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Abstract: Respirable particulate matter (RSP) is currently very harmful to the human body, poten-
tially causing pulmonary silicosis, allergic rhinitis, acute bronchitis, and pulmonary heart disease.
Therefore, the study of the deposition pattern of RSP in the human respiratory system is key in the
prevention, treatment, and research of related diseases, whereby the main methods are computer
simulation, in vitro solid models, and theoretical analysis. This paper summarizes and analyzes past
deposition of RSP in the respiratory tract and also describes them in specific case studies such as
COPD and COVID-19 patients, based on the review of the evidence, direction, and focus of future
research focusing on simulation, experimentation, and related applications of RSP deposition in the
respiratory tract.

Keywords: computational fluid dynamics (CFD); deposition of respirable particulates; respiratory
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1. Introduction

In 2019, a new class of coronavirus-linked pneumonia was discovered by experts in
Wuhan, the capital city of Hubei Province, China. The World Health Organization named it
the novel coronavirus disease 2019, or COVID-19 [1], caused by the severe acute respiratory
syndrome coronavirus (SARS-CoV-2) [2]. The pandemic caused by the novel virus triggered
a serious blow to the global economy, as well as healthcare systems. At the beginning of
the pandemic, the virus spread rapidly across the planet, except for four countries, which
included North Korea and Tuvalu [3].

According to the Center for Systems Engineering and Science (CSSE) at Johns Hopkins
University, as of 4 May 2022, the global cumulative number of confirmed new coronary
pneumonia cases exceeded 51,478,766 and continues to climb [4,5]. While 6,240,555 deaths
were reported, the actual number is expected to be far greater due to the high proportion of
asymptomatic infections and limited detection capacity [6].

Highly infectious and spreading rapidly, the new coronavirus [7,8] is transmitted in
various ways, with the most important ones being direct, aerosol, and contact transmis-
sion. Direct transmission occurs mainly by coughing or face-to-face conversation whereby
droplets are sprayed and directly inhaled by others [9]. Therefore, masks were mandated
in public and crowded places to minimize transmission.

Aerosol transmission is the formation of aerosols from droplets containing the Neo-
Coronavirus mixed with the air, which are inhaled and continue to infect the respiratory
system. Contact transmission occurs when droplets containing the virus adhere to the
surface of an object. As the NeoCoronavirus particles are extremely stable and insidious,
they can survive for different periods of time on different surfaces, sometimes reaching
several days [10,11].

Some infected patients can be completely cured, but for others, clinical symptoms will
persist. When patients have persistent symptoms for 4–12 weeks, it is referred to as long
COVID, a term coined in the UK [12–14]. Symptoms also vary by age, gender, geography,
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and physical fitness; to date, there are approximately 200 different clinical symptoms (See
Tables 1 and 2) [15,16]. Some patients recovering from COVID-19 also develop sequelae
such as abnormal insulin tolerance and β-cell function, thyroid function, urinary system,
and skin, as well ashair loss and conjunctivitis [17–23]. In-depth understanding of the
various properties of COVID-19 is an important research direction for humans at present.

Table 1. Sleep problems before and after the patient’s illness [16].

Sleep Problems Before and After the Patient’s Illness

Sleep Symptom Experienced During Illness (of All Participants) Had Symptom before Illness

Insomnia 60% (67.1 to 70.1%) 21%

Night Sweats 41% (39.2 to 42.4%) 16%

Awakened Feeling 36% (34.5 to 37.6%) n/a

Unable to Breathe

Restless Legs 18% (16.6 to 19%) 14%

Sleep Apnea 10% (9.5 to 12.8%) 34%

Vivid Dreams 33% (31.5 to 34.5%) 23%

Nightmares 26% (24.3 to 27.1%) 20%

Lucid dreams 15% (14.2 to 16.6%) 34%

Table 2. Test results for latent disease [16].

Test Results for Latent Disease

Virus Positive Positive (Past) Negative Total Tested

Epstein-Barr (EBV) 40 309 231 580

Lyme Disease 7 34 366 407

Cytomegalovirus (CMV) 4 85 204 293

Respiratory System

The respiratory system, as a major physiological system, is the most severely com-
promised in COVID-19 patients [24]. As Figure 1 shows, the respiratory system mostly
consists of the upper and lower respiratory tracts and the lungs [25]. The upper respira-
tory tract mainly includes the nasal cavity, oral cavity, pharynx, and larynx. The lower
respiratory tract mainly includes the trachea, main airways, and airways within the lungs.
The most important component of the lungs is the alveoli, which are used as sites of gas
exchange [26].

