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Abstract: Steel surface defect detection is an important issue when producing high-quality steel
materials. Traditional defect detection methods are time-consuming and uneconomical and require
manually designed prior information or extra supervisors. Surface defects have different representa-
tions and features at different scales, which make it challenging to automatically detect the locations
and defect types. This paper proposes a real-time steel surface defect detection technology based
on the YOLO-v5 detection network. In order to effectively explore the multi-scale information of
the surface defect, a multi-scale explore block is especially developed in the detection network to
improve the detection performance. Furthermore, the spatial attention mechanism is also developed
to focus more on the defect information. Experimental results show that the proposed network
can accurately detect steel surface defects with approximately 72% mAP and satisfies the real-time
speed requirement.

Keywords: steel surface defect detection; deep learning; convolutional neural network

1. Introduction

Steel surface defect detection is an important topic in material science research [1]. As
one of the most important fundamental materials, steel contributes to numerous industry
productions, such as airplanes, automobiles and high-speed railways. Among various
steel productions, flat steel is the dominant product and contributes the most to industrial
applications. As such, the quality of flat steel is vital for daily life.

Unfortunately, there are usually defects on flat steel surfaces, making it challenging
to generate high-quality steel industrial productions. There are six typical defects on
steel surfaces: crazing, inclusion, patches, pitted surface, rolled-in scale and scratches [2].
Figure 1 demonstrates the typical types of different steel surface defects in the North East
University Detection (NEU-DET) dataset. The defects lead to bad quality in the flat steel,
making it challenging to produce high-quality industrial productions.

In traditional factories, steel surface defect detection relies on human supervision,
which is time-consuming and uneconomical [3]. On the one hand, extra supervisors require
more resources than automatic detection does. On the other hand, human-dependent
detection cannot ensure quality supervision around-the-clock. With the development
of the industrial vision area, computers come to be a powerful tool to detect surface
defects. Previous works rely on hand-crafted feature extractors and machine learning-
based classifiers to localize the defects. An artificial neural network (ANN), support vector
machine (SVM), k-nearest neighbor (KNN) and other machine learning technologies have
been widely applied in different steel surface defect detection methods [4–6]. However,
these works suffer from lower precision and cannot satisfy the real-time speed requirement.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Typical types of steel surface defects in the NEU-DET dataset: (a) Crazing. (b) Inclusion.
(c) Patches. (d) Pitted Surface. (e) Rolled-in Scale. (f) Scratches.

To boost the accuracy and improve the speed, there are convolutional neural net-
works (CNNs) especially developed for defect detection. Mustafa et al. used different
image classification methods to recognize the diverse steel surface defects [7]. He et al.
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utilized a multi-level feature fusion network and classified the different kinds of defects [8].
These works demonstrate good performances with two-stage object detection networks,
separating the localization and classification steps, which is time-consuming.

In contrast to two-stage networks, you-only-look-once (YOLO) series methods utilize
one-stage objection detection technology and achieve real-time speed [9–13]. In particular,
the fifth version, YOLO-v5, achieves the state-of-the-art detection performance which has
been widely utilized in various situations, such as letter recognition [13], circuit defect
detection [14] and fabric detection [15]. However, the traditional YOLO-v5 method cannot
effectively explore steel surface defects. On the one hand, as shown in Figure 1, there are
different representations of the defects, making it difficult to accurately localize and classify
the defect areas. On the other hand, the defects vary from different scales. The extra small
or large defects are challenging to explore and detect.

This paper proposes an improved multi-scale YOLO-v5 technology for real-time
steel surface defect detection. In particular, we develop a multi-scale block to effectively
explore the defects. Convolutions with different filter sizes are especially developed to
process the input images and generate the multi-scale information. The multi-scale image
features are aggregated by one convolutional layer for information fusion, which boosts
the representation capacity of the network. Furthermore, a spatial-attention mechanism
is developed to concentrate more on the defect areas and improve the detection accuracy.
The experimental results show that the improved multi-scale YOLO-v5 method can more
accurately detect the steel surface defects than the original version, which satisfies the
real-time speed requirement.

