anti-α-glucosidase activity, whose IC50 values were determined to be
20.53 ± 0.37 µg/mL (SEFr), 20.05 ± 0.12 µg/mL (SEFe), and 41.1 ± 1.55 µg/mL (SEFl). Molecular
docking of S. elaeagnifolium phenolic compounds in the active site of DPP-IV revealed a strong in-
hibitory effect, with a glide score ranging from −2.63 to −8.10 Kcal/mol. Notably—with glide scores
of −8.10, −6.23, −5.73, and −5.37 Kcal/mol—rutin, quercetin-3-O-beta-glucoside, chalcone, and
naringin were the most active molecules against DPP-IV.
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1. Introduction

Diabetes mellitus (DM) is a multifaceted and complex public health problem, with a
growing social and economic impact that has reached alarming epidemic proportions [1].
Diabetes has a higher incidence in Morocco compared to any other country in the world.
According to research findings, the prevalence of type 2 diabetes among Moroccan adults,
aged 20 and up, ranged from 6.6% in 2000 to 12.4% in 2016. Half of Moroccan diabetics are
uninformed about their condition and the serious consequences it can have [2,3].

Type 2 DM is a carbohydrate metabolic condition characterized by insulin secretion
defects caused by pancreatic beta cell dysfunction. Worldwide, approximately 90% of
diabetic patients are non-insulin-dependent (type 2 diabetes) [4]. Being overweight is one
risk factor for possible complications, including heart attack, kidney failure, stroke, vision
loss, leg amputation, and loss of feeling. In addition, moderate to severe diabetes increases
the risk of fetal death and other reproductive complications [5–7].

Carbohydrate enzymatic digestion and absorption by the intestinal mucosa play a role
in postprandial blood glucose regulation. This role was considered in the diabetes therapy
strategy, both in the advancement of nutritional advice and in the mechanism of action of
oral antidiabetic drugs, which are focused on the action of α-glucosidase, α-amylase, and
intestinal glucose transport [8].

Due to the toxicity and side effects of some current antihyperglycemic drugs, re-
searchers have been searching for new naturally occurring inhibitors of pancreatic
α-amylase and intestinal α-glucosidase, particularly plants that have a hypoglycemic
effect with few side effects. Diabetes has been managed using a variety of plants that
intervene as enzyme inhibitors [6,7,9–13]. Diabetic populations around the world use vari-
ous plants for their hypoglycemic properties, based on historical, cultural, and economic
considerations. Plants have also long been used to treat chronic diseases, such as diabetes
and hypertension [14,15].

Several pathologies, including arthritis, asthma, cancer, and diabetes, are thought
to be caused by free radicals [16]. Free radicals are responsible for the oxidation of the
body’s constituents. This oxidation denatures proteins, lipids, sugars, DNA, as well as
the body’s cell membranes. This attack on cells is one of the primary causes of aging and
is involved in a wide range of pathologies. The pancreatic cells responsible for insulin
production are among the first to be affected by the negative effects of oxidative stress [17].
Using natural products (such as fruits and vegetables) that are high in antioxidants could
help prevent these diseases. Furthermore, the high cost of health services and medicines,
as well as socio-economic factors, drive a large portion of the population to seek medi-
cal treatment from medicinal plants. Currently, 80% of the population has used herbal
medicine at some point [18]. Plant extracts are a rich source of antioxidants, particularly
polyphenols, which include a wide range of compounds, such as flavonoids, anthocyanins,
and tannins. These are widely distributed compounds found in plants. Indeed, by reduc-
ing hydroxyl and superoxide radicals, they are capable of scavenging free radicals and
inhibiting lipid peroxidation [19].

Solanaceae is a plant family in the order of Solanales. It contains herbaceous plants,
trees, shrubs, and vines that are widely distributed in both hemispheres’ tropical regions,
with a strong presence in South America, and a lower presence in temperate regions.
This family contains approximately 147 genera and approximately 2930 species, with
majority of these members being toxic due to the presence of tropanic and steroidal alka-
loids. Plants such as S. elaeagnifolium, S. trilobatum, and S. virginianum are widely used
in pharmaceuticals [20].

