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Abstract

:

To address the problems of strong coupling and large hysteresis in the temperature control of a continuously stirred tank reactor (CSTR) process, an improved sparrow search algorithm (ISSA) is proposed to optimize the PID parameters. The improvement aims to solve the problems of population diversity reduction and easy-to-fall-into local optimal solutions when the traditional sparrow algorithm is close to the global optimum. This differs from other improved algorithms by adding a new Gauss Cauchy mutation strategy at the end of each iteration without increasing the time complexity of the algorithm. By introducing tent mapping in the sparrow algorithm to initialize the population, the population diversity and global search ability are improved; the golden partition coefficient is introduced in the explorer position update process to expand the search space and balance the relationship between search and exploitation; the Gauss Cauchy mutation strategy is used to enhance the ability of local minimum value search and jumping out of local optimum. Compared with the four existing classical algorithms, ISSA has improved the convergence speed, global search ability and the ability to jump out of local optimum. The proposed algorithm is combined with PID control to design an ISSA-PID temperature controller, which is simulated on a continuous reactor temperature model identified by modeling. The results show that the proposed method improves the transient and steady-state performance of the reactor temperature control with good control accuracy and robustness. Finally, the proposed algorithm is applied to a semi-physical experimental platform to verify its feasibility.
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1. Introduction


A continuously stirred tank reactor is a typical piece of equipment in the chemical industry, particularly in chemical [1], petroleum [2], fuel [3] and polymer production [4]. Due to the strong coupling and large hysteresis of the reactor, the regulation of this system is challenging.



Although with the development of technology and advanced control strategies various optimization algorithms such as fuzzy control [5], sliding film control [6] and predictive control [7] have emerged in the field of CSTR control, PID control still dominates in practical applications, and the integration of intelligent algorithms to improve the PID controller to improve the control effect of the CSTR system is the frontier direction in this field. In the literature [8], a PID controller with adaptive fuzzy gain scheduling was designed, which has better tracking performance than the conventional PID and can quickly track the desired coolant jacket temperature. However, the difficulty of parameter tuning is further amplified by the number of parameters that need to be tuned. The literature [9] proposed a PID-based nonlinear autoregressive moving average (NARMA) controller, which embodies better temperature control than the traditional PID controller and fuzzy PID controller, but the experiments stay in the simulation stage and the practical application is not always ideal. In the literature [10], various intelligent algorithms were applied to the parameter tuning of PID controller for CSTR concentration control, and the controller tuned by the given method outperformed the traditional Zeigler Nichols (ZN) method in various performance aspects. The literature [11] proposed to control the concentration and temperature of CSTR by fractional order PID (FOPID), the two added parameters make the parameter adjustment more flexible and improve the robustness and stability of the system, but also greatly increase the difficulty of the controller design. A Dynamically Updated PID (DUPID) controller is proposed in the literature [12], which introduces a quadratic error model to optimize the PID structure, ensuring that the tracking parameters are tracked as they drift and occasionally readjusting the PID parameters, but this controller requires high model accuracy.



The sparrow algorithm (SSA) [13], as a new intelligent algorithm with few adjustment parameters and strong optimization-seeking ability, can effectively solve the stability problems arising from flash tank temperature control and has been applied in various industries [14,15,16]; however, the sparrow algorithm still has problems such as relying on the initial solution, easily falling into local optimum, and insufficient diversity in the late iteration. Scholars have made corresponding improvements to address these deficiencies. The literature [17] improved the population diversity by initializing the population through tent chaotic mapping. The literature [18] improved the position-updating process of discoverers in SSA through a sine and cosine search strategy, which effectively improved the algorithm’s merit-seeking ability and convergence. The literature [19] added Gaussian variation to the iterative process of individual sparrows to improve the local search capability. The above-mentioned literature improved the sparrow search algorithm from different perspectives, and although the ability to jump out of the local space was improved, the problems of unsatisfactory convergence and inconsistency between global search ability and local exploitation ability still existed.



Considering the problems in the above literature, a reactor temperature control method based on the improved sparrow search algorithm to optimize PID parameters is proposed for the high requirements of control accuracy and stability of temperature control in continuous reactor systems. This is different from other improved algorithms, not only from the two perspectives of population initialization and the position update formula of the algorithm to improve it to increase its search accuracy, convergence speed and stability, but also to add the new Gauss Cauchy variation strategy to the end of each iteration, which effectively overcomes the feature that SSA is easy to fall into local optimum, does not increase the time complexity of the algorithm, and has a certain novelty. Finally, the method is applied to MATLAB reactor temperature simulation experiments and a semi-physical platform based on SIMATIC PSC 7 and SMPT-1000 to verify its effectiveness and feasibility.




2. Proposed Optimization


2.1. Traditional SSA


The SSA algorithm was proposed by Xue et al. [13] in 2020, analogizing the search process to that of a sparrow searching for food, which has the advantages of strong search ability and fast convergence. The algorithm divides sparrows into discoverers and followers by the level of fitness value: discoverers usually have high energy reserves and are responsible for providing areas and directions for followers; followers can always forage around discoverers that provide the best food or even directly take their place. Moreover, a certain number of vigilantes are set to prevent the search from falling into a local optimum. The explorer's location update formula is as follows:


   X  i , j   t + 1   =        X  i , j  t  ⋅ exp     − i   α ⋅   i t e r     max              if     R 2  < S T        X  i , j  t  + Q ⋅ L        if     R 2  ≥ S T        



(1)




where    X  i j     is the position of each individual sparrow,  i  is the number of current iterations, and   i t e  r  max     is the total number of iterations; α is a random number within [0, 1]; R2 (R2 ∈ [0, 1]), ST (ST ∈ [0.5, 1]) are the warning and safety values, respectively; Q is a random number obeying normal distribution; and L is a 1 × d matrix where each element is 1.



When the safety value of an individual sparrow is less than the warning value, that is, when R2 < ST, it means that it is in a safe position at this time and the discoverer can maximize the global search. On the contrary, when R2 > ST, some of the sparrows have found the danger and the followers have joined the action to monitor the discoverer, and once the discoverer has obtained a better value, it will take its place. The formula for updating the position of the followers is as follows:


   X  i , j   t + 1   =       Q ⋅ exp      X  worst  t  −  X  i , j  t     i 2             if    i > n / 2        X p  t + 1   +    X  i , j  t  −  X P  t + 1     ⋅  A +  ⋅ L        otherwise           



(2)




where n is the population size,    X  worst     is the position corresponding to the sparrow with the lowest global fitness, and    X p    is the position corresponding to the discoverer with the highest global fitness. A is a   1 × d   matrix with random values of 1 or −1 for each element, where A+ is defined as    A +  =  A T      A  A T      − 1    .



Since each location update is followed by a ranking based on the fitness values of individual sparrows,     i > n / 2   means that some individuals with lower fitness are classified as followers with poorer status, and they cannot grab food from the discoverers and have to fly to other places to forage.



The sparrow algorithm defines 10–20% of individuals within the population as vigilantes in order to avoid falling into local optima when searching, and their initial positions are generated randomly with the position update formula shown below:


   X  i , j   t + 1   =        X   best     t  + β ⋅    X  i , j  t  −  X   best     t           if     f i  >  f g         X  i , j  t  + K ⋅        X  i , j  t  −  X   worst     t         f i  −  f w    + ε            if     f i  =  f g         



(3)




where    X  best     is the current global optimal position, β is the step control parameter, whose value is a random number obeying a normal distribution with mean 0 and variance 1; K is a random number within [−1, 1]; f is the fitness value,    f g    and    f w    are the current optimal and worst fitness values, respectively; ε is a constant to avoid the denominator being zero.