Processes 2023, 11, x FOR PEER REVIEW 3 of 25 
 

 

 
Figure 1. Exploded diagram of the human respiratory system [25]. 
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2. Effects of Particulate Matter on the Human Body

Harmful particulate matter enters the body through the human respiratory system
and may induce lung cancer, pneumoconiosis, and many other respiratory diseases [27],
while most of the effects are irreversible, such as pulmonary heart disease and severe
asthma [28–30]. It is generally accepted that the location of particle deposition is dependent
on the particle diameter or size. Figure 2 shows the size of a human respirable particulate
matter (RSP). In the 1930s, on particles with a particle size of 2.5 microns (PM2.5), the
American Cancer Society (ACS) conducted cohort research of long-term health responses
to living with particulate matter [31], and found that for every 10 µm increase in PM2.5
concentration, the risk of all-cause mortality, cardiopulmonary disease mortality, and lung
cancer mortality increased by 6.2%, 9.3%, and 13.5%, respectively. The impact of inhalable
particulate matter on the degree of health, and respiratory diseases and cardiovascular
system diseases has the most significant relationship with the exposure level of particu-
late matter in the atmosphere. Long-term production and living in the environment of
particulate matter will not only affect health, but also seriously affects lifespan. Different
concentrations have different effects on human beings. The higher the concentration, the
greater the impact on human lifespan [32,33]. The increase in the concentration in the
atmosphere causes the incidence of cold and cough in adult men and women to increase,
and the probability of triggering asthma in children will be very high. At the same time, the
content of PM2.5 and PM10 per cubic meter in the atmosphere is positively correlated with
children’s respiratory inflammation, mild cardiovascular and cerebrovascular diseases, and
children’s induced asthma. Particles can also stimulate the sympathetic nerves in the lungs
to produce secondary nerve sympathetic reflexes. Under an environment of PM2.5 and
PM10 concentrations, the secondary nerve sympathetic reflexes of the human body are also
different, which will change the autonomic nerve reflexes and other mechanisms to varying
degrees and trigger the heart rate including arrhythmias and premature heart beats, and
other cardiovascular and cerebrovascular diseases [34]. Living in a high-concentration
environment for a long time will not only affect health, but also the normal development of
the fetus, which will lead to congenital deformities in newborns, and even reduce human
fertility and lead to an increase in the infertility rate [35]. The risk of harm of particulate
matter to the human body increases at high concentrations. In a year when the concen-
tration of particulate matter reaches its peak, the incidence of acute respiratory diseases
and acute cardiovascular and cerebrovascular diseases will increase significantly. This
short-term health effect is called the short-term effect. Anderson et al. [31] showed in the
study of short-term exposure to PM10 that when the concentration of PM10 increases by
10 µg/m3, the mortality rate caused by related diseases will increase by 0.6%. In deaths
caused by cardiovascular diseases, a 0.9% increase in the mortality rate is associated with
a 1.3% increase in the mortality rate due to respiratory diseases. Long-term exposure to
an environment with a low concentration of particulate matter can also cause a variety
of chronic respiratory diseases, and cardiovascular and cerebrovascular diseases. This
kind of damage to the human body is called long-term effects. The American Cancer
Society (ACS) analyzed the human body exposed to a low concentration environment for
a long time [34] and concluded that when the concentration is PM2, the death rate from
lung cancer will increase by 9.3%, and the death rate from lung cancer will increase by
13.5%. When the content of PM2.5 per cubic meter in the air increases, the chances of
myocardial infarction and atrial premature beats in patients with coronary heart disease
will greatly increase. The higher the concentration of PM2.5, when the particles enter the
human blood circulation system, the more the viscosity of the blood will increase, and the
content of some albumin in the blood will also increase, which will lead to an increase in
the formation rate of thrombus. Samet et al. [36] studied the relationship between PM10
and cardiovascular diseases of local residents in 20 cities across the United States. The
study showed that when the concentration of PM10 improved by 10 µg/m3, the fatality
rate caused by cardiovascular diseases would increase by 0.68%. Popet et al. [37] found that
the concentration of PM2.5 has a strong relationship with acute unstable angina pectoris
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and acute myocardial infarction. For every 10 µg/m3 increase of the content of PM2.5 per
cubic meter in the air, the incidence of acute unstable angina pectoris and acute myocardial
infarction wouldincrease by 4.5%, and it would have a greater impact on the incidence
of coronary artery disease (angina, heart failure, arrhythmia, etc.). In spring–summer
and autumn–winter, when the content of PM2.5 per cubic meter in the air increases by
10 µg/m3, the hospitalization rate of COPD patients will increase by 6.87% and 1.72%,
respectively [38]. A study on the incidence of asthma patients showed that [39] the acute
incidence of asthma patients is positively correlated with the content of PM2.5 per cubic
meter in the air. When the concentration of PM2.5 increases by 10 µg/m3, the total number
of hospital visits increases by 0.67%. Visits to the emergency department increased by
0.65%, and visits to emergency departments increased by 0.49%. The American Cancer
Society Survey Ffollowed over 1 million adults living in the U.S. between 1982 and 2008
and found that for every 10 µg/m3 increase in PM2.5 concentration, the mortality rate from
lung cancer would increase by 15% to 27% [40]. The amount of particulate matter per cubic
meter of air in the atmosphere has a great impact on humanss. Whether it is PM2.5 or PM10,
particulate matter of different particle sizes poses different hazards to the cardiovascular,
cerebrovascular and respiratory systems of the human body at different concentrations.
Therefore, it is very important to reduce air pollution and improve air quality.
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Figure 2. Size of human respirable particulate matter.

