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Abstract: The optimization of screening parameters will directly improve the screening performance
of vibration screens, which has been a concern of the industry. In this work, the discrete element
model of wet sand and gravel particles is established, and the vibration screening process is simulated
using the discrete element method (DEM). The screening efficiency and time are used as evaluation
indices, and the screening parameters including amplitude, vibration frequency, vibration direction
angle, screen surface inclination, the long and short half-axis ratio of the track, feeding rate, and screen
surface length are investigated. The results of an orthogonal experiment and range analysis show
that the amplitude, screen surface inclination, and vibration frequency are significant factors affecting
screening performance. Then, the support vector regression optimized with the grey wolf optimizer
(GWO-SVR) algorithm is used to model the screening data. The screening model with excellent
learning and prediction ability is obtained with the Gaussian kernel function setting. Moreover, the
GWO-SVR algorithm is used to optimize the screening parameters, and the screening parameters
with optimal screening efficiency and time are obtained. Furthermore, the effectiveness and reliability
of the optimized model are verified using the discrete element calculation. The optimization strategy
proposed in this work could provide guidance for the structural design of vibration screens and
screening process optimization.

Keywords: screening parameters; discrete element method (DEM); support vector regression; grey
wolf optimizer; screening efficiency and time

1. Introduction

With the advancement in urbanization, sand and gravel, being high-quality building
materials, are widely used for the construction of buildings, roads, and bridges [1–4].
Technologies used to make wet sand and gravel are widely used in areas with sufficient
water sources because of the good appearance of production and minimal dust created
in the process [5]. Vibration screening of wet sand and gravel is an important link in the
production process [6]. Therefore, the research on wet sand vibration screening becomes
particularly critical.

Due to the poor working environment, complex screening situation, and limited
technical conditions, the stability and efficiency of screening experiments are poor [7], which
makes it difficult for experimental research to go deep. With the vigorous development of
particle technology and computer science, the numerical simulation method has greatly
improved the deficiencies and defects in screening experiments [8–10]. The screening
research conducted using numerical simulation software not only reduces the cost but also
can greatly improve work efficiency [11]. Dong presents a numerical study on the particle
flow on a banana screen at the particle scale using the discrete element method (DEM) [12].
The mathematical models relating the looseness coefficient to time are established using the
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least squares method by Li [13]. The effect of vibration intensity on the screening process is
discussed, and the potential error induced in the analysis of a single factor on the screening
performance is demonstrated [14]. Liu found that when the values for the inclination of
discharge and increment of screen deck inclination are 10◦ and 5◦, respectively, the banana
screening process obtains good screening performance in the simulation [15].

The accuracy of the particle model will directly determine the accuracy of results
in particle screening simulations [16–18]. At present, numerical models for geological
technology applications have been studied by some scholars. The NLSSI methodology
for application to nuclear facilities for both the design and beyond-design basis ground
motions was proposed by Coleman [19]. A parametric study was conducted to assess
the effectiveness of the SC mitigation technique by gradually increasing the extension of
remediation in order to achieve a satisfactory lower level of permanent deformation [20]. A
3D finite element analysis framework was presented in an attempt to address a number
of salient features associated with the seismic response of wharf-ground systems [21].
However, there are few reports on the modeling of wet sand and gravel particles, and
the adhesion between particles is not clear. Therefore, it is necessary to study the wet
sand particle.

Meanwhile, the research shows that screening parameters have a great influence on
screening performance [22,23]. However, there is no direct correlation between screen-
ing parameters, which makes it difficult to describe the influence of various screening
parameters on the screening results using an explicit mathematical model. With the de-
velopment of computer science and technology, endless machine-learning methods are
emerging [24–26]. These methods can accurately predict unknown data by modeling and
analyzing the existing data [27] and can also be applied to the study of screening parame-
ters. The novel application of non-linear regression modeling with support vector machines
(SVMs) was used to map the sample space of the operating parameters and vibrating screen
configuration by Li [28]. The nonlinear principal component of the vibration signal was
extracted, and a machine-learning model was constructed using LS-SVM, which reduced
the AR coefficient and improved the learning ability and speed of the model [29]. In
addition, a hybrid MACO-GBDT algorithm based on ant colony optimization (ACO) was
also proposed to optimize the sieving performance of the vibrating screen by Chen [30].

However, there are still some challenges in the application of machine learning meth-
ods for screening parameters. The neural network method requires a large number of
training data samples [31]. Nevertheless, it is difficult to obtain a large amount of data
between screening efficiency and screening time whether using simulations or experiments.
The accuracy of a machine learning model will be greatly reduced when the amount of
data is insufficient. The support vector machine method can predict data using a small
data sample, but the selection and optimization of the internal parameters in the model
is a new problem. The traditional particle swarm optimization (PSO) algorithm is slow
and unstable when optimizing the internal parameters of SVM [32], and it is very easy
to fall into a locally optimal solution in the optimization process, which means that the
support vector machine method optimized with the algorithm will also have defects and
deficiencies [33]. Therefore, finding a better screening parameter model is also an urgent
problem to be solved.