Solanum elaeagnifolium is an invasive species that grows in tropical and subtropical
climates, and can be found at elevations higher than 1000 m. S. elaeagnifolium can grow in a
variety of soil textures [21], and has analgesic, anti-inflammatory, antioxidant, insecticidal,
molluscicidal, larvicidal, antimicrobial, chemopreventive, and antitumor properties [22–27].
Some of the major compounds in this plant, such as quercetin, gallic acid, kaempferol, and
naringenin, are responsible for these activities [22,28,29].
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The beneficial effects of the Solanum species on human and animal health are related
to their high levels of flavonoids, alkaloids, terpenes, saponins, phenols, carotenoids, and
coumarins [30,31]. Anticancer, antidepressant, anti-inflammatory, antihypertensive, antiox-
idant, hypolipidaemic, hypoglycemic, anti-obesogenic, hepatoprotective, and antidiabetic
activities have been reported in some species [30,32–34].

In this new study, the composition of extracts from different parts of S. elaeagnifolium
were analyzed by HPLC-DAD, and their in vitro and in silico antidiabetic and antioxidant
potentials were evaluated.

2. Materials and Methods
2.1. Plant Extracts

S. elaeagnifolium (Voucher: E17/1405) (Figure 1) was collected in the Moroccan city of
Fez in early December 2022. Next, the aerial parts—leaves (SEFe), flowers (SEFl), and fruits
(SEFr)—were cleaned and dried before being ground. Maceration was employed to produce
a hydroethanolic extract of the leaves, fruits, and flowers of S. elaeagnifolium. Notably, 50 g
of plant powder was mixed with 500 mL of hydroethanolic solution (70% ethanol and 30%
water). Subsequently, the mixture was macerated for 48 h at 24 ± 1 ◦C before being filtered
through Whatman paper. Finally, the extracted samples were kept at 4 ◦C [35].
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2.2. HPLC-DAD Analysis

Extracts of the different plant parts (SEFr, SEFl, and SEFe) were prepared at 50 mg/mL
and filtered through microfilters (0.45 µm). Characterization of phenolic compounds
was assessed using high-performance liquid chromatography HPLC, connected to a UV
detector (210–400 nm). Notably, 40 µL was injected through a (C18) reverse phase column
(250 × 4 mm, 5 µm) using an elution gradient at a 1 mL/min flow rate. The compounds
were identified, as detailed in previous works [9,10,36].

2.3. Antioxidant Activity Assay
2.3.1. DPPH Assay

In brief, 50 µL of plant extract test samples of various concentrations were mixed with
50 µL of a DPPH solution (0.2 mM in methanol). Butylated hydroxytoluene (BHT) was
used as a standard. After 30 min of incubation in the dark, the absorbance was measured
using a UV-visible spectrophotometer at 517 nm. Calculations were performed based on
Equation (1) and the results are reported as a percentage of inhibition [37,38]:

P.I. (%) =
Abc − Abs

Abc
× 100 (1)

where Abc is the uptake of the negative control, and Abs is the uptake of the extract
or standard.



Processes 2023, 11, 1384 4 of 14

2.3.2. TAC Assay

Total antioxidant capacity (TAC) was calculated as follows: 200 µL of a known con-
centration was mixed with 2 mL of reagent solution—0.6 mol/L sulfuric acid (H2SO4),
28 mmol/L sodium phosphate (Na2PO4), and 4 mmol/L ammonium molybdate
((NH4)2MoS4)—then the mixture was cooled to room temperature (25 ± 1 ◦C) after being
incubated at 95 ◦C for 90 min. Butylated hydroxytoluene (BHT) was used as a standard. The
absorbance was calculated using 695 nm. The amount of equivalent ascorbic acid per gram
of extract (mg EAA/g extract) was used to calculate the overall antioxidant activity [39–41].

2.4. Antidiabetic Activity Assay
2.4.1. α-Amylase Inhibition Assay

The method described by Hbika et al. [9] was used to test the inhibitory effect of
S. elaeagnifolium on the enzymatic activity of α-amylase. A volume of 200 µL of α-amylase
enzyme solution (obtained from Sigma Aldrich, St. Louis, MO, USA) was mixed with
200 µL of phosphate buffer solution and 10 µL of S. elaeagnifolium extract—or with the
acarbose solution (positive control)—in each tube except the blank, where the enzyme
solution was replaced by phosphate buffer (50 mM; pH = 7.5). The tubes were pre-incubated
at 37 ◦C for 10 min. To block the enzymatic reaction, 600 µL of a colored DNSA reagent
was added to the mixture, after which the tubes were immersed in a bubble bath for
8 min. This reaction was then halted by way of heat shock, which was achieved by
immersing the tubes in a cold-water bath before adding 1 mL of distilled water to each
tube. A spectrophotometer was used to measure the absorbance at 540 nm against a blank
background containing the buffer solution, rather than the enzyme solution. The percentage
inhibition of each extract, or acarbose, was calculated using Equation (1).