When    f i  >  f g   , this sparrow is less updated than the optimal value and is at the edge of the population and needs to move closer to the center of the population, while when    f i  =  f g   , it means that the sparrow in the middle of the population is aware of the danger and needs to find other sparrows to avoid being predated, that is, to fall into the local optimum. Here, K is the same as β and is also a step control parameter, which also indicates the direction of its movement. The steps of the traditional sparrow algorithm are as follows:



Step 1: Initialization: population number N, dimension D, discoverer proportion PD, vigilant proportion SD, warning value ST, initial value upper bound   u b  , lower bound   l b  , maximum number of iterations    T  max    ;



Step 2: Initialize the population;



Step 3: calculate the fitness values of sparrows and rand them;



Step 4: Update the discoverer position using Equation (1);



Step 5: Update the follower positions using Equation (2);



Step 6: Update the vigilantes’ positions using Equation (3);



Step 7: Calculate the fitness value and update the sparrow position;



Step 8: If the stop condition is satisfied, exit and output the result; otherwise, repeat Step 4.



The flow chart of traditional SSA is shown in Figure 1.



Traditional SSA also has some problems, such as random generation of initial individuals, which leads to insufficient population diversity; difficulty in balanced search and exploitation in discoverer location update, insufficient global search and local exploitation ability, and easy-to-fall-into local optimum. Therefore, some improvements are needed.




2.2. Improved SSA


To address the problems of traditional SSA mentioned above, the algorithm is improved by introducing tent chaotic mapping to initialize the population to improve the diversity of the population, improving the discoverer position update formula to balance its search and exploitation ability with the help of golden partition, and finally, introducing Gauss–Cauchy variation strategy to help ISSA jump out of local optimum. The improvement details are as follows.



2.2.1. Tent Chaotic Mapping Initializes the Population


Based on the three main properties of chaotic variables, i.e., ergodicity, regularity and randomness, the global search capability of the algorithm is enhanced by preventing the algorithm from falling into a local optimum through its randomness while ensuring the diversity of the population. The expression of the tent mapping is shown in Equation (4).


   z  i + 1   =     2  z i    0 ≤ z ≤  1 2      2 ( 1 −  z i  )    1 2  < z ≤ 1      



(4)




where z is a random point between [0, 1]. i is the number of current iterations. The expression after Bernoulli transform is Equation (5).


   z  i + 1   = ( 2  z i  ) mod 1  



(5)







In order to avoid the existence of small cycles and unstable points in chaotic mapping and to preserve the periodicity, ergodicity, and regularity of chaotic variables, Wang et al. [20], based on the improved tent chaotic universal gravity search algorithm, added a random variable to the original expression, and the improved formula is given in Equation (6).


   z  i + 1   =     2  z i  + rand ( 0 , 1 ) ⋅  1   N T      0 ≤ z ≤  1 2      2 ( 1 −  z i  ) + rand ( 0 , 1 ) ⋅  1   N T       1 2  < z ≤ 1      



(6)







The expression after Bernoulli transform is given in Equation (7).


   z  i + 1   = ( 2  z i  ) mod 1 +  rand ( 0 , 1 )  ⋅  1   N T     



(7)




where rand(0, 1) is a random number between [0, 1]. NT is the number of particles in the chaotic sequence.



The distribution and histogram of 600 generations of improved tent chaos mapping are generated on MATLAB as shown in Figure 2.



As can be seen from Figure 2 the improved tent chaotic sequence is uniformly distributed between [0 and 1] and has good ergodicity. Finally, the initialized Tent chaotic population is obtained according to the upper and lower bounds of the given solution as shown in Equation (8).


   X   i , j    t + 1   = l b + ( u b − l b )  Z j   



(8)




where lb is the lower bound of the solution space. ub is the upper bound of the solution space. Zj is a j-dimensional sequence of tent chaos generated according to Equation (7).




2.2.2. Explorer Location Update Improvements


Golden-Sine is a new heuristic algorithm proposed by Tanyildizi et al. [21], which is inspired by the sine function and based on the relationship between the sine function and the unit circle. All values on the sine function can be traversed, i.e., all points on the unit circle can be searched, in order to scan the region that may yield only good results, largely improving the search speed and achieving a good balance between search and exploitation.



To address the problem that the discoverer position update process is difficult to balance search and exploitation, the optimization of the discoverer position update formula is considered. In the common discoverer position update formula, when the discoverer warning value is less than the safety value, the golden sine is introduced to replace the exponential random number, and the advantage of good traversal of the golden sine is used to reduce the solution space, improve the search speed, and balance the search and exploitation relationship between the two. The improved discoverer position update formula is shown in Equation (9).


   X  i , j   t + 1   =      X  i , j  t  ×   sin (  R 1  )   +  R 2  × sin (  R 1  ) ×    x 1  ×  X  best  t  −  x 2  ×  X  i , j  t         R 2  < S T      X  i , j  t  + Q ⋅ L         R 2  ≥ S T      



(9)




where R1 is a random number that determines the distance an individual will move in the next iteration, taking values between [0, 2π]. R2 determines the direction of the position update for the ith individual of the next iteration, taking values between [0, π]. x1 and x2 are coefficients obtained by introducing the golden mean, these coefficients narrow the search space, leading individuals to gradually converge to the optimal value, ensuring the convergence of the algorithm, the golden mean is related to the definition shown in Equation (10).


       x 1  = a τ + b ( 1 − τ )      x 2  = a ( 1 − τ ) + b τ          τ =    5  − 1  2       



(10)




where (a) the initial value is set to −π, and thereafter varies edge to edge as the target value changes; (b) the initial value is set to π, and thereafter the side changes as the target value changes.




2.2.3. Introduction of Gauss–Cauchy Mutation Strategy


The standard SSA algorithm late sparrow individuals assimilate rapidly, and there is a problem of local optimum stagnation that, combined with the characteristics of the normal distribution, can be seen. Gaussian mutation tends to focus on a local region of the original individual attachment, its local search ability is strong and good at solving optimization problems with a large number of local minimum values. The Gauss distribution function at the origin of the peak is relatively small but the distribution at both ends is relatively long, the use of its characteristics of the Cauchy mutation can generate larger perturbations in the individual attachment, making its ability to jump out of the local optimum enhanced. By introducing the Gaussian mutation operator and the Cauchy mutation operator [22], the fitness value fi and the average fitness value favg of each sparrow are recalculated after one iteration of the sparrow algorithm is completed, i.e., the positions of the discoverers, followers and watchmen have been updated, and the better position before and after mutation is selected by the fitness selection mutation strategy and brought into the next iteration meritively without increasing the time complexity of the algorithm. The specific position update formula is shown in (11).


       X  i , d   t + 1   =  X  i , d  t  ( 1 +  λ 1  Gauss ( 0 , 1 ) )         f i  <  f  avg        X  i , d   t + 1   =  X  i , d  t  ( 1 +  λ 2  cauchy ( 0 , 1 ) )       f i  ≥  f  avg        



(11)




where Gauss(0, 1) is a random variable satisfying the Gaussian distribution. Cauchy(0, 1) is a random variable satisfying the Cauchy distribution. λ1 is a dynamic parameter that adaptively adjusts with the number of iterations    λ 1  = 1 −    t 2     T  max  2     , λ2 is a dynamic parameter that adaptively adjusts with the number of iterations    λ 2  =    t 2     T  max  2     . t is the number of current iterations. Tmax is the total number of iterations.



In the whole process of the optimization search: λ1 gradually decreases and λ2 gradually increases, the Gaussian mutation dominates at the beginning of the iteration for enhancing the local search ability, focusing on solving the optimization problem of local minimum values and enhancing the robustness of the algorithm to a certain extent; the late iteration mainly helps the individual to jump out of the local optimum through the Cauchy variation so that it can better reach the global optimum.