The GWO-SVR algorithm is used to construct an association model to optimize the
screening parameters of wet sand and gravel particles. The association model constructed
using the GWO-SVR algorithm has a strong global search ability [34], a fast convergence
rate, and high precision [35]. Meanwhile, the data sample required for the association model
training is small [36], which is particularly suitable for screening process optimization where
it is difficult to obtain a large number of screening data samples. The results prove that the
GWO-SVR algorithm has obvious advantages over traditional algorithms (MACO-GBDT,
PSO-SVR, et al.).

In this work, the different wet sand and gravel discrete element models are first
established using parameter calibration. Then, the screening efficiency and screening
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time under different screening parameters are obtained using discrete element simulation.
The screening parameter model is constructed using support vector regression, which is
optimized with the gray wolf algorithm, and the appropriate kernel function is used to
improve learning and prediction ability. Moreover, the optimized screening parameter
model is constructed, and the screening parameters with optimal screening efficiency and
screening time are obtained. Furthermore, the feasibility and reliability of the optimization
method are verified using the discrete element test.

2. Simulation of the Screening Process
2.1. Discrete Element Modeling of Wet Sand and Gravel Particles

The contact model of the particles is one of the key factors affecting the accuracy of
discrete element simulation [37]. The Hertz–Mindlin model is the main contact model
used in the study of particle motion [38], which can simulate the interaction between dry
particles but cannot reflect the mutual adhesion between wet particles. However, the JKR
contact model can make up for the deficiency of the Hertz–Mindlin contact model [39,40].

The surface adhesion between wet particles refers to the corresponding surface energy
in the JKR contact model. For the convenience of description, the particles are replaced
with spheres. The simplified model is shown in Figure 1. The contact radius between the
two particles expands from α1 to α2 due to the effect of surface energy [41]. The bonding
force between particles can be expressed as W [42].

W = γ1 + γ2 − γ12 (1)
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In Equation (1), γ1 represents the surface energy of particle 1, γ2 represents the surface
energy of particle 2, and γ12 denotes the boundary energy between particle 1 and 2. For
the same particle type, the surface energies of different particles are the same, and the
boundary energy between sand and gravel particles is 0. Then, γ12 = 0 and γ1 = γ2 = γ.
Therefore, the cohesive force between the same particle type is W = 2γ. The normal elastic
contact force FJKR and normal overlap δ of wet particles are shown in Equation (2) and
Equation (3), respectively.

FJKR = −2
√

2πWE∗a3
2+

4E∗a3
2

3R∗
(2)

ffi =
a2

2
R∗
−
√

2πWa2

E∗
(3)
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Substituting W = 2γ into Equations (2) and (3), the normal elastic contact force FJKR
and normal overlap δ can be expressed as:

FJKR = −4
√

πγE∗a3
2+

4E∗a3
2

3R∗
(4)

δn =
a2

2
R∗
−2
√

πγa2

E∗
(5)

where γ is the surface energy of the particle, E* is the energy efficiency elastic modulus, α2
is the radius of the contact surface between the two particles in a collision, and R* is the
equivalent contact radius. Next, there are:

1
E∗

=
1− v2

1
E1

+
1− v2

2
E2

(6)

1
R∗

=
1

R1
+

1
R2

(7)

In Equations (6) and (7), E1, v1, and R1 are the elastic modulus, Poisson’s ratio, and
the radius of particle 1, respectively, and E2, v2, and R2 represent the same physical values
for particle 2 as particle 1, respectively. When the surface energy γ of the particle is 0, the
normal elastic contact force FJKR of the model can be simplified to the contact force FHert in
the Hertz model.

In addition to the ideal contact model, the particle shape is another important factor
affecting the accuracy of discrete element simulation [43–45]. After jaw crushing and impact
crushing of ores with large particle sizes [46,47], the main components in the particle groups
are flat, triangular cone, and ellipsoid particles.

The three different shapes of wet sand and gravel particles are modeled, and the
corresponding discrete element model is modeled using the filling ball method. Wet
sand and gravel particle models with different shapes are 3D scanned and appropriately
simplified. Then, the particle models are meshed using the FEM (finite element method).
Three sizes of filled balls (2 mm, 1.5 mm, and 1 mm) are placed into the specified mesh nodes,
and the construction of three wet sand and gravel particle models was then completed [48].

The modeling process is shown in Figure 2. The sizes of flat, triangular cone, and
ellipsoid particles are 40–45 mm, 15–18 mm, and 10–12 mm, respectively. The flat, triangular
cone and ellipsoid particles correspond to obstructing particles, difficult to screen particles,
and easy to screen particles, respectively. With the extraction of particles from the vibration
screen device for the component analysis, it is found that the quantity ratio of flat, triangular
cone, and ellipsoid particles is about 1:72:97. Considering the size of the simulation
model, the number of flat, triangular cone, and ellipsoid particles is set to 250, 17,500, and
25,000, respectively.

In previous studies, the wet bonding between particles and shapes was discussed
in detail [49]. In order to ensure the validity of the particle model and improve the
simulation accuracy, a calibration simulation and experiment on the wet sand and gravel
particles were carried out. The angle of repose in the cylinder lifting test under different
simulation parameter settings was optimized, and the set parameter combination closest
to the experimental simulation was obtained. Figure 3 shows the calibration experiment
setup for the wet particles.
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device, and (b) experiment scene of cylinder lifting.