2.4.2. α-Glucosidase Inhibition Assay

Using a protocol developed by Loukili et al. [10], the effect of S. elaeagnifolium extracts
on intestinal α-glucosidase activity was calculated by measuring the glucose released by su-
crose degradation. Briefly, 100 µL of sucrose (50 mM), 1000 µL of phosphate buffer (50 mM;
pH = 7.5), and 100 µL of α-glycosidase enzyme solution (obtained from Sigma Aldrich,
St. Louis, MO, USA) were used as test solutions (10 I.U.). The previous mixtures were
then treated with either 10 µL of the control (distilled water), positive control (acarbose),
or S. elaeagnifolium extract solutions of various concentrations. The mixtures were then
incubated in a 37 ◦C water bath for 25 min. The solution was heated to 100 ◦C for 5 min to
stop the enzyme reaction, and the final solution’s absorbance was measured at 500 nm. The
calculations were performed based on Equation (1).

2.5. In Silico Studies

In this study, the antidiabetic activity against dipeptidyl peptidase IV (DPP-IV) was
evaluated using molecular docking methods [42]. The phenolic compounds found in
S. elaeagnifolium were retrieved from the PubChem database in SDF format and processed
using the LigPrep tool in the Maestro 11.5 version of the Schrödinger Software program
with the OPLS3 force field. Up to 32 stereoisomers were generated for each ligand after
considering ionization states at pH 7.0 ± 2.0 [43].

The crystal structure of DPP-IV was obtained from the protein data bank in PDB format
using the PDB IDs 1RIP. This structure was then prepared and refined using the Protein
Preparation Wizard of Schrödinger-Maestro v11.5. The minimization of the structure
was carried out using the OPLS3 force field [44]. The receptor grid was positioned at
the following coordinates: X = 62.54, Y = 52.76, and Z = 85.31. A volumetric spacing of
20 × 20 × 20 was used. Flexible ligand docking was performed using the SP method in the
Glide of Schrödinger-Maestro v11.5.2.5 [45].
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2.6. Statistical Analysis

The results of this study were expressed as mean standard error (SEM). One-way
ANOVA was used to analyze the data, followed by the Tukey post-test. Significant values
are those with p < 0.05. GraphPad Prism 8.0.1 from GraphPad Software Inc., San Diego,
CA, USA was used to analyze the data statistically.

3. Results and Discussion
3.1. HPLC Analysis

The chemical constituents of S. elaeagnifolium extracts were explored using liquid
chromatography with high performance, coupled to a diode array detector (HPLC-DAD).
Notably, Figure 2 illustrates the HPLC chromatograms of the identified polyphenols,
while Table 1 illustrates the retention time and percentage area of the compounds in SEFr,
SEFl, and SEFe. HPLC analysis demonstrated the presence of salicylic acid, ferulic acid,
sinapic acid, cinnamic acid, chlorogenic acid, and rutin in SEFr. Salicylic acid, sinapic
acid, naringin, quercetin, chlorogenic acid, quercetin-3-O-beta-glucoside, kaempferol, and
chalcone were found to be prevalent in SEFe. Lastly, SEFl contained ferulic acid, sinapic
acid, chlorogenic acid, quercetin, rutin, quercetin-3-O-beta-glucoside, and kaempferol.
These findings are in agreement with previous research on the composition of the Solanum
genus, which was found to be rich in phenols, such as chlorogenic acid, naringenin,
and quercetin [22–24,28]. Plant parts, relative humidity, climatic conditions, soil, and
post-harvest treatments can all influence chemical composition, as reported in earlier
works [10,46,47]. Chromatographic analysis revealed the presence of chlorogenic acid
and sinapic acid in the various extracts studied from the plant. Research has shown that
these two compounds possess several biological activities, such as antioxidant, antitumor,
hepatoprotective, nephroprotective, antibacterial, antidiabetic, anti-inflammation, brain-
protective, and antihyperlipidemic [48,49].