2.2.4. ISSA Implementation Steps and Flow Chart


The ISSA algorithm introduces tent chaotic mapping to initialize the population, which increases the diversity of the population, introduces golden sine to improve the discoverer position update formula, which balances the search performance of the algorithm with the pioneering performances, and introduces the Gauss–Cauchy variation strategy to help the algorithm jump out of the local optimum. Its concrete implementation steps are as follows:



Step 1: Initialization: population number n, dimension D, discoverer proportion PD, vigilant proportion SD, warning value ST, initial value upper bound   u b  , lower bound   l b  , maximum number of iterations    T  max    ;



Step 2: Initialize the population by the Tent chaotic sequence in Equation (7), generate N D-dimensional vectors    Z i   , and carrier its components into the range of values of the original problems space variables by Equation (8);



Step 3: Calculate the fitness fi of each sparrow and select the current optimal fitness value    f g    and its corresponding position    x b   ;



Step 4: Select the top    P  N u m     sparrows with good adaptation as discoverers and the rest as followers, update the discoverer positions according to the discoverer position update Equation (9) after introducing the golden mean, and update the follower positions according to Equation (2);



Step 5: Randomly select    S  N u m     sparrows from the sparrow population as vigilantes and update their positions according to Equation (3);



Step 6: After one iteration, recalculate the fitness value fi for each sparrow and the average fitness value    f  avg     for the sparrow population;



(1) When    f i  <  f   avg        indicates the phenomenon of “aggregation”, Gaussian variation is performed according to Equation (11), and if the mutated individual is better, it replaces the one before the mutation, otherwise it remains unchanged.



(2) When    f i  ≥  f   avg        indicates a trend of “divergence”, we will carry out the Cauchy variation according to Equation (11), and replace the individuals before the variation if they are better after the variation, otherwise, they will remain unchanged.



Step 7: Based on the current state of the sparrow population, update the optimal position    x b    experienced by the entire population and its fitness value    f g   ;



Step 8: Determine whether the operation of the algorithm meets the stopping condition, if it does, exit and output the result, otherwise, repeat to step 4.



The flow chart of ISSA is shown in Figure 3.






3. Performance Analysis on Benchmark Functions


3.1. Selection of Test Functions


In order to verify the feasibility of the improved sparrow algorithm, 30 different types of test functions [23] were selected for simulation experiments to examine the full range of the improved sparrow algorithm’s optimization-seeking ability through different types of functions. Among them, F1 to F7 are unimodal test functions; F8 to F13 are high-dimensional multimodal test functions; F14 to F23 are fixed-dimensional multimodal test functions; and F24 to F30 are complex test functions. As shown in Table 1.




3.2. Experimental Environment and Comparison Algorithm Selection


The experiments were conducted in AMD Ryzen 7 5800H CPU@3.19 GHz, 16.00 GB of memory, Windows 10 system and MATLAB R2020. The original Sparrow Search Algorithm (SSA), Improved Sparrow Search Algorithm (ISSA), Grey Wolf Optimization Algorithm [24] (GWO), particle swarm algorithm [25,26] (PSO) and Moth-Flame Optimization Algorithm [27] (MFO) for the comparison test of the test functions.



Among them, the selection of each comparison algorithm is based on the following bases: SSA is the original algorithm of ISSA; GWO has a strong search capability and it is easy to find the optimal value of the test function, which is used to focus on comparing the ability of ISSA to find the optimal solution; PSO has a simple structure and short running time in the search process, which is used to focus on comparing the stability and real-time performances of ISSA in the search process; MFO can widely explore the search space. It is easier to find the global optimal solution, and it is used to focus on comparing the ability of ISSA to jump out of the local optimum.




3.3. Comparative Analysis of Performance Indicators


In the experiment, the population size N = 30, the maximum number of iterations   i t e  r  max   = 500  , the dimensionality of the objective function D and the initial values of the upper and lower bounds   u b   and   l b   are shown in Table 1, and the number of discoverers PD and the number of watchmen SD are taken as 20% of the total population size. In order to avoid the chance of the search results for the test functions, the experimental results of 30 independent runs of each benchmark test function were selected as the experimental data. The mean, standard deviation, optimal value and the number of iterations of the search results for the 30 test functions were used as the final performance evaluation indexes, as shown in Table 2, Table 3, Table 4 and Table 5, where the bolded items are the optimal indexes of the same test function.



Analyzing Table 2, Table 3, Table 4 and Table 5, we can see that based on the same constraints, for the functions F1–F30, the mean and standard deviation of ISSA are significantly better than the other four comparative optimization algorithms, and for different test functions, ISSA can find its optimal value within 30 times and the number of its iterations to find the optimal value is much lower than the other algorithms. Among them, for the high-dimensional single-peak functions: for the functions F1–F7, the average value of ISSA is closer to the optimal value, and the standard deviation is much lower than other algorithms, especially for the functions F1–F4, the order of magnitude of the search results is improved by at least 19 orders of magnitude compared with traditional SSA, which indicates that the accuracy and stability of its search are greatly improved. For functions F5–F7, although the improvement of the optimization results is not obvious, it is also significantly better than other comparative algorithms. For high-dimensional multimodal, for the functions F8–F11, ISSA and SSA can find the optimal solution compared with other algorithms, but the mean and variance of ISSA are smaller, which indicates that the superiority of the improved algorithm itself is not destroyed, and the stability is stronger. For functions F12 and F13, although the iteration time is longer and the optimal solution of the test function is not found for 500 iterations, the optimal value, mean and variance are better than the other compared algorithms. For fixed-dimensional multi-peak functions, among the 10 test functions, the number of functions for which ISSA, SSA, GWO, MFO and PSO can find the optimal solution among the 10 test functions are 9, 5, 5, 8 and 5, respectively, and the number of optimal values for 30 times are 5, 3, 2, 4 and 2, respectively, and the variance of ISSA is the smallest for all 30 times of finding the optimal value, and ISSA is much better than other algorithms in the performance of fixed-dimensional multi-peak test functions. For complex test functions, for functions F26–F28, all five algorithms can find their optimal values, but the mean and variance of ISSA are lower, except for F28, which has a higher number of iterations than SSA, and all others are lower than the other algorithms. For function F29, the optimal value and mean performance are not as good as GWO, the variance is the same, and the number of iterations is the same. For function F30, except for the optimal value, which is not as good as MFO, all other performance indicators are better than the other algorithms. In summary, it can be seen that the ISSA algorithm outperforms all other algorithms in different types of 30 test functions, except for individual test functions that are inferior to individual algorithms, proving the excellent performance of the improved sparrow search algorithm.




3.4. Running Time Comparison Analysis


Real-time performance is an important index to evaluate the superiority of the algorithm, and the average running time of ISSA and SSA for 30 times of optimization of different test functions is experimentally derived. The running time comparison results are shown in Table 6.



From Table 6, it can be seen that the mean running time of ISSA on 20 out of 30 test functions is slightly better than that of the standard SSA, and the running time used on the other 10 test functions is approximately the same, which verifies the consistency in time complexity between the improved SSA and the standard SSA in this paper, and the improvement of the algorithm does not reduce the real-time performance while improving the performance.




3.5. Comparison of Convergence Curves of Fitness Values


In order to reflect the dynamic convergence characteristics of ISSA and further visualize and compare the convergence of each algorithm and the ability to jump out of the local optimum, the convergence curves of four test functions of each type are given for a total of sixteen test functions under five optimization algorithms, where the horizontal coordinates are the number of iterations and the vertical coordinates are the values of the fitness functions. As shown in Figure 4, Figure 5, Figure 6 and Figure 7.



The analysis of Figure 4, Figure 5, Figure 6 and Figure 7 shows that for the functions F1, F2, F3, F4, F8, F24 and F25, ISSA is far better than the other comparison algorithms in both convergence speed and search accuracy, an indication that the strategy of initializing the population by tent mapping effectively improves the diversity and pioneering of the population, and the golden sine strategy improves the discoverer search method to improve the global search ability of the algorithm. For the functions F9, F10, F11, F15, F16, F17, F18 and F26, although ISSA and other compared algorithms eventually converge to the optimal value, ISSA has fewer iterations and higher efficiency of the search. Although there is a tendency to fall into the local optimum in the late stage of the search, the Gauss–Cauchy variation strategy introduced by the algorithm effectively jumps out of the local optimum and converges to the global optimum. For function F28, only ISSA and MFO eventually converge, but the number of ISSA iterations is slightly higher than that of MFO.