The simulation and experimental angle of repose in the three wet particles are shown
in Figure 4. It is found that the surface energy between wet particles and the rolling fric-
tion coefficient between wet particles and the polyurethane material are the significant
factors affecting the motion of particles with the parameter calibration of the three different
shapes of the wet sand and gravel particles. For a comprehensive consideration of simula-
tion accuracy and calculation efficiency, the surface energy and rolling friction coefficient
corresponding to the optimal filling ball radius are shown in Table 1.
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Table 1. Significant factors influencing the contact parameters of wet sand and gravel.

Particle Type Radius ofFilling Ball
(mm)

Surface Energy
(J·m−2)

Rolling Friction
Coefficient

Flat 3.5 0.180206 0.032
Triangular cone 3 0.1907 0.029

Ellipsoid 1 0.2078 0.29

The parameters of the non-significant factors have the same value for the three wet
sand and gravel particles, as shown in Table 2.

Table 2. Non-significant factors influencing the contact parameters of wet sand and gravel.

Parameter Value

Collision recovery coefficient between particle 0.35
Collision recovery coefficient between particle and polyurethane plate 0.25

Static friction coefficient between particle 0.3
Static friction coefficient between particle and polyurethane plate 0.625

Rolling friction coefficient between particle and polyurethane plate 0.05

2.2. Screening Simulation Model

To improve the efficiency of simulation, the experimental model for the elliptical
vibration screen [50,51] is simplified under the premise of meeting the requirements of the
screening function. The simplified vibration screen in Figure 5 is mainly composed of a feed
port, screen box, screen mesh, and bottom box. The geometric parameters in the vibration
screen model are shown in Table 3. It is noteworthy that the screen box is designed to
be semi-closed to present the particle splashing process. There will be a small number of
particles moving out of the screen model during the simulation, which is consistent with
the actual industrial production. The bottom box is divided into two parts: the receiving
area and blanking area. The undersized fine particles are collected in the receiving area,
and the oversized coarse particles are collected in the blanking area.
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Table 3. Geometric parameters in the vibration screen model.

Parameters Value (mm)

Screen length 700
Screen width 400

Screen thickness 2
Aperture size 20

Feeding height 100
Receiving area length 700
Blanking area length 500

The parameters in the vibration screen model used for the discrete element simulation
are shown in Table 4. Except for the screen mesh, which is made of polyurethane, the rest of
the components are made of steel. With polyurethane material, the screen mesh has better
wear resistance and longer service life [52].

Table 4. Material parameters in the vibration screen model and particles.

Material Components Poisson’s Ratio Shear Modulus Density

Stone particles 0.25 50 MPa 2500 kg/m3

Steel screen box 0.27 79.92 GPa 7850 kg/m3

Polyurethane screen mesh 0.43 500 MPa 1100 kg/m3

The force analysis of wet sand and gravel particles on the screen surface is shown in
Figure 6. When the wet sand and gravel particles move on the vibration screen, the force
equation when the particles are in contact with the screen is Equation (8).{

max = mgsinθ − Ff
may = Fn −mgcosθ

(8)

The accelerations in the X and Y directions of the wet particles are given by Equation (9):{
ax = Φl

2 ω2cosωtcosα

ay = Φl
2 ω2cosωtsinα

(9)

Let D = Φl
2 , and then Equation (8) can be transformed into Equation (10).{

−mDω2cosωtcosα + mgsinθ = Ff
mDω2cosωtsinα + mgcosθ = Fn

(10)
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In Equation (10), m is mass of a single wet particle. Fn and Ff represent the normal
force and friction force on the wet particles on the screen surface, respectively. l represents
the distance between point A on the screen surface and the wet particle. D is the moving
distance of the wet particle. When the wet particle leaves the screen surface, the normal
force Fn = 0. Then, there is:

mDω2cosϕdsinα + mgcosθ = 0 (11)

In Equation (11), ϕd is the throwing start angle, which is the critical value for the
vibration phase angle when the wet sand particles are thrown.

Three kinds of wet sand and gravel particles with different shapes and sizes fall from
the feed port into the screen box and screen mesh area. The screen box and screen mesh
move back and forth according to the elliptical track to throw up the mixed particles for
screening. The discrete element simulation process for the vibrating screening of wet sand
and gravel particles is shown in Figure 7. Three kinds of particles with different sizes are
marked using different colors for convenience of observation. Flat particles, triangular cone
particles, and ellipsoidal particles are marked as red, blue, and yellow, respectively. It can
be seen from Figure 7 that the blue triangular cone particles and yellow ellipsoid particles
have been thoroughly screened in the front section of the screen mesh. Fine particles
passing through the screen mesh fall into the receiving area in the bottom screen box. The
red flat particles fail to pass through the screen mesh and fall into the blanking area in the
bottom screen box. The server used in the above simulation calculation has 512 G of RAM
and 80 cores. Each simulation calculation time under the different screening parameters is
about 160–200 h.
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2.3. Screening Performance Index: Screening Efficiency and Time

The screening efficiency and time were used to evaluate the screening performance of
the vibration screen.