Our contributions can be concluded as follows:

• We propose an improved multi-scale YOLO-v5 network for effective steel surface
defect detection, which achieves a high detection accuracy and demonstrates a good
robust performance.

• We develop the multi-scale block and spatial attention mechanism to process the steel
surface images, which effectively explore the defect information and improve the
accuracy of the network.

• Experimental results show that the improved network has a higher prediction accuracy
than the vanilla YOLO-v5 method, which satisfies the real-time speed requirement.

2. Related Work
2.1. Steel Surface Defect Detection

Steel surface defect detection is one of the most important tasks in the industrial
vision research area. The task of steel surface defect detection is to automatically find
the defects of the steel and guarantee the quality of industrial productions. In previous
works, different computer vision and machine learning-based methods have been used to
accurately detect defects. There are researchers utilizing the probability model to describe
the steel surfaces without defects, and regarding the outliers as the examples with bad
quality [16]. To this end, a dynamic threshold technology is developed to detect the outliers.
Wang et al. used the histogram of image features to model the difference between the
defect-free examples and bad cases [17]. However, this method considers the detection in
the gray scale, which cannot effectively explore the color information of the images and
limits the accuracy. Moreover, the defects have different scales and representations. The
statistic-based methods cannot effectively distinguish the diverse defects from each other
and suffer from poor accuracy.

There are also works regarding the task in the spatial domain and utilizing some
filter-based methods to detect and localize the defects. A Gabor filter was considered
to explore the hole-like defects and achieved a good detection performance on different
scales [18]. Hough transformation was also utilized to model the different kinds of defects
and improve the robustness of the detection [19]. Edge information was also considered in
the defect detection procedure [20]. Yang et al. utilized a convolution operation to explore
the contour and edge information of the steel image and modeled the complex steel defects.
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Recently, CNN has demonstrated its amazing performance on the objection detection
task [21–23]. Most of the works are established based on the YOLO [9] series, fast RCNN [24]
series or other object detection methodologies. Shi et al. developed an improved faster
RCNN method for accurate steel surface defect detection [25]. Zhan proposed a bilaterally
symmetric UNet for detection [26]. Yang and Guo also modified the YOLO network for
detecting the defects [27]. Recently, there are also generative adversarial network (GAN)-
based methods for defect detection [28–30].

2.2. Deep Learning for Classification and Object Detection

Deep learning has demonstrated great effectiveness in the object classification task,
which is usually considered as the backbone of object detection methods. LeNet [31] was
the first CNN-based method for image classification, which proved to be a success on
hand-written digital number recognition. In 2012, AlexNet demonstrated its amazing
performance on the ImageNet [32] competition with 62.5% accuracy, and won the first
prize with a large improvement from the second prize method. After that, there are nu-
merous classification networks with well-designed architectures and good classification
performances. VGGNet [33] utilized a very deep network to improve the classification
accuracy to 74.0%. ResNet [34] introduced the residual connection into image classification
and achieved better performances than previous works with 78.4% accuracy. The residual
connection has been widely developed in various network designs. DenseNet [35] provided
a dense connection to build the network for better information transmission with 79.2%
accuracy. Recently, there have been different modifications on ResNet and DenseNet to
improve the classification performance. Zhang et al. proposed a multi-level residual net-
work design and improved the network representation capacity [36]. Gao et al. developed
a multi-scale backbone for ResNet, and proposed Res2Net for image classification [37]. Xie
et al. brought the aggregated residual transformation from ResNet and named their new
network ResNext [38].

Based on the classification backbones, there are numerous object detection networks
achieving good performances. R-CNN [39] is the first CNN-based method for object
detection, which utilized a CNN to explore the features and used SVM for classification.
After that, fast R-CNN [40] modified the structure of R-CNN, and made it to be an end-
to-end technology for better performance with fast speed. Faster R-CNN [41] further
improved the fast R-CNN with higher speed and accuracy. Mask R-CNN [42] combined
the object detection and the semantic segmentation.