In summary, it can be seen that ISSA has significantly improved the search ability for different types of benchmark functions, whether it is a high-dimensional single-peak function, high-dimensional multi-peak function, fixed-dimensional multi-peak function or a more complex function than other comparison algorithms. At the same time, its fast convergence speed and short operation time can meet the demand for real-time algorithms and effectively avoid falling into local optimum while ensuring the search speed, thus proving the feasibility and superiority of ISSA.





4. Performance Analysis of Reactor Model for Temperature Control


4.1. Reactor Temperature Control System Model


4.1.1. Heat Exchanger Description


In the chemical production process, to obtain a high reaction rate, the reactor needs to be controlled near the optimal temperature, so for the exothermic reaction, generated heat energy needs to be offset, and the heat-absorbing reaction needs to be provided with sufficient heat energy, which uses a heat exchanger in order to maximize the contact area of heat transfer. The practical application of the general use of tubular heat exchangers, such as Figure 8, shows the structure of a heat exchanger, the heat exchanger through different temperatures of fluid through the shell process and the fluid in the tube process to complete the heat transfer.



The exit temperature of the heat exchanger is generally simplified to a second-order with a time lag model, which affects the exit temperature of the tube process by controlling the flow rate of the fluid in the shell process, while the control of the flow rate is controlled by the opening of the flow control valve of the inlet line of the circulating cooling water. Therefore, by controlling the regulating valve opening, the heat exchanger outlet temperature can be controlled.




4.1.2. Heat Exchanger Model Identification


Let the heat exchanger input be T11F1 and T21F2, and the output be T22 and T12, where the controlled variable is the heat exchanger output temperature T12, and the control variable is the circulating cooling water flow rate F2. It is assumed that there is no heat loss in the heat exchanger, the same heat transfer coefficient is K12 and the fluid flow in the tube can always be controlled. The total set parameter model is used for mechanism modeling, and the heat exchanger outlet temperature T12 is selected as the total set parameter and the fluid flow delay is considered for system modeling.



According to the energy dynamic balance, Equation (12) can be obtained:


       M 1   C 1    d  T  12        d  t   =  F 1   C 1     T  11   −  T  12     +  K  12   A    T  22   −  T  12            M 2   C 2    d  T  22        d  t   =  F 2   C 2     T  21   −  T  22     −  K  12   A    T  22   −  T  12          



(12)




where    M i    is the corresponding fluid mass in the tube. Ci is the specific heat capacity of the corresponding fluid. A is the average thermal conductivity area.    T i    is the corresponding temperature. Simplifying and linearizing Equation (12), the state space model can be obtained as shown in Equation (13).


   X ˙  =        a 1       a 2         b 1       b 2         X  +        a 3     0     a 4     0     0     b 3     0     b 4        U  



(13)




where   U =          T  11        T  21        F 1       F 2         T   .   X =          T  12        T  22          T   .    a 1  = −       F ¯  1     M 1    +    K  12   A    C 1   M 1       .    a 2  =    K  12   A    C 1   M 1     .    a 3  =     F ¯  1     M 1     .    a 4  =  1   M 1        T ¯   11   −  T  12      .    b 1  =    K  12   A    C 2   M 2     .    b 2  = −       F ¯  2     M 2    +    K  12   A    C 2   M 2       .    b 3  =     F ¯  2     M 2     .    b 4  =  1   M 2        T ¯   21   −   T ¯   22      . In the Equation, the one with the “—” symbol indicates the steady-state value.



Transform Equation (13) into a transfer function as shown in Equation (14).


         T  12          T  22         =  1    s −  a 1      s −  a 2    −  a 2   b 1    ×           s −  b 2     a 3       b 1   a 3         a 2   b 3        s −  a 2     b 3          s −  b 2     a 4       b 1   a 4         a 2   b 4        s −  a 2     b 4         T         T  11          T  21          F 1         F 2         



(14)







The control system transfer function is shown in Equation (15).


  G ( s ) =    T  12   ( s )    F 2  ( s )   =    a 2   b 4      s −  a 1      s −  a 2    −  a 2   b 1     



(15)







Considering the heat transfer delay, the heat exchanger is in the second-order with delay form as shown in Equation (16).


  G ( s ) =  K     T 1  s + 1      T 2  s + 1      e  − τ s    



(16)




where K is system gain. T is the time constant. τ is the delay time.



The heat exchange process is shown in Figure 9, FV1103 is the material inlet valve, its corresponding flow rate is FI1102, the temperature is TI1103, FV1105 is the utility water outlet valve, its corresponding flow rate is FI1105 and the corresponding temperature is TI1104.



The FV1105 is manually given an opening of 35%, and since the temperature is a self-balancing system, it makes the TI1104 from the initial temperature reduced to a constant temperature, and an open-loop step curve of the heat exchanger outlet temperature is obtained, as shown in Figure 10.



With the open-loop response curve, the process transfer function can be obtained as in Equation (17).


  G ( s ) =   0.0274   38731.2  s 2  + 398.36 s + 1    e  − 30 s    



(17)









4.2. Controller Design


The quality of the parameters in the PID controller will greatly affect the quality of the controller. The purpose of this paper for the design of an optimized PID controller based on the improved sparrow search algorithm is to find an optimal set of parameters in the solution space        K p  ,  K I  ,  K D       , so that the system meets the control requirements and performs well.



In the design of the improved sparrow search algorithm PID controller, the objective function setting should be in accordance with the control system performance index, and satisfactory dynamic characteristics of the iterative process can be obtained, and the evaluation function  Q  is set as shown in Equation (18).


  Q =   ∫  0 ∞     w 1  | e ( t ) | +  w 2   u 2  ( t )   d t  



(18)




where   e ( t )   is the error of the output value with respect to the input value.   u ( t )   is a control value to avoid excessive control margins.    w 1    is a weight value, taking the value [0, 1], in general    w 1  = 0.999  .    w 2    is a weight value, taking the value [0, 1], in general    w 2  = 0.001  . Moreover, to prevent overshoot, a restriction is taken to prevent overshoot, i.e., when overshoot occurs, an overshoot term    w 3  | e ( t ) |   is introduced in the objective function  Q  as shown in Equation (19).


  Q =   ∫  0 ∞     w 1  | e ( t ) | +  w 2   u 2  ( t ) +  w 3  | e ( t ) |   d t  



(19)




where    w 3    is a Weights, set at    w 3   = 100   .



The improved sparrow search optimization algorithm is used to design the PID controller, setting the parameter range    K p  ,  K I  ,  K D  ∈ [ 0 , 100000 ]  , and using Equation (19) as the fitness function, the objective of the optimization search is to find a set of PID values that minimize the error of  Q  by rectifying the three parameters by ISSA.



The block diagram of the PID controller design based on the ISSA algorithm is shown in Figure 11, where    G p  ( s )   is a controlled system.




4.3. System Simulation and Results Analysis


4.3.1. Build Simulation Platform and Preliminary Performances Comparison


In the Simulink module of MATLAB, the traditional PID controller, fuzzy PID controller, PSO-PID controller, GWO-PID controller, MFO-PID controller, SSA-controller and ISSA-PID controller are built to compare the control effect on the unit step, the transfer function is Equation (17), the PID control block diagram is shown in Figure 12, the fuzzy PID control block diagram is shown in Figure 13, and the PID parameters of the seven controllers are shown in Table 7. The control effect comparison graph is shown is Figure 14.



Analyzing the data in Figure 14, the performance metrics of the various algorithm curves were obtained as shown in Table 8.