Screening efficiency refers to the ratio of the actual mass of the product under the
screen in the screening operation to the weight of the particles whose sizes are smaller than
the size of the screen hole. Screening efficiency is an important index used to judge the
quality of vibrating screening, which represents the degree of screening operation and the
quality of screened products. The higher the screening efficiency, the better the screening
process. The screening efficiency η is shown in Equation (12) [53].

 =
100× (a− b)

a(100− b)
(12)

In Equation (12), a is the percentage content of the screened particles smaller than the
size of the screen hole and b is the percentage content of the product particles on the screen
smaller than the size of the screen hole.

In addition, screening time is an important index used to judge the throughput of
vibrating screening, which represents the total amount of screening particles completed
in unit time in the screening operation. The shorter the screening time, the higher the
screening throughput and the higher the production efficiency. For a certain number of
screened particles, the time from the beginning of the particle falling to the time when all
particles leave the screen mesh is called the screening time. Considering the adhesion of
the wet sand and gravel on the screen surface, the screening time t for the screening of wet
sand and gravel particles is determined by the moment when the remaining particles on
the screen weigh 5% of all the input materials after feeding ends.

3. Prediction of the Screening Performance
3.1. Support Vector Machine

Support vector machine (SVM) is one of the machine learning methods with super
learning performance that was developed in recent years [54–56]. It can find the best com-
promise between the complexity of the model and the learning ability according to limited
sample data, so as to obtain the best generalization ability [57]. Support vector machine
has many unique advantages in solving small sample, nonlinear, and high-dimensional
pattern recognition [58], and it can be extended to other machine learning problems such
as function fitting [59].

3.2. The Grey Wolf Optimizer

The grey wolf optimizer (GWO) is an intelligent optimization algorithm proposed
by Mirjalili in 2014 [60], which is an efficient search algorithm inspired by grey wolf
hunting. Compared with the traditional particle swarm optimizer (PSO), the grey wolf
optimizer (GWO) has a strong global search and convergence performance as well as few
characteristic parameters and easy implementation [61,62].

Grey wolves are gregarious canines that are at the top of the food chain. As shown in
the pyramid shape in the lower right corner of Figure 8, the grey wolf strictly abides by
the hierarchy of social domination. In the pyramid, α, β, δ, and ω are located in the first
to fourth levels of the wolf society. The wolves in the lower level of the social class must
obey the orders of the wolves in the upper level of the social class. When the wolves in
the upper social class are going senile or die, the wolves in the next level will become the
best candidates to enter this group. GWO includes the steps of grey wolf society, tracking,
encircling, and attacking prey. The grey wolf hunting process is shown on the left side of
Figure 8.
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Figure 8. Schematic diagram showing the grey wolf hunting process.

Grey wolves have the ability to identify the location of potential prey (optimal solu-
tion), and the search process mainly depends on the α, β, and δ wolf finish. However, the
spatial characteristics of the solution in many problems are unknown, and the grey wolf
is unable to determine the exact location of prey (optimal solution). In order to simulate
the search behavior of a grey wolf (candidate solution), suppose α, β, and δ have a strong
ability to identify the location of potential prey. Therefore, the best three grey wolves (α,
β, and δ) in the current race are retained during the whole recursive process, and then the
location of other search agents is updated according to their location information. The
mathematical model of this process is shown in Equation (13).

Dα = C1 # Xα − X, Dβ = C2 # Xβ − X, Dδ = C3 # Xδ − X (13)

X1 = Xα − A1 # Dα, X2 = Xβ − A2 # Dβ, X3 = Xδ − A3#Dδ (14)

X(t + 1) =
X1 + X2 + X3

3
(15)

where Xα, Xβ, and Xβ represent the position vector of α, β, and δ in the current population,
respectively. X represents the position vector of the grey wolf, and Dα, Dβ, and Dδ represent
the distance between the current candidate grey wolf and the best three wolves, respectively.
When |A| > 1, the grey wolves try to disperse in various areas and search for prey. When
|A| < 1, the grey wolves will focus on searching for prey in a certain area.

It can be seen from Figure 8 that the position of the candidate solution finally falls
within the random circle position defined by α, β, and δ. In general, α, β, and δ need to
first predict the approximate location of the prey (potential optimal solution), and then the
other candidate wolves randomly update their location near the prey under the guidance
of the current wolf of the optimal solution.

3.3. Construction of the Screening Parameter Prediction Model

At present, the GWO-SVR model is well applied to a variety of different prediction
and detection projects. A prediction model for landslide displacement is established ac-
cording to the variational mode decomposition (VMD) and support vector regression (SVR)
optimized with the gray wolf optimizer (GWO-SVR), and the results indicate that the newly
proposed model achieves a relatively good prediction accuracy with data decomposition
and parameter optimization [63]. Owing to the serious interference from soil moisture con-
tent in the detection techniques, such as the X-ray fluorescence spectroscopy XRF method,
a support vector regression SVR correction prediction model is proposed using the grey
wolf optimization GWO algorithm, and the results show that the SVR nonlinear model has
a better decision coefficient and smaller errors than the linear regression model [64]. In
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order to detect the moisture content in green tea effectively and accurately, the dielectric
technology combined with the VISSA-GWO-SVR model for nondestructive determination
of the moisture content in tea is proposed, which will provide a promising tool for the
moisture content detection of other agricultural products [65].