The R-CNN series methods are two-stage detection technologies, which separate
the localization and classification steps and become time-consuming. To boost the speed
of detection, the YOLO series methods are proposed to meet the real-time requirement.
YOLO-v1 [9] is the first YOLO-series method with restricted parameters and computational
cost. To boost the precision, YOLO-v2 [10] used a new backbone and considered other
modifications with faster speed. After that, YOLO-v3, v4 and v5 successively improved the
performance with well-designed network components.

Except for R-CNN and YOLO, there are also other network architectures for object
detection. SSD [43] added the multi-scale feature exploration to YOLO and achieved
better performance. RetinaNet [44] used focal loss and regarded ResNet as the backbone
to boost the accuracy. CenterNet [45] considered the object detection in an anchor-free
style and jointly improved the speed and the accuracy. FCOS [46] also developed a fully
convolutional network for one-stage object detection.

2.3. Deep Learning for Defect Detection

With the development of deep learning technology, numerous CNN-based methods
have been especially designed for defect detections. The deep learning-based defect
detection works usually concentrate on the effective network design and utilize well-
established architectures to improve the network representation technology and boost the
detection accuracy [47]. Wu et al. applied an SSD-based detection network for accurate
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PCB defect detection [48]. An et al. developed an improved faster R-CNN network for
fabric defect detection, which utilizes the VGG-16 backbone for feature extraction and
builds a multi-scale feature pyramid model for the RPN network [49]. Luo et al. developed
a decoupled two-stage network for the FPCB surface defect detection [50]. In their work,
the localization and classification operations are decoupled into two different modules.
Additionally, they established the multi-hierarchical aggregation block and the locally
non-local block for boosting the network performance. With the elaborate network designs,
their network achieves state-of-the-art performance with 91.45% mAP on FPCBs’ defect
detection. Guan et al. also developed an improved YOLOv5 network to detect the ceramic
ring defects [51]. In their work, the attention mechanism was specially addressed into
the YOLOv5 backbone and improved the detection performance. Their method achieves
89.9% mAP on the ceramic ring defect and achieves a state-of-the-art performance. Mo
et al. proposed a weighted double-low-rank decomposition technology for fabric defect
detection [52]. In contrast to other YOLO-based and R-CNN-based networks, their work
regards the defect detection as an optimization-based problem and utilizes an alternating
direction method of multipliers (ADMMs) to solve the task. With the new perspective
and the novel methodology, their work achieves higher accuracy and better detection
performance than other fabric defect detection methods. In contrast to the objective-oriented
detection methods, Zeng et al. proposed a reference-based defect detection network for all
defect detection tasks [53]. This method using a well-aligned template reference to estimate
the potential defects of the input images.

Importantly, there are different deep learning-based works concentrating on the steel
defect detection. YOLO and R-CNN are the most two popular baselines for developing the
detection network. Su et al. developed an improved YOLO-v4 network for steel surface
defect detection [54]. In their method, the channel attention mechanism was specially
developed to capture the global information of the image feature. After that, an ICIoU loss
function was introduced to replace the CIoU, which can more effectively solve the data
imbalance issue. Their method achieves 78.63% mAP on the steel surface defect detection
dataset and proves to be one of the state-of-the-art methods. Xie et al. also developed
an improved faster R-CNN method for fast and accurate surface defect detection [55].
They modified the backbone of the faster R-CNN to better explore the image feature and
achieve more accurate detection results. Beyond the YOLO and R-CNN series, there are
also different technologies especially devised for steel surface defect detection. Tian et
al. proposed a complementary adversarial network-driven surface defect detection for
different types of the defects [56]. In their work, an encoding–decoding architecture was
specially developed for image segmentation and the discriminator loss was considered
for its better performance. Additionally, the dilated convolution and the edge detection
are also considered in the network to effectively explore the image feature. Zhan also
developed a bilaterally symmetric U-shaped network, dubbed BSU-Net, for effective
surface defect detection [26]. In BSU-Net, an enhanced U-Net and a feature expanding
network are combined to classify whether the image has defects. Cheng and Yu. considered
the RetinaNet as the backbone, and embedded the channel attention mechanism and the
adaptively spatial feature fusion into the detection procedure to boost the accuracy [57].
Guan et al. devised a U-shaped architecture to detect the defects, which used the VGG-19
as a feature extractor to extract the information. Furthermore, the structural similarity and
the decision tree are utilized to evaluate the image quality [58]. Han et al. developed a two-
stage edge reuse network embedding the saliency information into defect detection [59]. In
their method, an edge-aware foreground–background integration module was especially
devised to explore the saliency and further concentrate on the defect information.