Setting the error band within 5%, as shown in Figure 14, ISSA-PID reduces overshoot by 9.5%, 21.4%, 17.8%, 7.2%, 4.1% and 17.9% compared to PID, Fuzzy-PID, PSO-PID, GWO-PID, SSA-PID and MFO-PID, respectively. The rise time is reduced by 2.5 s, 5.2 s, 18.2 s, 20.1 s, 21.2 s and 14.6 s; steady-state values are reduced by 197.77 s, 116.26 s, 136.16 s, 192.08 s, 25 s, 126.4 s. Steady-state values are all stable around 1.0, and ISSA-PID is 99.4, which is the lowest error compared to other controllers. Therefore, ISSA is optimal in all aspects of performance indexes.



In practical application environments, different perturbations are often encountered, and the cause of the perturbations may be caused by human control requirements or may be uncertain. Therefore, the algorithm is tested separately for the lift-load and perturbation tests as a way to verify the robustness of the algorithm.




4.3.2. Liter Load Test


After the response curve is stabilized, the set value of the step response is increased from 1 to 1.4 at 600 s. The response curve of the control system is shown in Figure 15.



Reducing the error bar from 5% to 2% after ramping up the load, the performance indexes were obtained from the analysis of Figure 15 as shown in Table 9.



As shown in Figure 15, the steady-state value of ISSA-PID is improved by 0.2%, 0.2%, 0.9%, 2.1%, 0.5% and 0.7% compared with PID, Fuzzy-PID, PSO-PID, GWO-PID, SSA-PID and MFO-PID after increasing the load for 600 s, except for GWO-PID, which is finally stabilized within 2% error bars, In terms of transient performance, ISSA-PID overshoot improved by 10.9%, 6.0%, 4.4%, 0.7%, 1.1% and 4.6% compared with PID, Fuzzy-PID, PSO-PID, GWO-PID, SSA-PID, and MFO-PID, and the rise time decreased by 0.7 s, 0.7 s, 13.1 s and 26.6% compared with PID, Fuzzy-PID, PSO-PID, GWO-PID, SSA-PID, and MFO-PID s, 13.1 s, 26.4 s, 3.8 s and 12.4 s, and the adjustment time was reduced by 227.7 s, 79.7 s, 305.2 s, 86.8 s and 282.3 s compared to PID, Fuzzy-PID, PSO-PID, SSA-PID and MFO-PID, and the transient response speed was better than other algorithms. This shows the superiority of ISSA-PID in terms of control accuracy and response speed in the lift-load test.




4.3.3. Perturbation Test


Again, a perturbation is applied to the system at 600 s to test the immunity of the algorithm to interference. The response curves are shown in Figure 16.



Analyzing Figure 16, compare the time for various controllers to recover to within 2% error bars after being disturbed by a 0.1 step signal at 600 s, as shown in Table 10.



The GWO-PID amplitude at 1000 s is still outside the 2% error bar, and the shortest time used by ISSA-PID is 114.2 s, which is 96.7 s faster than PID, 108.9 s faster than Fuzzy-PID, 181.0 s faster than PSO-PID, 170 s faster than MFO-PID, and the difference of recovery time is smaller compared with SSA-PID, but also faster 10.8 s, verifying that the ISSA-PID controller is more resistant to interference than other controllers.






5. Performance Analysis on Semi-Physical Platform Validation


In order to test the actual control effect of the ISSA-PID controller, establish the experimental platform of continuously stirred tank reactor temperature control, through the upper computer SIMATIC PCS7 [28] software to write improved sparrow optimized PID controller algorithm, build OS (Operators Station) and AS (Automation Station) in the upper computer, regulate SMPT-1000 semi-physical platform through Profibus-DP bus for the experiment, the connect MATLAB and PCS7 communication through OPC (OLE for Process Control) technology. The final date curve is displayed on the IPC monitor. The test platform device is shown in Figure 17.



The temperature expectation was set at 121 °C, and the reactor temperature was controlled by controlling the opening of the upper water valve of the circulating cooling water through various optimization techniques, respectively, and the reactor temperature curve was obtained as shown in Figure 18.



Analyzing Figure 18, the performance indexes of various optimization techniques were obtained as shown in Table 11. Since it is most important to keep the temperature stable near the working point among the working requirements of the reactor, the comparison of the steady-state error was focused on. The steady-state error of the curve with equal amplitude oscillation was taken as the middle value.



It can be seen from Figure 18 that the reactor changed the controller from manual to automatic at 1900 s, and various controllers started to control the opening size of valve FV1201 to regulate the circulating cooling water flow to control the temperature, and the seven algorithms could be stabilized around the set value after casting automatic, but only ISSA-PID and MFO-PID did not have equal amplitude oscillation, and the overshoot of both was 0.10%, which is 0.14%, 0.11%, 0.04%, 0.21% and 0.02% higher than Z-N, Fuzzy-PID, PSO-PID, GWO-PID and SSA-PID. In terms of rise time, PSO-PID has the best performance, only 20.0 s, which is actually 21.0 s of ISSA-PID and SSA-PID. ISSA-PID is slightly worse than PSO-PID; in terms of steady-state time, ISSA-PID is the best, shorter than Z-N, Fuzzy-PID, PSO-PID, GWO-PID, SSA-PID and MFO-PID by 96.9 s, 121.7 s, 104.1 s, 91.9 s, 2 s and 9.1 s. Finally, the most important steady-state error indicator, which is related to the quality of the final product of the reactor, because the closer the steady-state value is to the working point, the higher the conversion of the reaction product is. ISSA-PID is 0.1987, which is 0.2369 °C, 0.5691°C, 0.1162 °C, 0.5634 °C, 0.060 °C and 0.6375 °C lower than Z-N, Fuzzy-PID, PSO-PID, GWO-PID, SSA-PID and MFO-PID, respectively, the ISSA-PID controller has the best performance and meets the control requirements of reactor temperature.



In practical application environments, different perturbations are often encountered, and the cause of the perturbations may be caused by human control requirements or may be uncertain. Therefore, a perturbation test is performed on the algorithm as a way to verify whether the robustness of the algorithm meets the requirements. The perturbation test plots for all algorithms are given, as shown in Figure 19.



Analyzing Figure 19, the valve openings controlled by both controllers were given a 2% perturbation at 2390 s to disturb the regulation of the reactor temperature, comparing the time required for both to return to the steady-state value and the final steady-state error, as shown in Table 12.



Through the disturbance test, the ISSA-PID controller recovered the steady-state after 250.3 s, which is 142.6 s, 146.7 s, 172.7 s, 160.9 s, 177.3 s, 131.4 s less than Z-N, Fuzzy-PID, PSO-PID, GWO-PID, SSA-PID and MFO-PID, respectively, which greatly reduces the recovery time. The steady-state value of the ISSA-PID controller is 120.048 °C and the error between the set value and 121 °C is only 0.952 °C, which is 1.176 °C, 0.408 °C, 0.08 °C, 0.433 °C and 0.971 °C smaller than the steady-state errors of Z-N, Fuzzy-PID, PSO-PID, GWO-PID and MFO-PID, respectively. Therefore, the ISSA-PID controller has excellent performance in terms of speed and accuracy in the face of disturbances and can meet the requirements of continuous reactor temperature control with certain robustness.




6. Conclusions and Future Perceptive


In this work, a reactor temperature control method based on an improved sparrow algorithm to optimize PID parameters is proposed. Firstly, the traditional sparrow algorithm is improved by introducing tent chaos mapping in the initialization process of algorithm iteration to improve the initial solution quality. Meanwhile, the golden sine is introduced to improve the discoverer position update formula, which reduces the solution space and further improves the optimal search effect of ISSA, and the Gauss–Cauchy mutation strategy iteration is introduced to improve the local optimization capability. By comparing with four existing classical algorithms, namely GWO, PSO, MFO and SSA, the results show that ISSA has a stronger and more robust search capability, and the convergence speed meets real-time requirements.



After establishing the heat exchanger model and identifying its parameters, the ISSA-PID controller is designed, and the control curves of the ISSA-PID controller are compared with those of classical PID control and fuzzy PID control under different control requirements through experimental simulation, and the conclusion that the overall control performance of ISSA-PID controller is better is drawn.