To further improve the learning and prediction capability of SVR, the kernel function
δ and penalty coefficient C in the SVR are optimized with the grey wolf algorithm [66], and
the optimal screening parameters are determined for the screening data. The flow chart
showing the screening prediction model established with GWO-SVR is shown in Figure 9.
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(i) The first step is to initialize the parameters in GWO and set the initial values of
the penalty coefficient C and kernel function δ. The initial position of each wolf in
population is determined so that the wolves with the best fitness can be selected
more easily.

(ii) After calculating the training value and test value of each wolf in the training sample
and test sample, the relative error value is then defined as the fitness function.

(iii) After comparing the fitness function value for the current wolf with the best wolf, the
position of the current wolf is updated. Meanwhile, the synergy coefficient vector A
and C are updated to help to find the position of the best wolf.

(iv) If the set convergence condition is not satisfied when the gray wolf algorithm is at
the maximum number of iterations, the process will return to the second step for
parameter re-optimization until the parameters that meet the convergence conditions
are selected.

According to the relationship between screening efficiency, screening time, and the
screening parameters, the optimization parameters and optimization objective expression
are defined in Equation (16).

minτe = ∑
(

0.5× (Ye−train−Ye)
2

Ne−train
+ 0.5× (Ye−test−Ye−t)

2

Ne−train

)
minτt = ∑

(
0.5× (Yt−train−Yt)

2

Nt−train
+ 0.5× (Yt−test−Yt−t)

2

Nt−train

) (16)
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where minτe and minτt represent the minimum value of the fitness function training
and testing error in the GWO-SVR model for screening efficiency and screening time,
respectively. The meanings of the various parameters in Equation (16) are as follows:

Ye-train and Yt-train are the training values of screening efficiency and screening time, respectively.
Ye and Yt are the actual values of the training samples for screening efficiency and screening
time, respectively.
Ye-test and Yt-test are the predicted values of the test samples for screening efficiency and
screening time, respectively.
Ye-t and Yt-t are the actual values of test samples for screening efficiency and screening
time, respectively.
Ne-train and Nt-train are the number of training samples for screening efficiency and screening
time, respectively.
Ne-test and Nt-test are the number of test samples for screening efficiency and screening
time, respectively.

The next step is to define the parameters in the screening model as the independent
variable of X. The implicit function for screening efficiency η and screening time t is shown
in Equation (17). In Equation (26), the different screening parameters are the inputs of
the screening model, and screening efficiency and screening time are the outputs of the
screening model, respectively. {

η = f1(X)
t = f2(X)

(17)

where X is the vector of seven screening parameters in the elliptical vibrating screen model,
as is shown in Equation (18).

X = [x1, x2, x3, x4, x5, x6, x7]T (18)

The meanings of parameters in Equation (27) are as follows: x1 is the amplitude a
(mm), x2 is the vibration frequency f (Hz), x3 is the vibration direction angle α (◦), x4 is the
inclination angle of the screen surface θ (◦), x5 is the ratio of the long and short half axes
of the track b/a, x6 is the feeding rate v (m/s), and x7 is the length of the screen surface
L (mm).

3.4. Orthogonal Experimental Table Design

To explore the influence of different screening parameters on screening efficiency and
screening time, orthogonal experiments on the screening parameters were designed. As
mentioned above, there are seven main factors affecting screening performance: amplitude,
vibration frequency, vibration direction angle, the inclination angle of the screen surface,
the ratio of the long and short half axes of the track, feed rate, and the length of the screen
surface. To study the influence range of each factor more comprehensively, five levels were
taken for each factor. The factors and levels in the orthogonal experiment are shown in
Table 5. The orthogonal table with seven factors and five levels is designed for research. For
an amplitude of factor 1, when the actual amplitude exceeds 8 mm, particles will present
excessive splash. So, the range in amplitude is 2~8 mm. For a vibration frequency of
factor 2, the particles cannot be loosened quickly when the actual vibration frequency is too
small. So, the range in the vibration frequency is 12~20 Hz. For the vibration direction angle
of factor 3, the direction angle range of a common vibration screen is 20~70◦, according to
the design experience of a vibration screen. So, the range in the vibration direction angle
in this experiment is 25~65◦. For the inclination angle of factor 4, the small inclination
angle in the screen surface leads to low particle flow, while the large inclination angle is
unfavorable for full particle penetration through the screen. So, the inclination angle in
the screen surface is chosen between 12 and 18◦. For factor 5, the ratio of the long and
short half axes of the track is 0.2~1. For the feeding rate, a too-fast feeding rate easily
reduces the screening efficiency, and a too-slow feeding rate will reduce output. So, the
range of the feeding rate in this experiment is 0.5~2.5 m/s. For factor 7, the range of the
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screen length is 660~740 mm, based on the actual vibration screen, to scale down the model.
The orthogonal experiment table for the screening parameters was designed using the
Design-Expert11 software [67], and the simulations and analyses were completed using
EDEM software [68]. Finally, the screening efficiency and screening time corresponding to
each group of parameters were recorded.