The human health condition tests from six major cities in the United States demon-
strated that for every 10% increase the amount of particulate matter per cubic meter of air
in the human space, the rate of human respiratory disease increased by 17.8% [41]. The
production of life produces large amounts of solid particles, which are deposited in the
human respiratory system and lead to a large number of diseases [42,43]. Various studies on
the effects of particulate matter on the respiratory system demonstrated that air particulate
matter concentration significantly impacts the respiratory system [44]. For instance, the
computerized tomography (CT) imaging of the chest of COVID-19 patients revealed single
or multiple ground glass shadows, crazy pavement disease, patchy glassy shadows with
partial solidity, and solid lung lesions [45–47], all of which affect regular breathing. The
deposition of particulate matter also varies in environments with extreme humidity [48–50].
For example, high and low temperatures affect the deposition and transport of particulate
matter in the respiratory system [51].

A large number of data show that the degree of harm caused by particulate matter
depends on the deposition site and amount of particulate matter deposited [52].
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3. Deposition of Respirable Particles in the Upper Respiratory Tract

The upper respiratory tract is the first contact point and passage of inhaled particles.
Of this section, the nasopharyngeal part is the first site of particle deposition. It is also
made up of complex structures, including the inner wall with mucous membranes and fine
cilia, that greatly influence the entry of respirable particles into the trachea and lungs [53].

Sun et al. [54] performed multilayer spiral CT coronal scans of the nasal cavity in 40
healthy subjects and then imported the data into the Ansys 12.0 software for surface 3D
reconstruction. The nasal airflow field was analyzed by solving the N-S equation, and it
was concluded that the nasal airflow in the nasal cavity was mainly through the middle
and lower part of the common nasal tract. The analysis also found that the airflow was
mainly laminar in the nasal cavity, free diffusion was mainly in the maxillary sinus cavity,
and the air velocity in the maxillary sinus cavity was almost 0 m/s.

Cui et al. [55] used the neuron reconstruction algorithm (NeuRA) to construct a surface
mesh from CT scanned nasal cavity data. The Ansys Integrated Computer Engineering
and Manufacturing code for computational fluid dynamics (ICEM-CFD 11.0) was used
to generate the volume network, and unidirectional and bidirectional coupling was used
for different particle volume fractions. The N-S equation was again used to describe the
airfield flow. It was concluded that particle deposition was related to particle size, particle
release location, suction airflow rate, and geometric properties. Moreover, the turbulent
and reflux zones have a strong influence on particle transport.