Table 1. HPLC chromatographic analysis of compounds identified in extracts of S. elaeagnifolium
flowers, fruits, and leaves.

Peak Standards Formula Rt (min)
% Area

SEFr SEFl SEFe

1 Salicylic acid C7H6O3 7.88 68.39 nd 2.46
2 Ferulic acid C10H10O4 9.60 2.29 2.57 nd
3 Sinapic acid C11H12O5 11.30 3.81 1.94 8.35
4 Cinnamic acid C9H2O2 12.40 14.73 nd nd
5 Chlorogenic acid C16H18O9 12.55 14.73 9.42 6.70
6 Naringin C15H12O5 12.95 nd nd 2.85
7 Quercetin C10H10O4 13.50 nd 33.32 6.52
8 Rutin C27H30O16 14.53 4.52 5.19 nd
9 Quercetin-3-O-beta-glucoside C21H20O12 15.14 nd 36.99 13.33

10 Kaempferol C15H10O6 15.70 nd 9.51 36.19
11 Chalcone C15H12O 17.39 nd nd 4.13

SEFr—extract of fruits; SEFl—extract of flowers; SEFe—extract of leaves.
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Figure 2. HPLC-DAD chromatogram of S. elaeagnifolium extracts—fruits (SEFr), leaves (SEFe), and
flowers (SEFl)—at 320 nm using the following standards: salicylic acid (1), ferulic acid (2), sinapic
acid (3), cinnamic acid (4), chlorogenic acid (5), naringin (6), quercetin (7), rutin (8), quercetin-3-O-
beta-glucoside (9), kaempferol (10), and chalcone (11).

3.2. Antioxidant Activity

Findings showed that the aerial parts of S. elaeagnifolium extracts (SFEr, SEFe, and
SEFl) possess very important antioxidant properties (Figure 3 and Table 2). Importantly,
the IC50 for flower, leaf, and fruit extracts were 132.13 ± 5.59 µg/mL,
43.19 ± 1.46 µg/mL, and 71.21 ± 3.87 µg/mL, respectively. The anti-free radical ca-
pacity of leaf extract (IC50 = 43.19 ± 1.46 µg/mL) was more potent than the standard (BHT,
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IC50 = 67.17 ± 2.04 µg/mL), and other extracts. This activity may be explained by the
existence of polyphenols, such as sinapic acid, cinnamic acid, and chlorogenic acid, as well
as flavonoids, such as rutin, and quercetin-3-O-beta-glucoside [50,51].
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Table 2. The IC50 and total antioxidant capacity of various extracts of S. elaeagnifolium and BHT.

Samples DPPH-IC50 (µg/mL) TAC (µg AAE/mg)

SEFr 71.21 ± 3.87 900.06 ± 4.01
SEFe 43.19 ± 1.46 792.10 ± 6.72
SEFl 132.13 ± 5.59 681.10 ± 3.02
BHT 67.17 ± 2.04 800.07 ± 3.11

SEFr—extract of fruits; SEFl—extract of flowers; SEFe—extract of leaves.

Multiple studies have revealed that the genus Solanum possesses antioxidant ca-
pacities [26,28,52], which is in agreement with this study. Importantly, the total antioxi-
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dant capacity of SEFr, SEFe, and SEFl were determined to be 900.06 ± 4.01 µg AAE/mg,
792.10 ± 6.72 µg AAE/mg, and 681.10 ± 3.02 µg AAE/mg, respectively.

Antioxidants play an important role in preventing pathogenic processes associated
with respiratory disorders, cancer, cardiovascular disorders, cataracts, and can also protect
the body from oxidation. Natural antioxidants include phenolics, flavonoids, and tannins,
among others [53]. Phenolics are prevalently used antioxidant substances in both tradi-
tional and modern medicine. Polyphenols act as reducing agents and hydrogen donors by
scavenging free radicals; they also act as chelating ions due to their higher redox proper-
ties [54]. The ability of flavonoids to hydrogenate promotes hydroxylation of their phenolic
rings. This structural feature can be seen in flavonoids, such as kaempferol, quercetin,
and myricetin, where the antioxidant activity increases with the number of OH groups in
the molecule [55].