Table 5. Factors and levels in the orthogonal experiment.

Trial
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

a (mm) f (Hz) α (◦) θ (◦) b/a v (m/s) L (mm)

1 2 12 25 10 0.2 0.5 660
2 3 14 35 12 0.4 1.0 680
3 4 16 45 14 0.6 1.5 700
4 5 18 55 16 0.8 2.0 720
5 6 20 65 18 1.0 2.5 740

3.5. Significance Analysis for the Screening Parameters

An analysis of the range is one of the commonly used analysis methods in orthogonal
experiments, which is intuitive and easy to understand. The greater the range, the greater
the influence of a parameter on the index. According to the orthogonal experimental
results for the designed screening parameters, the importance of the above seven screening
parameters is reordered. The results show that the order of importance for the factors
affecting screening efficiency is vibration frequency > inclination > amplitude > long short
half-axis ratio > direction angle > feed rate > screen length. The order of importance for the
factors affecting screening time is inclination > vibration frequency > amplitude > feeding
rate > long short half-axis ratio > direction angle > screen length. It can be seen that the
vibration frequency, inclination, and amplitude have a great impact on screening efficiency
and time.

3.6. Selection of the Kernel Function

In the development and application of SVM, the use of the kernel function makes it
easier for linear SVM to be extended to nonlinear SVM. The kernel function is the soul of
SVM and also determines its performance [69,70]. The GWO-SVR model is affected by the
random position of hunting wolves in the hunting process of the grey wolf algorithm, which
produces slightly different results each time. To make the prediction results more stable
and to further improve the learning ability of the GWO-SVR screening model, the kernel
functions and kernel parameters of the appropriate sample data should be selected [71].
The common kernel functions in SVM are shown in Table 6 [72].

Table 6. Common kernel function types in SVM.

Linear Kernel Function: K(xi·xj) = xi·xj Polynomial Kernel Function K(xi·xj) = (xi·xj+1)d

Sigmoid kernel function: K(xi·xj) = tanh(kxi·xj − δ) Gaussian kernel function: K(xi·xj) = e ‖xi ·xj‖2

2δ2

To ensure that the screening model has good learning and generalization ability at the
same time, the values of δ in the Gaussian kernel function and Sigmoid kernel function are
set as {0.02:0.1:0.5, 1, 4, 8, 12, 16, 20}, and the values of order d are set as {1, 2, 3}. To avoid
over-fitting, a smaller soft interval is used. The value of the penalty coefficient C will be
controlled in a small range. The value of the penalty coefficient C is 12, and the value of
parameters ε and λ are 0.01 and 1 × 10−8, respectively. The maximum number of iteration
steps is 500.

According to the data obtained from the screening orthogonal experiment, the screen-
ing parameter model is established using the different types of kernel functions in Table 6.
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Comparing the operation time and convergence for different types of kernel functions, it is
found that the sigmoid function did not reach convergence after 500 iteration steps, and the
polynomial kernel function has a long operation time. Meanwhile, the linear function and
the Gaussian kernel function complete the operation and converge in a faster time. The
iterative process of the GWO-SVR screening model for screening efficiency under the linear
kernel function and radial basis kernel function is shown in Figure 10a,b. It can be seen
from the iteration process of the linear kernel function and Gaussian kernel function that
both kernel functions converge in the iteration process of 200 steps (Figure 11).
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where m is the number of samples and 𝑦௜ and 𝑦ො௜ are actual value and screening time 
learning and prediction performance under linear kernel function and Gaussian kernel 
function, respectively, as shown in Table 7. 

Table 7. Performance of the GWO-SVR screening model under two kernel functions. 

Learning Objectives
Evaluating Indicator 

Screening Efficiency η(%) Screening Time t(s) 
Linear Gaussian Linear Gaussian 

RMSE 4.882 5.773 0.6708 0.6283 
MAE 0.0832 0.0707 0.6322 0.5816 

R2 0.7194 0.6465 0.5758 0.5163 
Running time (min) 369.30 101.47 156.85 73.82 

The normalization of MSE [73] and RMSM [74] are commonly used as criteria for meas-
uring the prediction results of machine learning models. MAE [75] can better reflect the ac-
tual situation of prediction value errors. Therefore, in this work, MAE is used as the evalu-
ation indicator for the performance of the GWO-SVR screening model instead of MSE. 
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The RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and R2 (R-Square)
are used as the evaluation indicators for the performance of the GWO-SVR screening
model [58]. The expression of RMSE, MAE, and R2 are shown in Equation (19).

RMSE(X, h) =

√
1
m

m
∑

i=1
(h(xi)− yi)

2

MAE = 1
m

m
∑

i=1
| yi − xi |

R2 = 1− ∑m
i=1(ŷi−yi)

2

∑m
i=1(yi−yi)

2

(19)

where m is the number of samples and yi and ŷi are actual value and screening time learning
and prediction performance under linear kernel function and Gaussian kernel function,
respectively, as shown in Table 7.
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Table 7. Performance of the GWO-SVR screening model under two kernel functions.