Soo-Jin Jeong et al. [56] constructed a CFD model from raw data of CT images from
obstructive sleep apnea (OSA) patients and used the k-εmodel of a low Reynolds number
by solving the continuity and Reynolds mean N-S equations (Equation (1)) to deduce the
most collapsed region in the pharynx. The most collapsed region in these OSA patients
was the area with the lowest intraluminal pressure, while the palatopharynx, where the
pneumatic force is greatest, is also the area of the pharynx most prone to deposition of
particulate matter. In another similar study, Wang et al. [57] performed CT scans of the
nasal region of patients with OSA before and after surgery and developed an anatomical
model of the interplay between the upper respiratory tract and soft palate. Computational
simulations of expiration and inspiration were performed using flow-solid coupling, and
the feature of airflow such as flow velocity and displacement distribution of the soft palate
were selected for comparison. Airway resistance was found to be significantly reduced
after nose surgery, particularly in the palatopharyngeal region. The results also showed
that the airflow distribution and soft palate motion throughout the upper airway improved
after nasal surgery, and the deposition of particulate matter became significantly greater.
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Xi are the Cartesian coordinates (= x, y, z), and µi are the Cartesian velocity components.
Cisonni et al. [58] scanned the human nasal cavity and constructed a three-dimensional

model with the objective of performing virtual maxillary sinus surgery. The movement of
air between the nasal cavity and sinuses during upstream pharyngeal aspiration were quan-
tified, and the patient experienced dramatic changes in ventilation and had a significantly
greater deposition of inhaled fine particulate matter in the sinus region. Cheng et al. [59]
used silicone material to replicate a 3D model of the upper respiratory tract based on
the airway dimensions of volunteers. Simulation experiments were then performed for
three breathing intensities (15 L/min, 30 L/min, and 60 L/min) and the deposition of
nine different particulates sizes. The data show that respiratory intensity and particle
size significantly affect the deposition of particles, and the deposition rate of particles is
positively correlated with the flow rate and particle size. When the particle size is lower
than 20 µm and flow rate is more than 60 L/min, the particle deposition efficiency reaches
more than 90%.
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Grgic et al. [60] used CT, magnetic resonance imaging (MRI), and direct observation
of breathing of organisms using simple geometry fabrication to establish an ideal human
oral airway model. Additionally, γ-scintillation scanning and weighing methods were
utilized to analyze the effects of the size of the particulates, air respiratory intensity, and
Reynolds number on the results of particulates deposition in the mouth airway. Through
the deposition simulation of particulates with a particle size of 3.5 µm and 6 µm at a flow
rate of 0.5 L/s and 15 L/s, respectively, it was demonstrated that respiratory intensity,
particle size, and inertia affect particulates deposition, while the pharynx and larynx are
the main deposition sites of aerosol particles. Martonen et al. [61] further established a
two-dimensional model of the human larynx and upper part of the tracheal, and used
the N-S equation for flow-field analysis. Using the human throat at three different gas
velocities of 15 L/min, 30 L/min, and 60 L/min, and according to the Reynolds value of
the designated position inside the human body system (Table 3), the study concluded that
the laryngeal flow field is complex, generating local vortices and jets at the acoustic portal,
which significantly affect the distant flow field and can impact the deposition of particulate
matter entrained in the air in the human larynx.

Table 3. Reynolds number at a given location inside the human body system [61].

Inspiration Flow Rate (L/min)

Lacation 15 30 60

Venteicular folds 1600 3200 6400

Vocal folds 1970 3100 4740

Trachea 1160 2320 4640

Main bronchi 855 1710 3420

Xi et al. [62] utilized a coupled computational fluid dynamics (CFD) method for
system parameter studies and steady-state flow simulation to replicate in vitro experiments
by CT scans of the adult mouth, nose and throat. The data found differences in the
amount of respirable particulate matter deposited and the deposition rate in the upper
respiratory tract between dynamic and static vocal tracts. The data also revealed that
the larger the cross-sectional area of thevocal tract region of the human larynx, the more
pronounced the deposition of particulate matter. The complexity of the model has a great
influence on the computer simulations’ results. The difference between the USP IP and
real model reaches 55%, and when the particle size of the experimental surface is 6–12 µm,
the particle deposition rate and particle geometry correlation is the largest, reaching 45%.
Grgic [63] further developed a new procedure to measure the factors affecting deposition
by measuring the deposition of dioctylphthalate (DOP) particles with a particle size of
5 µm at a moving speed of 30 L/min. The results demonstrated that the deposition of
particles in the mouth increases significantly during an unsteady flow. However, when
the moving speed reached 40 L/min and above, the deposition in the oral cavity did not
significantly change.