2.4. Attention Mechanism

Attention mechanism proves to be an effective component for CNN to boost the
representation performance and improve the predicting results. In general, the attention
mechanism can be separated into three different kinds: the channel-wise attention mecha-
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nism [60], the spatial attention mechanism [61] and the non-local attention mechanism [62].
The channel-wise attention mechanism embeds the image features into a vector and gives
different weights to different feature channels. In contrast to the channel-wise attention,
the spatial attention mechanism finds the weights for every pixel of the image features. The
non-local attention mechanism calculates the global relationship of the image feature, and
utilizes the matrix multiplication operation to conduct the attention procedure. The atten-
tion mechanism has been widely used in different computer vision and image processing
tasks, such as image super-resolution [60], image dehazing [63], object detection [61] and
image segmentation [62].

The attention mechanism is also widely considered in defect detection areas. Wang
et al. used the spatial attention mechanism to detect the subway tunnel defects [64].
Li et al. devised a dynamic attention graph convolution mechanism for the point cloud
defect detection [65]. Wu and Lu combined the spatial attention, channel attention and
the non-local attention mechanisms for fabric defect detection and achieved a 91.6% mAP
performance [66]. Chen et al. used the deformable convolution and the channel attention
mechanism for building the strip steel surface defect detection network [67]. Peng et al. also
developed a fabric defect detection network with both the spatial and channel attention
mechanisms.

3. Method

In this section, we firstly introduce the design of the proposed network. Then, the
multi-scale block and the spatial attention mechanism are described. Finally, we demon-
strate the detailed implementation of the proposed network.

3.1. Network Design

Figure 2 shows the network design of the proposed improved multi-scale YOLO-v5
method. This network is composed of three different components: the bottleneck, the head
and the detector. The input image is firstly processed by the bottleneck to explore the
multi-scale features. Then, the proposed features are aggregated and further processed
by the head. Finally, the multi-scale features are sent to the detector for classification
and localization.

Figure 2. Network design of the proposed improved multi-scale YOLO-v5 method.

As shown in the figure, the bottleneck is composed of the combination of convolution,
batch normalization and SiLU activation (CBS), the multi-scale sequence (MS) and the
spatial pyramid pooling fusion (SPPF). There are five CBSs, fifteen MSs and one SPPF in
the bottleneck. In MS, there are three multi-scale blocks (MBs) and one CBS for multi-scale
feature fusion. The SPPF is composed of two CBSs and three max pooling (MaxPool)
operations. The MaxPool operations explore the image feature in the spatial pyramid
pooling fashion. Then, CBS combines and fuses the multi-scale features.
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The head of the network is composed of four CBSs, twelve MSs and several bicubic
operations to maintain the image resolution. The head combines features from the differ-
ent stages of the bottleneck, and uses CBS and MSs for better multi-scale feature fusion.
Finally, the multi-scale features of the head are sent to the detector for object detection
and localization.

The detector follows the vanilla YOLO-v5 design [13], which regresses the bias of
different anchors and localizes the objects. The detector contains three scales to effectively
explore the small and large objects. For each scale, there are three anchors to localize
the defects.

3.2. Design of the Multi-Scale Block and Spatial Attention

Figure 3a shows the design of the MB. There are two multi-scale convolutions (MSConv)
to explore the hierarchical image information. After that, one CSB with skip connection
builds the residual structure for better gradient transmission. Figure 3b demonstrates
the design of MSConv. In the MSConv, two 1 × 1 and two 3 × 3 convolutions crossly
process the image feature and explore the multi-scale information. After that, one 1 × 1
convolution combines the features of two convolutions for information fusion and keeps
the number of channels. A spatial attention (SA) mechanism is specifically developed
to further concentrate on the defect information and improve the detection performance.
Finally, a skip connection is introduced for better gradient transmission.