Learning Objectives

Evaluating Indicator Screening Efficiency η(%) Screening Time t(s)

Linear Gaussian Linear Gaussian

RMSE 4.882 5.773 0.6708 0.6283
MAE 0.0832 0.0707 0.6322 0.5816

R2 0.7194 0.6465 0.5758 0.5163
Running time (min) 369.30 101.47 156.85 73.82

The normalization of MSE [73] and RMSM [74] are commonly used as criteria for
measuring the prediction results of machine learning models. MAE [75] can better reflect
the actual situation of prediction value errors. Therefore, in this work, MAE is used as the
evaluation indicator for the performance of the GWO-SVR screening model instead of MSE.

Comparing the evaluation indices for the linear kernel function and Gaussian kernel
function [76], as shown in Table 7, the prediction ability of the screening model under
the linear kernel function is slightly stronger, but the difference between them is not
significant. However, comparing the operation time of the screening model under the two
kernel functions, it is found that the Gaussian kernel function takes significantly less time.
Meanwhile, comparing the convergence rate of the two kernel functions, it is found that
the number of iterations in the screening model is fewer, and the convergence rate is faster
under the Gaussian kernel function for screening efficiency and screening time. Therefore,
the Gaussian kernel function with fewer iterations and faster convergence is used as the
kernel function of the GWO-SVR screening model in subsequent analyses.

3.7. Prediction Accuracy of the Screening Model

There are 300 groups of test data in the orthogonal experiment on the screening
parameters. The first 220 groups of data are used as the test samples for the training group,
and the last 80 groups as the test samples for the prediction group. It takes seven screening
parameters as input, and the screening efficiency and screening time are the output. The
training results of the GWO-SVR screening model on screening efficiency and screening
time for the first 220 groups of test samples are shown in Figures 12 and 13. It can be seen
from the two figures that the error between the experimental results and prediction results
is small for both screening efficiency and screening time, which indicates that the learning
and generalization ability of the GWO-SVR model has been improved using the Gaussian
kernel function.

The prediction results of the GWO-SVR screening model on screening efficiency and
screening time for the last 80 groups of test samples are shown in Figures 14 and 15. It can
be seen from the two figures that the error between the experimental results and prediction
results is small for both screening efficiency and screening time, which indicates that the
prediction ability of the GWO-SVR model has been also improved using the Gaussian
kernel function.

The above results show that GWO-SVR optimized with the Gaussian kernel function
provides a reasonable calculation model for the complex and nonlinear mixed multidi-
mensional space characteristics of the screening parameters. After testing the training
group and prediction group for screening efficiency and screening time, it is found that this
GWO-SVR screening parameter model has good learning, generalization, and prediction
ability. It provides a reasonable mathematical model for the subsequent optimization of the
screening parameters.
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4. Optimization of the Screening Performance

The fundamental purpose of studying the screening parameters of a vibration screen
is to improve the screening efficiency of the vibration screen and shorten its screening
time so as to comprehensively improve the screening capacity of the vibration screen and
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bring practical benefits to the industry. Therefore, the optimization design of screening
parameters can provide great theoretical support for the reasonable design of the screen
structure and the appropriate adjustment of the production process [77,78].

4.1. Construction of the Screening Parameter Optimization Model

The mathematical model for parameter optimization using the GWO-SVR screening
model can be shown by Equation (20).{

max X∈D{ f1(X), f2(X)}
D =

{
X | gi(X) ≤ 0, hj(X) = 0; i = 1, 2, . . . . . . , m; j = 1, 2, . . . . . . , p

} (20)

where f1(X) and f2(X) are the objective functions in the screening efficiency and screening
time model, gi(X) and hj(X) are constraint functions, D is the constraint region, and X is the
n-dimensional vector to be optimized. f1(X), f2(X), gi(X), and hj(X) are nonlinear functions.
The GWO-SVR screening model is a highly nonlinear problem.

According to Equation (26), the GWO-SVR-optimized screening parameters are shown
in Equation (21). {

max η = f1(x1, x2, x3, x4, x5, x6, x7)
min t = f2(x1, x2, x3, x4, x5, x6, x7)

(21)

The maximum values of screening efficiency and screening time under the combination
of seven screening parameters are sought. The feasible range of the screening parame-
ters is determined according to practical production experience. The range of screening
parameters of the GWO-SVR-optimized screening model is shown in Equation (22).

s.t.


2 ≤ x1 ≤ 5, 10 ≤ x2 ≤ 20, 25 ≤ x3 ≤ 65,

12 ≤ x4 ≤ 20, 0.2 ≤ x5 ≤ 0.8, 1 ≤ x6 ≤ 2.5,
640 ≤ x7 ≤ 740,

(22)

The grey wolf algorithm is used to optimize the screening parameters of the GWO-
SVR screening model. The training data come from the orthogonal test of the screening
parameters. The Gaussian kernel function is used as the kernel function in SVR, and the
minimum value of the error between the test data and prediction data is taken as the fitness
function. The maximum number of iterations in the optimization process of screening
efficiency and screening time is 500 steps. According to the training and learning results of
the GWO-SVR screening model, the penalty coefficient Cη is 49.394 and δη is 0.5756 in the
optimal screening efficiency model. The penalty coefficient Ct is 11.476 and δt is 0.2577 in
the optimal screening time model.