Kim et al. [64]. conducted a simulation study of aerosol particle deposition by two
models, the inside-out branching and the 90◦ face branching models. The research indicates
that the deposition efficiency of aerosols in the upper airway at a fixed Reynolds number
became larger as the Stokes number (SKS) became larger. However, when the value of SKS
was lower than 0.002, the deposition results did not significantly differ for either model.
Zhou et al. [65] simplified the human upper respiratory system by using the nose, throat,
oral and bronchi of an adult cadaver as a solid model, while a simple upper respiratory
tract model was bent for simulation experiments. Particle sizes from 0.93 to 30 µm were
injected into the two models at different flow rates to derive the deposition equation. The
equation determined the deposition rate of the lung dose was in general agreement with
the results derived from the theoretical model.
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Li et al. [66]. used acrylonitrile butadiene styrene (ABS) material to create a 3D model
of the human respiratory system and used this model to study the deposition of toxic
respirable particles to explore selected respiratory disease treatments. The deposition condi-
tions at two particle sizes of 0.3 and 6.5 µm and two different flow rates of 30 and 60 L/min
were simulated. Particle size had little effect while moving speed had a greater effect on
the deposition rate; the error between the two was not more than 2.5%. Phuong et al. [67]
used particle image velocimetry (PIV) to measure the trajectories and motion patterns of
particles at 7.5, 15 and 30 L/min in three different flow velocities, and CFD was used to
simulate four types of turbulence for the experimental model. A comparison of the results
obtained from both approaches revealed that both approaches were in high agreement,
The agreement is about 87.6%. Jia et al. [68] studied the deposition of particles of different
sizes. Kiasadegh et al. [69,70] studied the deposition of respirable particles through form
changes in the human upper respiratory system. A simple oral cavity model was used
by Chen et al. [71] for the effect of mutual heat exchange between the air and oral mucus
on the deposition of particulate matter; the results indicated that at a moving speed of
15 L/min, the interaction between the hot gas flow and mucus layer had an effect on
particulate matter deposition in the human body, and the interaction between the two could
reduce the deposition rate of particles by 10%.

Based on the above review, the nasopharyngeal region of the upper respiratory tract is
the first checkpoint for particulate matter to enter the respiration tract, while structural and
human breathing patterns directly affect the distribution of particulate matter deposition in
this region, as well as their entry into the airway and deep lungs.

4. Deposition of Respirable Particulate Matter in the Bronchial Tubes

The bronchi are an important research target for PM deposition, with a specific focus on
bronchial fraction. Taherian et al. [72] simulated the sinusoidal behavior of normal respira-
tion and corresponding exit pressure by assigning appropriate boundary conditions, using
a Lagrangian model for 2.5 and 10 µm respirable particles. The data demonstrated that the
high vortex, secondary flow, and high wall shear stress regions are strongly associated with
particle deposition, and that the deposition number of 2.5 µm sized particles was much
lower than 10 µm particles; the difference between them is about 57.9%. Rhein et al. [73]
found that the total deposition of the pressure constant, volume ramp, and rising ramp
waveforms was similar to the fourth waveform, which is the pressure sinusoidal waveform,
but the deposition rate of the sinusoidal waveform was approximately 50% lower than
that of the other waveforms, and the pressure positive waveform can reduce the wall shear
stress by 75%. This indicates that the breathing pattern affects the deposition of PM in
human lungs.

Sracic et al. [74] simulated variedly sized (0.05, 0.1, 2.5 and 10 µm) particles utilizing
the multipath particle dose (MPPD) computer modeling method and concluded that lung
deposition of large PM (2.5 and 10 µm) particles slowly decreased during exercise. The RSP
of small particle size, on the other hand, slowly increased during exercise. Islam et al. [75]
obtained real human airway data through CT scanning and simulated the deposition and
movement of diesel exhaust particulate matter (DEPM) using the Lagrangian particle
tracking method. The quantitative data indicated that during rapid breathing, higher
surface deposition concentrations was noted in the upper part of the trachea, while during
slow breathing, lower depositions were concentrated in the upper trachea. During the
transport of particles in the same tracheal part, the concentration was higher in the right
bifurcation of the lung during rapid breathing and lower during slow breathing. The
results of the deposition and transport of inhalable particulate matter caused by different
breathing methods are different.