Figure 3. Design of the multi-scale block (MB): (a) Multi-scale block (MB); and (b) multi-scale
convolution (MSConv).

Figure 4 shows the design of the SA. In the figure, we can find that the SA has two
convolutions, one ReLU activation and one sigmoid activation. The convolutions decrease
and increase the channel number symmetrically. The ReLU activation introduces the
non-linearity to the attention exploration. Finally, the sigmoid activation introduces the
non-negativity to the attention.

Figure 4. Design of the spatial attention (SA) mechanism.

The spatial attention mechanism follows an encoder–decoder design, which can
effectively explore the spatial correlation of the input image feature. The sigmoid activation
brings the non-negativity to the feature and gives higher weights to the detected areas,
which helps boost the network representation capacity and improve the detection accuracy.

3.3. Implementation Details

Table 1 shows the parameter settings of the proposed improved multi-scale YOLO-v5
network. The component index follows the order in Figure 2. The scale of CBS means
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decreasing the resolution of the image feature by s times, and the scale of bicubic means
increasing the resolution by s times, where s is the scale.

Table 1. Parameter settings of the improved multi-scale YOLO-v5 network.

Component Index Operation Number Channel Scale

Backbone

0 CBS 1 64 2
1 CBS 1 128 2
2 MS 3 128 1
3 CBS 1 256 2
4 MS 6 256 1
5 CBS 1 512 2
6 MS 9 512 1
7 CBS 1 1024 2
8 MS 3 1024 1
9 SPPF 1 1024 1

Head

10 CBS 1 512 1
11 Bicubic 1 - 2
12 MS 3 512 1
13 CBS 1 256 1
14 Bicubic 1 - 2
15 MS 3 256 1
16 CBS 1 256 2
17 MS 3 512 1
18 CBS 1 512 2
19 MS 3 1024 1

During the training phase, we used the same loss functions as the YOLO-v5, includ-
ing the coordinate loss, the target confidence loss and the target classification loss. The
weights and the implementation are entirely the same as the vanilla YOLO-v5 design for a
fair comparison.

4. Experiment
4.1. Settings

We chose the NEU-DET [2] dataset to train and test our model. NEU-DET contains
1800 steel surface defect images with six typical defects: pitted surface, rolled-in scale,
scratches, crazing, inclusion and patches. Among the images, we randomly chose 60% for
training, 20% for validation and 20% for testing. We trained the network on one NVIDIA
RTX 3080-Ti GPU. The batch size was chosen as 16. We updated the network for 100 epochs.
The optimizer was chosen as Adam with a learning rate as 10−3.

The measurements of the performance are chosen as precision, recall and mean average
precision (mAP). The precision and the recall are defined as

P =
TP

TP + FP
, (1)

and
R =

TP
TP + FN

, (2)

where TP, FP and FN are the true positive, false positive and false negative samples,
respectively. P is the precision and R is the recall.

4.2. Results

To demonstrate the effectiveness of our method, we mainly compared the improved
version with two vanilla YOLO-v5 network settings: YOLOv5-s and YOLOv5-m. We
firstly compared the computational complexity of different methods. Table 2 shows the
parameters, GFLOPs and time costs of different methods. The GFLOPs are calculated by
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processing one 640 × 640 image. In the table, we can find that our method satisfies the
real-time speed requirement and has the ability to process more than 190 images per second.

Table 2. Computational complexity comparisons among different methods.