4.2. Optimization Process and Results of the Screening Parameters

To compare the difference between grey wolf optimization and traditional particle
swarm optimization for support vector machine, the optimization process of two algorithms
for screening efficiency and screening time is shown in Figure 16.

It can be seen from Figure 16a that the optimization of GWO-SVR is nearly stable when
the number of iterations in the screening efficiency optimization process is close to 400.
However, the optimization of PSO-SVR still seems to have a changing trend at the 500th
iteration step. At the 500th iteration step, the optimization results of screening efficiency in
GWO-SVR and PSO-SVR are 88.37% and 85.86%, respectively. Meanwhile, it can be seen
from Figure 16b that the optimization of GWO-SVR is nearly stable when the number of
iterations in the screening time optimization process is close to 450. At the 500th iteration
step, the optimization results of screening time for GWO-SVR and PSO-SVR are 11.83 s and
12.02 s, respectively. The convergence rate of the GWO-SVR model is faster than that of the
PSO-SVR model in each iteration step in the optimization processes of screening efficiency
and time. Overall, the screening efficiency and time of the GWO-SVR model are superior to
those of the PSO-SVR model in terms of both convergence speed and optimization results.
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Meanwhile, according to relevant research [64], for similar datasets (with fewer data
samples and higher data dimensions), the prediction model constructed with GWO-SVR
has better fitting performance compared to the ENR, Lasso, RR, and SVR algorithms.
Compared to PSO-SVR, GA-SVR, and SA-SVR, GWO-SVR has stronger global search
capabilities and convergence details [79].

Table 8 shows the screening parameters corresponding to the maximum screening
efficiency and minimum screening time in the GWO-SVR screening optimization model.

Table 8. Screening parameters verified with EDEM.

Optimization Objectives a (mm) f (Hz) α (◦) θ (◦) b/a v (m/s) L (mm) Optimal Value

Screening efficiency η(%) 3.0 17.1 45 12 0.35 1.4 660.0 88.37%
Screening time t(s) 4.0 20.1 45 15.5 0.42 1.7 683.0 11.83 s

4.3. Verification of the Optimization Results

To further verify the accuracy of the GWO-SVR screening optimization model, the
screening parameters corresponding to the maximum screening efficiency and minimum
screening time were tested using EDEM simulation.

As shown in Figure 17, the EDEM screening results show that the maximum screening
efficiency is 83.24% and the minimum screening time is 12.24 s. Meanwhile, the maxi-
mum screening efficiency and minimum screening time predicted with the GWO-SVR
screening optimization model under the same screening parameters are 88.37% and 11.83 s,
respectively. The error of the maximum screening efficiency between predicted value and
test value is 5.81%, while the error of the minimum screening time between predicted
value and test value is 3.11%, which indicates that the errors in screening efficiency and
time are within an acceptable range. Thus, the GWO-SVR screening optimization model
is considered to be accurate and reliable. This provides a reference for the GWO-SVR
algorithm in the screening optimization process.
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5. Conclusions

To explore the influence of different screening parameters on screening efficiency and
screening time, the GWO-SVR algorithm was used to establish the screening parameter
model. Seven screening parameters including the amplitude, vibration frequency, vibration
direction angle, screening surface inclination, the long and short half-axis ratio of the track,
feeding rate, and screen surface length were used as the influence factors of the screening
performance. Based on the results, we draw the following conclusions:

(1) The discrete element model of wet sand and gravel particle screening was established
first. The important factors affecting the screening process were obtained using an
orthogonal experiment and range analysis. The results show that the amplitude, the
screen surface inclination, and the vibration frequency are significant factors affecting
screening efficiency and screening time.

(2) Then, the screening parameter model for screening efficiency and screening time based
on the GWO-SVR algorithm was established. The learning and prediction ability
of the screening parameter model is improved with the Gaussian kernel function.
By comparing the prediction values and error in the training group and prediction
group, it can be found that the GWO-SVR screening model has excellent learning and
prediction ability for screening efficiency and screening time data. The error is within
the acceptable range, which indicates the reliability of the GWO-SVR screening model.

(3) Furthermore, the optimal screening parameter model was constructed with the GWO-
SVR algorithm, and the screening parameters with optimal screening efficiency and
time were obtained. The maximum screening efficiency is 83.24%, while the minimum
screening time is 12.24 s. Meanwhile, comparing the GWO-SVR algorithm with the
PSO-SVR algorithm, it is found that the screening efficiency and time of the GWO-SVR
model are superior to that of the PSO-SVR model in terms of both convergence speed
and optimization results.

(4) Moreover, the screening parameters were used as input in EDEM to calculate the corre-
sponding screening efficiency and screening time. We found that the calculated values
are very close to the predicted values using the GWO-SVR algorithm. The above
verification results prove the effectiveness and reliability of the optimization model.

The optimization method using the GWO-SVR algorithm proposed in this work
provides guidance and reference for the subsequent structural design of vibration screens
and also has great potential to improve the production quality and efficiency of the wet
sand and gravel vibration screening industry.
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