Finally, by establishing a semi-physical experimental platform based on PCS7 and SMPT-1000, it is verified that the ISSA-PID controller designed in this paper meets the system response requirements, has superior performance in terms of adjustment time and steady-state error and has certain robustness.



The subsequent research extends the application area of the algorithm in this paper to apply the ISSA-PID controller to more complex systems, such as the internal circulation reactor used for integrated CO2 capture and power generation.
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Figure 1. Traditional SSA flow chart. 






Figure 1. Traditional SSA flow chart.



[image: Processes 11 01302 g001]







[image: Processes 11 01302 g002 550] 





Figure 2. Tent Chaos Sequence. 
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Figure 3. ISSA flow chart. 
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Figure 4. High-dimensional single-peak function convergence curve. 
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Figure 5. High-dimensional multi-peak functions convergence curve. 
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Figure 6. Fixed-dimensional multimodal function convergence curve. 
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Figure 7. Complicated function convergence curve. 
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Figure 8. Schematic diagram of heat exchanger structure. 
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Figure 9. Process flow diagram of heat exchange process. 
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Figure 10. Heat exchanger outlet temperature open loop step curve. 
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Figure 11. Block diagram of optimized PID controller design based on improved sparrow algorithm. 
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Figure 12. PID control block diagram. 
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Figure 13. Fuzzy PID control block diagram. 
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Figure 14. Control effect comparison curve. 
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Figure 15. Lifting load response curve. 
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Figure 16. Response curve of the applied disturbance. 
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Figure 17. Experimental equipment and devices: 1. SIMATIC S7-400 PLC; 2. ET200M; 3. SMPT-1000 experiment platform; 4. Industrial control machine monitor; 5. Upper computer. 
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Figure 18. Reactor temperature curve. 
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Figure 19. Perturbation test curve graph. 
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Table 1. Test function.
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Type

	
Function Name

	
Dimensionality

	
Search Space

	
Optimum Value






	
High-dimensional unimodal

	
Sphere(F1)

	
30

	
[−100, 100]

	
0




	
Schwefel 2.22(F2)

	
30

	
[−10, 10]

	
0




	
Schwefel 1.2(F3)

	
30

	
[−100, 100]

	
0




	
Schwefel 2.21(F4)

	
30

	
[−100, 100]

	
0




	
Generalized Rosenbrock(F5)

	
30

	
[−30, 30]

	
0




	
Step Function(F6)

	
30

	
[−100, 100]

	
0




	
Quartic(F7)

	
30

	
[−1.28, 1.28]

	
0




	
High-dimensional multimodal

	
Schwefel2.26(F8)

	
30

	
[−500, 500]

	
−12,569.5




	
Rastrigin(F9)

	
30

	
[−5.12, 5.12]

	
0




	
Ackley(F10)

	
30

	
[−32, 32]

	
0




	
Griewank(F11)

	
30

	
[−600, 600]

	
0




	
Generalized Penalized Function 1(F12)

	
30

	
[−50, 50]

	
0




	
Generalized Penalized Function 2(F13)

	
30

	
[−50, 50]

	
0




	
Fixed-dimension

multimodal

	
Shekel's Foxholes(F14)

	
2

	
[−65.53, 65.53]

	
1




	
Kowalik(F15)

	
4

	
[−5, 5]

	
0.0003075




	
Six-Hump Camel-Back(F16)

	
2

	
[−5, 5]

	
−1.031628




	
Branin(F17)

	
2

	
lb = [−5, 0]

ub = [10, 15]

	
0.398




	
Goldstein-Price(F18)

	
2

	
[−2, 2]

	
3




	
Hartman's Family n = 3(F19)

	
3

	
[0, 1]

	
−3.98




	
Hartman's Family n = 6(F20)

	
6

	
[0, 1]

	
−3.32




	
Shekel's Family m = 5(F21)

	
4

	
[0, 10]

	
−10.536




	
Shekel's Family m = 7(F22)

	
4

	
[0, 10]

	
−10.536




	
Shekel's Family m = 10(F23)

	
4

	
[0, 10]

	
−10.536




	
Complicated

	
Eggholder(F24)

	
2

	
[−512, 512]

	
−959.6407




	
Holder Table(F25)

	
2

	
[−10, 10]

	
−19.2085




	
Langermann(F26)

	
2

	
[0, 10]

	
−4.1558




	
Levy N.13(F27)

	
2

	
[−10, 10]

	
0




	
Michalewicz(F28)

	
10

	
[0, π]

	
−9.66015




	
Three-Hump Camel(F29)

	
2

	
[−5, 5]

	
0




	
Perm Function 0, d, β(F30)

	
10

	
[−10, 10]

	
0
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Table 2. Optimal value of test function search results.
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Type

	
Function

	
GWO

	
PSO

	
MFO

	
SSA

	
ISSA






	
High-dimensional

unimodal

	
F1

	
1.071 × 10−27

	
334.718

	
2.071

	
4.821 × 10−98

	
6.15 × 10−145




	
F2

	
1.054 × 10−18

	
15.051

	
30.111

	
1.232 × 10−42

	
1.633 × 10−43




	
F3

	
1.212 × 10−8

	
5.105 × 103

	
2.037 × 104

	
1.054 × 10−27

	
3.549 × 10−34




	
F4

	
4.282 × 10−7

	
6.821

	
70.487

	
5.355 × 10−29

	
1.091 × 10−50




	
F5

	
0.446

	
1.101 × 104

	
1.919 × 103

	
6.978 × 10−5

	
1.076 × 10−7




	
F6

	
0.504

	
355.921

	
990.794

	
3.324 × 10−6

	
1.339 × 10−12




	
F7

	
1.300 × 10−3

	
0.535

	
2.528

	
1.200 × 10−3

	
6.225 × 10−5




	
High-dimensional

multimodal

	
F8

	
−9.70 × 103

	
−6.266 × 103

	
−4.05 × 103

	
−1.25 × 104

	
−1.25 × 104




	
F9

	
0

	
1.0267 × 102

	
1.550 × 102

	
0

	
0




	
F10

	
8.882 × 10−16

	
4.5047

	
5.393

	
8.882 × 10−16

	
8.882 × 10−16




	
F11

	
0.001

	
0

	
4.931

	
0

	
0




	
F12

	
0.033

	
5.647

	
32.821

	
1.050 × 10−7

	
2.233 × 10−13




	
F13

	
0.616

	
9.983

	
6.258

	
9.574 × 10−9

	
4.573 × 10−14




	
Fixed-dimension

multimodal

	
F14

	
2.9821

	
1.003

	
0.998

	
2.982

	
0.998




	
F15

	
3.378 × 10−4

	
0.023

	
7.837 × 10−4

	
3.378 × 10−4

	
3.132 × 10−4




	
F16

	
−1.032

	
−1.032

	
−1.032

	
−1.032

	
−1.032




	
F17

	
0.398

	
0.398

	
0.398

	
0.398

	
0.398




	
F18

	
3.000

	
3.002

	
3.000

	
3.002

	
3.000




	
F19

	
−3.863

	
−3.863

	
−3.863

	
−3.863

	
−3.863




	
F20

	
−3.322

	
−3.326

	
−3.203

	
−3.231

	
3.322




	
F21

	
−9.392

	
−10.154

	
−10.055

	
−10.153

	
−10.536




	
F22

	
−10.403

	
−10.403

	
−10.403

	
−10.403

	
−10.403




	
F23

	
−10.535

	
−10.536

	
−10.536

	
−10.536

	
−10.536




	
Complicated

	
F24

	
−959.6407

	
−959.6407

	
−959.6407

	
−959.6407

	
−959.6407




	
F25

	
−19.2085

	
−19.2085

	
−19.2085

	
−19.2085

	
−19.2085




	
F26

	
−4.1558

	
−4.1558

	
−4.1558

	
−4.1558

	
−4.1558




	
F27

	
8.588 × 10−8

	
7.570 × 10−6

	
1.348 × 10−31

	
1.459 × 10−8

	
1.348 × 10−31




	
F28

	
−8.946

	
−6.874

	
−9.005

	
−8.454

	
−9.552




	
F29

	
1.48 × 10−199

	
1.248 × 10−5

	
6.92 × 10−110

	
3.275 × 10−64

	
1.94 × 10−179




	
F30

	
0.103

	
17.276

	
1.033 × 10−6

	
0.002

	
0.116
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Table 3. Mean value of test function search results.