3.3. In Vitro Antidiabetic Activity

The results demonstrated that all fractions of S. elaeagnifolium (SEFr, SEFl, and SEFe)
had very strong anti-α-amylase effects (Figure 4A and Table 3). Notably, SEFe and
SEFl were found to possess lower inhibitory activity (IC50 = 79.16 ± 40.31 µg/mL, and
IC50 = 99.16 ± 1.17 µg/mL, respectively) than the positive control, acarbose
(IC50 = 44.6 ± 0.01 µg/mL). Meanwhile, SEFr was found to possess higher inhibitory
activity (IC50 = 40.31 ± 2.04 µg/mL) than the positive control and other parts of the plant.
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Table 3. Inhibition of pancreatic α-amylase and intestinal α-glycosidase by S. elaeagnifolium extracts
and acarbose.

Samples
IC50 (µg/mL)

α-Amylase α-Glycosidase

Acarbose 44.65 ± 0.01 52.56 ± 2.67
SEFl 99.16 ± 1.17 41.14 ± 1.55
SEFe 79.16 ± 2.35 20.05 ± 0.12
SEFr 40.31 ± 2.04 20.53 ± 0.37

SEFr—extract of fruits; SEFl—extract of flowers; SEFe—extract of leaves.

Importantly, S. elaeagnifolium extracts (SEFr, SEFe, and SEFl) were found to possess sig-
nificant anti-α-glucosidase activity (Figure 4B and Table 3), while SEFe (20.05 ± 0.12 µg/mL)
inhibited α-glucosidase enzyme more than SEFr (20.53 ± 0.37 µg/mL), followed by SEFl
(41.14 ± 1.55 µg/mL). Notably, all three extracts possessed higher α-glucosidase activity
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than the positive control (52.56 ± 2.67 µg/mL). S. elaeagnifolium leaves showed higher
α-glucosidase inhibitory activity than the fruits or flowers; this inhibition was due to the
difference in chemical composition of the different parts of the plant, and the number of
molecules identified in each sample (Table 1). This activity may have been due to the
synergistic effect of the different chemical components of the plant. The solvent used for
extraction may also have had an effect on anti-α-glucosidase activity [11,56,57].

Due to an increase in the number of diabetic patients worldwide, there is currently a
high demand for antidiabetic agents with no adverse effects on human health, necessitating
research into antidiabetic agents derived from medicinal plants [7]. A diverse variety
of plants, including those in the genus Solanum, have been studied for their antidiabetic
properties [5,58,59]

Selvi and Yoganath [60] investigated the antidiabetic activity of stems and leaves
from S. nigrum, and discovered that the percentage of α-amylase inhibition increased in
tandem with increasing concentrations. Plant extracts are largely used to manage diabetes;
in particular, S. trilobatum was treated with water after formulation and revealed antidi-
abetic activity [58]. In this sense, S. virginianum aqueous and ethanolic extracts inhibited
α-amylase, as recorded in the literature [58]. Furthermore, the extract of S. surattense leaves
exhibited antidiabetic properties [61,62]. In this study, the antidiabetic activity may have
been due to the abundance of bioactive components identified by HPLC in the plant extracts
that were studied.

In this research study, antidiabetic activity may be attributed to the plant’s high
concentration of chemical compounds which include naringin, rutin, and quercetin-3-O-
beta-glucoside [63]. Of these compounds, naringin possessed the most potent antidiabetic
activity via the inhibitory activity of digestive enzymes. The antidiabetic effect of naringin
in type 2 diabetic rats was investigated. Naringin supplementation was shown to improve
elevated levels of glucose and glycosylated hemoglobin, as well as lower serum insulin
levels and hepatic and muscle carbohydrate contents via insulin-resistant hypoglycemic
effects [64,65]. This molecule was shown to lower blood glucose and regenerate body
weight while trying to normalize serum lipid content and oxidative stress biomarkers in the
pancreas and liver, indicating its potential for future drug development as an antidiabetic
compound [66]. Comparatively, rutin has been shown to reduce carbohydrate absorption
from the small intestine, improve tissue glucose metabolism, suppress tissue glucogene-
sis, activate insulin secretion by cells, and protect islets from degenerative changes [67].
Many experimental studies have been conducted to assess the hypolipidemic and anti-
hyperglycemic impacts of rutin [68]. Quercetin is a major natural flavonoid, abundant
in medicinal plants and fruits—several health benefits, including an antidiabetic effect,
have been demonstrated. Quercetin has displayed antidiabetic effects via several mecha-
nisms, including insulin secretion activation, insulin resistance reduction, neurohumoral
maintenance, inflammation reduction, and oxidative stress [69].