Rahimi-Gorji et al. [76] studied air moving and particle deposition under three different
breathing speeds, namely light (15 L/min flow rate), normal (30 L/min flow rate), and
heavy (60 L/min flow rate). The moving and deposition of the particles were evaluated by
a CT figure of the human respiratory tract, puted into CATIA V5 software for modeling and
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other operations, and also imported into the ABSYS FLUENT using the Lagrangian method.
The highest deposition rate was obtained for particulate matter with diameters between 5
and 10 µm during normal breathing (30 L/min flow rate). The deposition rate was highest
when the particles were 1 µm in diameter and during light breathing (15 L/min flow rate).
The resultant surfaces were affected based on inertial collisions respiratory patterns of the
RSP with different diameters.

Lintermann et al. [28] researched the deposition of aerosols in the human upper
tracheobronchial airway by using a unidirectional coupled Euler-Lagrange method to
investigate particle flow. Aerosol flow was also accompanied by particle solvers by simula-
tion with the Lattice Point-Boltzmann method. Here, 0.32 of the heavier and larger particles
were deposited into the deeper parts of the airway. Moreover, only 0.069 of particles with a
size of 2.5–10 µm were deposited in the first six Bronchus. These areas included the primary
bronchi, large lobe bronchi, and segmental bronchi, indicating that most of the respirable
particles within the range of 2.5–10 µm were deposited in deeper sites and would have a
greater impact on the body. In another study, Shen et al. [77] investigated the factors influ-
encing the deposition of particulate matter in the human respiratory system by establishing
a 3D numerical model of the respiratory tract in normal humans. The study was conducted
by simulating the distribution pattern of airflow during inhalation and changing parame-
ters such as particle diameter, density, and respiratory airflow rate through comparative
analysis. It was concluded that the particles were mostly deposited in the airway where
the geometry was complicated or airway direction was drastically changed. The airway
deposition rate was affected by particle diameter, density, and respiratory airflow rate.

The studies above assumed that particulate matter was a regular spherical shape,
which was also the assumed ideal existential state. Nevertheless, irregularly shaped
particulate matter was also studied. For example, Dastan et al. [78] studied the deposition
distribution of irregular respirable particulate matter in the four cases of flow rate of 2.5, 5,
7.5 and 10 L/min respirable particles in the nasal cavity by solving the Navier-Stokes and
continuity equations, to evaluate the airflow field in the nasal cavity. The study concluded
that the aspect ratio of non-spherical RSP is an important factor when studying deposition
distribution patterns.

Additionally, Sturm et al. [79] simulated the moving and deposition of particles in
individual structures of the trachea and bronchi tract by studying the inhalation of aerosols
and RSP in people of different ages. The RSP were of different shapes and sizes, and a
stochastic model of the bronchus tree with thorough research and analysis of deposition
equations was used. The resulting amount of surface deposited mass was positively
correlated with age, with a lower probability of reaching the alveoli in infant and pediatric
lungs but mostly in adolescent and adult lungs. These studies suggest that the RSP’s
surface, size, shape, and other factors can significantly impact the deposition of particulate
matter in the airways.

Zhang et al. [80] useda modified commercial finite-volume code approach to simulate
the effect of the impact and settling on the transport and deposition of particulate matter,
and concluded that impactors were medium-sized at flow rates of 15–30 L/min.The main
influencing mechanism of the airway, and for the large-sized airway, the subsidence, plays
a decisive role at the moving speed of 3.75 L/min. Nicolaou et al. [81] performed direct
numerical simulations of an oropharyngeal model (Figure 3) and a bifurcated airway model
to investigate the moving and deposition of PM in these two models. Here, simulation
results were compared without the effect of gravity. It was discovered that the particles
with a high Stokes number were mainly deposited in the mouth, larynx, trachea, and
subbranch. This impact and deposition had a positive effect on the deposition of respirable
particles, while the final deposition results varied for different shapes of the bifurcated
model, when the exercise intensity is high, the deposition rate of large respirable particles
in the upper half of the bronchi is about 2.3 times that of small particles.
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In another study, Lin et al. [82] simulated the trajectory of respirable fibers by solving
a system of waste linear equations and the respiratory effects within the respiratory system.
The results showed that the Brownian force is the most important factor influencing
the movement and deposition of respirable fibers in the human trachea and bronchi.
Feng et al. [83] used a newly proposed fluid particle motion model for the movement of
e-cigarette aerosols at the G3-G6 trachea and compared the movement with the transport
of traditional cigarettes. Data revealed that e-cigarettes had a greater impact on our trachea
compared to cigarettes. Furthermore, Chen et al. [84] developed a new CFD-DEM program,
which used analog computing in the deposition of PM in the human airways. Data
revealed that the initial position of particles in the airways has a great influence on the final
deposition position of respirable particles. CFD analysis of the deposition of respirable
particles in the human airways also revealed the lack of uniformity at different motion
intensities. Qihong Deng et al. [85]. used CFD to simulate the deposition of inhalable
particle in the airway of the human body in polluted air, so as to study the impact of the
human body in a polluted environment. The results showed that the deposition position of
particles under different exercise intensities was inconsistent.