Table 3. Mean value of test function search results.





	
Type

	
Function

	
GWO

	
PSO

	
MFO

	
SSA

	
ISSA






	
High-Dimensional

unimodal

	
F1

	
1.153 × 10−27

	
3.786 × 102

	
2.781

	
2.696 × 10−63

	
9.855 × 10−95




	
F2

	
8.864 × 10−17

	
18.415

	
38.778

	
7.844 × 10−32

	
1.690 × 10−46




	
F3

	
8.906 × 10−6

	
7.740 × 103

	
2.164 × 104

	
2.554 × 10−27

	
3.286 × 10−31




	
F4

	
6.657 × 10−7

	
9.728

	
68.5053

	
9.456 × 10−15

	
3.15 × 10−27




	
F5

	
0.7904

	
1.687 × 104

	
8.017 × 106

	
8.807 × 10−4

	
1.17 × 10−4




	
F6

	
0.6316

	
359.709

	
3.332 × 103

	
5.493 × 10−6

	
7.84 × 10−12




	
F7

	
1.900 × 10−3

	
0.987

	
2.730

	
1.700 × 10−3

	
5.774 × 10−4




	
High-dimensional

multimodal

	
F8

	
−5.74 × 103

	
−7.376 × 103

	
−4.08 × 103

	
−8.48 × 103

	
−1.15 × 104




	
F9

	
2.838

	
1.943 × 102

	
1.578 × 102

	
0

	
0




	
F10

	
9.883 × 10−14

	
5.899

	
14.859

	
8.882 × 10−16

	
8.882 × 10−16




	
F11

	
0.002

	
3.834

	
30.969

	
0

	
0




	
F12

	
0.047

	
5.802

	
639.216

	
2.884 × 10−7

	
4.10 × 10−12




	
F13

	
0.706

	
22.964

	
39.506

	
8.27 × 10−6

	
4.40 × 10−12




	
Fixed-dimension

multimodal

	
F14

	
3.515

	
1.040

	
1.757

	
5.349

	
1.004




	
F15

	
0.006

	
0.008

	
0.001

	
4.038 × 10−4

	
3.20 × 10−4




	
F16

	
−1.032

	
−1.032

	
−1.032

	
−1.032

	
−1.032




	
F17

	
0.398

	
0.398

	
0.398

	
0.398

	
0.398




	
F18

	
5.700

	
3.002

	
3.000

	
3.900

	
3.000




	
F19

	
−3.862

	
−3.860

	
−3.863

	
−3.863

	
−3.863




	
F20

	
−3.264

	
−3.091

	
−3.236

	
−3.251

	
−3.296




	
F21

	
−9.317

	
−9.802

	
−8.418

	
−8.914

	
−10.532




	
F22

	
−10.225

	
−9.706

	
−8.762

	
−9.163

	
−10.397




	
F23

	
−10.264

	
−10.264

	
−8.383

	
−8.914

	
−10.530




	
Complicated

	
F24

	
−868.854

	
−926.734

	
−931.834

	
−917.836

	
−959.488




	
F25

	
−19.2085

	
−18.504

	
−20.584

	
−19.0125

	
−19.2085




	
F26

	
−4.0326

	
−3.7992

	
−4.0148

	
−4.1288

	
−4.1342




	
F27

	
4.006 × 10−7

	
1.059 × 10−4

	
1.348 × 10−31

	
7.522 × 10−6

	
1.348 × 10−31




	
F28

	
−7.854

	
−5.729

	
−7.796

	
−7.981

	
−8.011




	
F29

	
6.9 × 10−189

	
3.365 × 10−6

	
1.30 × 10−103

	
2.637 × 10−35

	
3.9 × 10−169




	
F30

	
8.636

	
152.489

	
9.240

	
10.899

	
7.639
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Table 4. Variance of test function search results.






Table 4. Variance of test function search results.





	
Type

	
Function

	
GWO

	
PSO

	
MFO

	
SSA

	
ISSA




	
High-dimensional

unimodal

	
F1

	
2.942 × 10−27

	
1.708 × 102

	
2.000

	
1.196 × 10−62

	
2.203 × 10−94




	
F2

	
5.698 × 10−17

	
12.794

	
20.239

	
3.778 × 10−31

	
3.778 × 10−46




	
F3

	
1.832 × 10−5

	
5.881 × 103

	
1.124 × 104

	
1.376 × 10−26

	
9.735 × 10−31




	
F4

	
5.501 × 10−7

	
2.718

	
7.814

	
5.180 × 10−14

	
1.67 × 10−26




	
F5

	
0.7904

	
1.392 × 104

	
3.218 × 107

	
0.001

	
3.82 × 10−4




	
F6

	
0.372

	
216.624

	
6.600 × 103

	
1.043 × 10−5

	
2.01 × 10−11




	
F7

	
9.494 × 10−4

	
2.723

	
6.149

	
1.400 × 10−3

	
2.239 × 10−4




	
High-dimensional

multimodal

	
F8

	
1.036 × 103

	
1.069 × 103

	
8.103 × 102

	
5.312 × 103

	
1.644 × 103




	
F9

	
4.348

	
30.75

	
33.111

	
0

	
0




	
F10

	
1.552 × 10−14

	
0.883

	
6.985

	
0

	
0




	
F11

	
0.006

	
1.372

	
49.146

	
0

	
0




	
F12

	
0.024

	
3.171

	
3.438 × 103

	
5.684 × 10−7

	
1.53 × 10−11




	
F13

	
0.2384

	
14.699

	
77.229

	
1.423 × 10−5

	
7.12 × 10−12




	
Fixed-dimension

multimodal

	
F14

	
3.801

	
0.1123

	
1.365

	
5.454

	
1.680 × 10−2




	
F15

	
0.009

	
0.009

	
0.001

	
2.935 × 10−4

	
2.874 × 10−4




	
F16

	
1.802 × 10−8

	
2.250 × 10−5

	
6.775 × 10−16

	
2.003 × 10−5

	
5.04 × 10−16




	
F17

	
7.534 × 10−5

	
9.261 × 10−6

	
0

	
3.325 × 10−5

	
0




	
F18

	
14.788

	
1.68 × 10−4

	
6.696 × 10−4

	
4.929

	
1.92 × 10−15




	
F19

	
0.002

	
0.004

	
0.001

	
6.872 × 10−4

	
2.30 × 10−15




	
F20

	
0.091

	
0.181

	
0.059

	
0.059

	
0.052




	
F21

	
2.210

	
2.139

	
3.575

	
2.521

	
5.700 × 10−3




	
F22

	
0.963

	
1.878

	
3.052

	
2.287

	
0.006




	
F23

	
1.481

	
1.250

	
3.386

	
2.520

	
0.013




	
Complicated

	
F24

	
90.299

	
33.497

	
44.750

	
45.879

	
0.835




	
F25

	
2.241 × 10−5

	
1.231

	
1.426

	
0.746

	
7.58 × 10−15




	
F26

	
0.204

	
0.665

	
0.183

	
0.005

	
0.012




	
F27

	
3.514 × 10−7

	
1.338 × 10−4

	
6.68 × 10−47

	
1.646 × 10−5

	
6.68 × 10−47




	
F28

	
1.129

	
0.838

	
0.909

	
0.809

	
0.781




	
F29

	
0

	
4.818 × 10−6

	
7.02 × 10−103

	
1.444 × 10−34

	
0




	
F30

	
11.406

	
120.335

	
9.075

	
11.134

	
8.950
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Table 5. Number of iterations to test the optimization results of the function.