3.4. In Silico Studies

In antidiabetic activity, the inhibition of DPP-IV represents a major key in the treatment
of type 2 diabetes. To investigate the antidiabetic activity of phenolic compounds in
S. elaeagnifolium, molecular docking was performed in the active site of DPP-IV. The results
showed strong inhibitory effects with a range of glide scores from −2.63 to −8.10 Kcal/mol.
Rutin was the most potent compound with a glide gscore of −8.10 kcal/mol, a glide emodel
of −103.65 kcal/mol, and a glide energy of −74.52 kcal/mol. Quercetin-3-O-beta-glucoside
also exhibited significant activity with a glide gscore, glide emodel, and glide energy of
−6.23, −68.42, and −52.83 Kcal/mol, respectively. Another compound, chalcone, displayed
remarkable activity with a glide gscore, glide emodel, and glide energy of −5.73, −36.06,
and −28.21 Kcal/mol, respectively (Table 4).
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Table 4. Docking results with phenolic compounds in DPP-IV.

2RIP

Glide Gscore(Kcal/mol) Glide Emodel(Kcal/mol) Glide Energy(Kcal/mol)

Rutin −8.10 −103.65 −74.52
Quercetin-3-O-beta-glucoside −6.23 −68.42 −52.83

Chalcone −5.73 −36.06 −28.21
Naringin −5.37 −68.48 −53.20

Chlorogenic acid −5.12 −55.94 −42.80
Kaempferol −5.07 −47.51 −34.63

Salicylic acid −4.22 −23.90 −17.91
Sinapic acid −2.99 −27.59 −22.42
Ferulic acid −2.96 −26.30 −21.03

Cinnamic acid −2.63 −17.22 −14.20

In preclinical studies, rutin and quercetin-3-O-beta-glucoside (Q3G) have been investi-
gated for their potential effects on diabetes. Studies suggest that rutin and Q3G may exhibit
antidiabetic properties by improving insulin sensitivity, reducing blood glucose levels, and
decreasing oxidative stress in animal models [70,71]. Furthermore, chalcones—a class of
natural compounds found in plants—have been shown to possess a wide range of phar-
macological properties, including antidiabetic effects. Several studies have investigated
the potential antidiabetic effects of chalcone, both in vitro and in vivo, and the results are
promising [72,73]. According to the research of this in silico study, naringin demonstrated
a noteworthy antidiabetic effect. Moreover, several other studies have explored the antidia-
betic potential of naringin, revealing that it may improve glucose metabolism, activate the
AMPK signaling pathway, and reduce oxidative stress and inflammation through various
mechanisms [74,75]. On the other hand, an in vitro study showed that naringin has no
effect on alpha-glucosidase [76].

The docking of rutin in the active site of DPP-IV showed the formation of 10 hydrogen
bonds with the ARG 125, ASN 710, ARG 669, GLU 206, SER 209, GLN 553, and TYR 547
residues, as well as two Pi-Pi stacking bonds with the TYR 547 residue. Furthermore,
quercetin-3-O-beta-glucoside established seven hydrogen bonds in the active site of DPP-IV
with the TYR 662, ASN 710, GLU 206, and ARG 669 residues (Figures 5 and 6). Chalcone
established a single hydrogen bond with the ASN 710 residue, and two Pi-Pi stacking
bonds with the TYR 662 and TYR 666 residues. Moreover, naringin established two
hydrogen bonds with residue GLU 206, two Pi-Pi stacking bonds with residues TYR 547
and TRP 629, and a single Pi-cation bond with residue ARG 125 in the active site of DPP-IV
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4. Conclusions

This study highlighted the chemical composition and the antioxidant and antidiabetic
properties of aerial parts of S. elaeagnifolium. This plant is found to be rich in polyphenol
and flavonoid content, which may determine its diabetic and antioxidant properties, as
reported in this work. Further research on toxicity in non-humans is warranted before the
use of S. elaeagnifolium extracts for medicinal purposes.
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