Modeling of the respiratory tract has gradually moved from modeling with anatomical
data to modeling using computers. Due to the development of computer technology, schol-
ars are now using CT or MR scans to model the respiratory tract. Rahimi-Gorji et al. [86]
used computerized scanning technology (Figure 4) and CATIA modeling, to conduct re-
search, and the conclusions drawn are closer to the real situation, with an error of no more
than 12.1% from the real situation. Kabilan et al. [87] obtained geometry data based on CT
scans of the respiratory tract. The scans modeled the entire tract, from the external section
of the nose to the pulmonary airways, with a total of 272 exits in the human model. The
study’s data demonstrated that regional spore deposition patterns were sensitive to airway
geometry and ventilation profiles, with approximately 6% of the 1 µm sized particles being
deposited on the bronchi. Corresponding experiments using µ CT on rabbits further ob-
tained airway geometry data for comparison with a solid radiological model and revealed
2878 exits.
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Although differences between the scans and reality are present, computer scans
are rather accurate, advancing the field. Alternatively, Islam et al. [88] used the Euler-
Lagrangian method to decipher the calculated continuous and discrete phases. The dis-
persion and deposition of DEPM nanoparticles in the developed anatomical model used a
Lagrangian-based discrete phase model (DPM). Deposition distribution of the particulate
matter was different between the left and right lungs of the human body, which could be
due to the different structures of the human lungs.

Although previously, modeling data were obtained through dissection for simulation,
which has its disadvantages, computer-based simulation also has its limitations. Computer-
driven assumptions are based on an ideal scenario when the reality differs. Nevertheless,
the challenges in obtaining an accurate distribution of particle deposition in the respiratory
tract and radiopharmaceuticals can be misleading in the clinical setting. Therefore, the
literature has comprehensively identified computer simulation as a method in the field of
deposition of respirable particulates matter in the bronchial, which can be further developed
by selecting suitable calculation conditions and methods for simulation.

Previous literature focusing on the bronchial part can be summarized as (1) deposition
is relatively large when the diameter of respirable particles is 2.5–10 µm; (2) an increase in
the deposition amount occurs when particles are less than 2.5 µm in diameter during light
respiration, while when greater than 10 µm, minimum deposition is seen; (3) presently,
all available and validated calculation conditions and methods are suitable to simulate
deposition of respirable matter in the bronchial tubes, but further confirmation is needed
for an optimal approach, and deposition of respirable particles in the bronchial is influenced
by breathing patterns, such as flow of breathing.

5. Deposition of Respirable Particulate Matter in the Alveolar Region of the Lung

The pulmonary alveoli are composed of Class I respiratory fine bronchioles located
distally within the lobules of the lung and the alveoli [89], acting as the basic functional
unit of the lung. The pulmonary alveolar region is the most dominant region of respiratory
function. Thus, the study of respirable particulate deposition in the pulmonary alveolar
region is key for particulate-induced lung diseases, but also challenging. At present, the
study of pulmonary alveoli is mainly divided into the single-alveolar and multi-alveolar
models, both mainly studied utilizing computer simulation.

Due to the complexity of the alveolar region and the limitations of current computer
technology, neither CT nor MR techniques can create a complete and realistic computer
model of the alveolar region; therefore, simplified models are chosen for simulations when
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studying the alveolar region. In a study, Żywczyk et al. [90] established a simulated single-
cell model of the alveoli and used fluid-solid coupling simulation, as well as the Brownian
dynamics algorithm to simulate the transport and deposition of aerosols.