Table 5. Number of iterations to test the optimization results of the function.





	
Type

	
Function

	
GWO

	
PSO

	
MFO

	
SSA

	
ISSA




	
High-dimensional

unimodal

	
F1

	
500

	
500

	
500

	
500

	
283




	
F2

	
500

	
500

	
500

	
500

	
408




	
F3

	
500

	
500

	
500

	
500

	
452




	
F4

	
500

	
500

	
500

	
430

	
287




	
F5

	
56

	
500

	
500

	
500

	
34




	
F6

	
500

	
500

	
500

	
500

	
500




	
F7

	
267

	
383

	
390

	
500

	
172




	
High-dimensional

multimodal

	
F8

	
500

	
500

	
190

	
112

	
201




	
F9

	
500

	
500

	
500

	
72

	
18




	
F10

	
368

	
500

	
500

	
278

	
85




	
F11

	
180

	
189

	
500

	
64

	
27




	
F12

	
500

	
500

	
500

	
500

	
283




	
F13

	
500

	
500

	
500

	
500

	
500




	
Fixed-dimension

multimodal

	
F14

	
83

	
59

	
29

	
77

	
6




	
F15

	
500

	
500

	
500

	
500

	
500




	
F16

	
4

	
1

	
1

	
2

	
1




	
F17

	
115

	
92

	
13

	
28

	
8




	
F18

	
36

	
73

	
38

	
8

	
6




	
F19

	
199

	
90

	
17

	
24

	
7




	
F20

	
196

	
500

	
500

	
17

	
8




	
F21

	
434

	
202

	
32

	
423

	
7




	
F22

	
298

	
500

	
46

	
448

	
10




	
F23

	
457

	
266

	
47

	
500

	
29




	
Complicated

	
F24

	
35

	
500

	
22

	
500

	
13




	
F25

	
24

	
8

	
32

	
3

	
1




	
F26

	
40

	
7

	
80

	
15

	
12




	
F27

	
500

	
500

	
172

	
116

	
500




	
F28

	
500

	
500

	
151

	
390

	
137




	
F29

	
500

	
500

	
500

	
500

	
500




	
F30

	
500

	
500

	
500

	
500

	
500
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Table 6. Comparison of the running time of test functions by the sparrow algorithm before and after improvement.






Table 6. Comparison of the running time of test functions by the sparrow algorithm before and after improvement.





	
Type

	
Function

	
SSA

	
ISSA




	
Mean Running Time/s






	
High-dimensional

unimodal

	
F1

	
0.2940

	
0.1937




	
F2

	
0.3895

	
0.3963




	
F3

	
0.5226

	
0.5129




	
F4

	
0.3578

	
0.3485




	
F5

	
0.3872

	
0.3439




	
F6

	
0.3287

	
0.3443




	
F7

	
0.4786

	
0.4425




	
High-

dimensional

multimodal

	
F8

	
0.4175

	
0.4132




	
F9

	
0.3989

	
0.3911




	
F10

	
0.3848

	
0.4037




	
F11

	
0.4194

	
0.4225




	
F12

	
0.3849

	
0.3389




	
F13

	
0.3525

	
0.3361




	
Fixed-dimension

multimodal

	
F14

	
0.7484

	
0.7105




	
F15

	
0.1920

	
0.1474




	
F16

	
0.1886

	
0.1810




	
F17

	
0.1816

	
0.1721




	
F18

	
0.1802

	
0.1699




	
F19

	
0.2076

	
0.2157




	
F20

	
0.2108

	
0.2434




	
F21

	
0.2526

	
0.2298




	
F22

	
0.2396

	
0.2694




	
F23

	
0.2562

	
0.2964




	
Complicated

	
F24

	
0.1832

	
0.1694




	
F25

	
0.1834

	
0.1681




	
F26

	
0.2570

	
0.2865




	
F27

	
0.1862

	
0.1754




	
F28

	
0.3598

	
0.3436




	
F29

	
0.1931

	
0.1886




	
F30

	
1.1782

	
1.2938
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Table 7. PID parameters.






Table 7. PID parameters.





	
Algorithm

	
Parameters




	
KP

	
KI

	
KD






	
PID

	
6268.17706

	
0.02636

	
17,635.79




	
Fuzzy-PID

	
4224.04676

	
0.00533

	
31,417.79




	
ISSA-PID

	
6376.42771

	
0.00236

	
95,854.56




	
PSO-PID

	
2191.85053

	
0.00643

	
20,052.97




	
GWO-PID

	
1349.69954

	
0.00666

	
20,589.11




	
SSA-PID

	
3573.95374

	
0.00578

	
58,089.41




	
MFO-PID

	
2362.61431

	
0.00637

	
21,615.32
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Table 8. Performance index.






Table 8. Performance index.





	
Algorithm

	
Performance Index




	
Maximum Overshoot (%)

	
Peak Time (s)

	
Stable Time (s)

	
Steady-State Error (%)






	
PID

	
58.2

	
17.1

	
290.57

	
98.9




	
Fuzzy-PID

	
40.1

	
19.8

	
209.16

	
99.1




	
ISSA-PID

	
18.7

	
14.6

	
92.8

	
99.4




	
PSO-PID

	
36.5

	
32.8

	
228.96

	
98.2




	
GWO-PID

	
25.9

	
34.7

	
284.88

	
97.3




	
SSA-PID

	
22.8

	
35.8

	
117.80

	
98.9




	
MFO-PID

	
36.6

	
29.2

	
219.20

	
98.3
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Table 9. Performance index.






Table 9. Performance index.





	
Algorithm

	
Performance Index




	
Maximum Overshoot (%)

	
Peak Time (s)

	
Stable Time (s)

	
Steady-State Error (%)






	
PID

	
15.7

	
18.2

	
285.4

	
99.2




	
Fuzzy-PID

	
10.8

	
18.2

	
137.4

	
99.2




	
ISSA-PID

	
4.8

	
17.5

	
57.7

	
99.4




	
PSO-PID

	
9.2

	
30.6

	
362.9

	
98.5




	
GWO-PID

	
5.5

	
43.9

	
-

	
97.3




	
SSA-PID

	
5.9

	
21.3

	
144.5

	
98.9




	
MFO-PID

	
9.4

	
29.9

	
340

	
98.7
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Table 10. Recovery time.






Table 10. Recovery time.





	Algorithm
	Recovery Time (s)





	PID
	210.9



	Fuzzy-PID
	223.1



	ISSA-PID
	114.2



	PSO-PID
	295.2



	GWO-PID
	-



	SSA-PID
	125.0



	MFO-PID
	284.2
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Table 11. Performance index.






Table 11. Performance index.





	
Algorithm

	
Performance Index




	
Maximum Overshoot (%)

	
Peak Time (s)

	
Stable Time (s)

	
Steady-State Error (°C)






	
Z-N

	
0.24

	
24.1

	
165.1

	
0.4356




	
Fuzzy-PID

	
0.21

	
24.8

	
189.9

	
0.7678




	
ISSA-PID

	
0.10

	
21.0

	
68.2

	
0.1987




	
PSO-PID

	
0.14

	
20.0

	
172.3

	
0.3149




	
GWO-PID

	
0.31

	
21.6

	
160.1

	
0.7621




	
SSA-PID

	
0.12

	
21.0

	
70.2

	
−0.2587




	
MFO-PID

	
0.10

	
22.5

	
77.3

	
0.8362
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Table 12. Performance index.






Table 12. Performance index.





	Algorithm
	Recovery Time (s)
	Steady-State Error (°C)





	Z-N
	392.9
	2.128



	Fuzzy-PID
	397.0
	1.360



	ISSA-PID
	250.3
	0.952



	PSO-PID
	423.0
	1.032



	GWO-PID
	411.2
	1.385



	SSA-PID
	427.6
	0.803



	MFO-PID
	381.7
	1.923
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