Method Parameters (M) GFLOPs Time Cost (ms) FPS

YOLO-v5s 7.02 15.8 1.8 555.56
YOLO-v5m 20.8 47.9 4.1 243.90

Ours 22.2 54.1 5.2 192.30

To demonstrate the effectiveness of our method, we compared it with YOLO-v7tiny [68],
one of the state-of-the-art object detection methods. Table 3 shows the precision, recall,
mAP50 and mAP50-95 comparisons among the different object detection methods. In the
table, we can find that our network achieves the highest scores on all testing indicators.
From this point of view, our method can effectively detect the defects of the steel surfaces.
Figure 5 shows the PR-curve among different methods. In the figure, we can find that
our method has a larger area under the curve (AUC), which denotes a better performance
than the other methods. To further investigate the effectiveness of our method, we also
demonstrated the precision, recall and F1 curves. Figure 6 shows the results of different
indicators. We can find that our method has a good performance on different kinds of
defects. Finally, we demonstrated the visualized results of the steel surface detect detection.
Figure 7 shows the comparison between ground-truth and our prediction results. In the
figure, we can find that our method can predict most of the defects on the steel and has a
robust performance in terms of defects with different scales.

Table 3. Precision, recall, mAP50 and mAP50-95 comparisons among different methods.

Method Indicator Crazing Inclusion Patches Pitted Surface Rolled-in Scale Scratches All

YOLO-v5s

P 0.433 0.606 0.802 0.712 0.469 0.753 0.633
R 0.010 0.758 0.849 0.723 0.680 0.814 0.597

mAP50 0.287 0.718 0.900 0.776 0.574 0.830 0.669
mAP50-95 0.089 0.330 0.554 0.406 0.257 0.415 0.334

YOLO-v5m

P 0.454 0.536 0.735 0.754 0.489 0.714 0.610
R 0.140 0.833 0.884 0.759 0.430 0.873 0.695

mAP50 0.307 0.765 0.899 0.787 0.503 0.863 0.699
mAP50-95 0.099 0.384 0.571 0.451 0.212 0.444 0.368

YOLO-v7tiny

P 1.000 0.538 0.751 0.628 0.384 0.624 0.654
R 0.000 0.738 0.824 0.574 0.342 0.746 0.537

mAP50 0.168 0.659 0.835 0.626 0.332 0.713 0.555
mAP50-95 0.036 0.282 0.451 0.270 0.101 0.300 0.240

Ours

P 0.573 0.595 0.759 0.743 0.505 0.766 0.657
R 0.180 0.819 0.890 0.772 0.703 0.864 0.705

mAP50 0.345 0.768 0.898 0.825 0.616 0.868 0.720
mAP50-95 0.114 0.373 0.576 0.451 0.277 0.440 0.372

The performance gain comes from the well-designed network architecture. In Table 2,
our method has similar parameters, GFLOPs and time costs to YOLO-v5m. In contrast, the
performance of our method is superior to YOLO-v5m. It should be noticed that YOLO-
v5m is a larger version of YOLO-v5s, whose performance improvement is limited. From
this point of view, the performance gain comes from the new architecture rather than the
larger network.
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(a) YOLO-v5s

(b) YOLO-v5m

(c) Ours

Figure 5. PR curve comparisons among different methods.



Processes 2023, 11, 1357 11 of 16

(a) Precision

(b) Recall

(c) F1

Figure 6. Precision, recall and F1 curves of our method.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Visualized results of the steel surface defect detection: (a–c) Groundtruth. (d–f) Prediction
results. Zoom-up for better view.

It should be noticed that the best mAP50 performance of Table 3 is of approximately
0.72, which is lower than other reports. This is because we used an entirely different data
organization protocol from other papers. In our work, the NEU-DET dataset is split by 60%,
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20% and 20% for training, validation and testing, respectively. The amount of training data
is much smaller than in other works for ensuring the generation performance. To fairly
compare the effectiveness of different methods, we re-trained different methods under the
same protocol, the results of which are reliable for measuring the performances.

5. Conclusions

In this paper, we proposed an improved multi-scale YOLO-v5 network for steel surface
defect detection. To focus on diverse defects at different scales, we developed a multi-scale
block to effectively explore the defects with different resolutions. To further improve the
network performance and concentrate more on the defect areas, we developed a spatial
attention mechanism to give higher weights to abnormal information. The experimental re-
sults show that the improved multi-scale YOLO-v5 network can effectively detect different
kinds and scales of defects and satisfies the real-time speed requirement.
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