As alveoli can have an effect on the deposition and transport of aerosols, both param-
eters indicate the alveoli’s mechanical properties. Darquenne et al. [91] investigated the
pattern of particle size deposition of respirable drugs in the lungs. A single-alveolar model
was utilized since the whole-lung model was highly erroneous. The study found that when
the particle size of respirable particles was less than 2 µm, the particles were mainly de-
posited in the alveolar region, and the deposition rate is as high as 89.6%. However, the local
nature of the single-alveolar model makes it highly inconsistent with the deposition pattern
of the real pulmonary alveolar model, suggesting the use of the multi-alveolar model.

Sznitman et al. [92] developed a three-dimensional alveolar motion model using
regular respiratory motion and concluded that the alveolar flow pattern is independent
of time. The study also determined that convective alveolar flow has an effect on the
deposition of respirable particles at the alveoli. Sznitman et al. [93] also developed a
multilevel alveolar duct model consisting of a simple alveolar duct and a space-filling
asymmetric alveolar branching tree for simulating particles with particle sizes of 1 and
3 µm to study detailed particle trajectories and deposition efficiencies. This pipeline model
also considers the alveolar flow structure to facilitate the study of surface particle trajectories
and deposition rates that are closely related to gravity. These parameters indicate that
highly variable deposits are produced for inhaled particles with different particle sizes.
Haber [94] et al. further established a three-dimensional alveolar model for the relationship
between alveolar wall motion and deposition and motion trajectories of respirable particles.
Here, the motion of the alveolar wall was key to the deposition of respirable particulate
matter; the deposition was heterogeneous within each alveolus.

Khajeh-Hosseini-Dalasm et al. [95] developed a new space-filling model of the alveolar
region in order to study the correlation of aerosol deposition. The results demonstrated
that the surface’s alveoli had no effect on the total deposition of RSP after more than three
generations of alveolar ducts, and that the orientation angle of gravity had no effect on the
total deposition of particulate matter. Kolanjiyil et al. [96] modeled the entire pulmonary
alveoli(Figure 5), with the alveolar portion approximated as a spherical attachment to a
bifurcated airway duct. Analysis of the location of the surface alveoli revealed that its
location affected the flow and deposition rate of the particulate matter, with the proximal
lung region being dominated by the circulating flow.
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More recently, the alveoli were studied based on the use of simplified alveolar models,
which cannot completely simulate the real lung due to the huge number and variety of
alveoli morphology in the alveolar region. Johannes [97] studied morphological changes
to the alveoli by using three-dimensional visualization of the alveolar’s capillary network
obtained through high-resolution synchrotron X-ray tomography. This method allows a
more complete simulation of the alveolar model in rats (Figure 6), but has not been applied
to humans due to its biological component. Moraes et al. [98] further investigated the
biological role of simulated organs, development of microbial engineering, and construction
of human living organ tissues. However, no major progress was found in the study due
to technical difficulties. Nevertheless, with the advancement of technology, complete
modeling of the human alveoli for the study of deposition patterns of respirable particles
can be achieved.
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6. The Main Research Situation in the Past Five Years

Ching and Kajino [99], through the newly developed particle decomposition aerosol
model, simulated the deposition of 5–20% inhalable soot particulate matter in the human
respiratory tract, and proved the aerosol mixing index has a great effect on the final
deposition efficiency F (Equation (2)).

F =
∑N

i=1 ei(Di, ki)msoot,i

∑N
i=1 msoot,i

(2)

where ei (Di, ki) is the deposition efficiency of particle i with diameter Di and hygroscopicity
ki and msoot,i, is the mass concentration of soot contained in particle i.

Chantal et al. [100] studied the factors affecting the deposition rate of particles of
different particulate matter sizes in the respiratory tract. The particles in the respiratory tract
are not only affected by inertia, gravity and Brownian motion, but also by the interaction
between turbulence. When the particulate matter size is ≥5 µm, most of the particles are
deposited in the upper respiratory tract; when the particulate matter size is 2–5 µm, the
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particles are deposited in the lower respiratory tract; when the particulate matter size is
≤2 µm, the particles are deposited in the alveoli. Li et al. [101], by using the finite difference
way to solve the equation, studied the deposition of particles from different sources in the
respiratory system. The study found that soil particulate matter has a lower density and a
larger particle size, and is deposited in the upper part of the lungs. Particulate matter is
deposited in the lower half of the lungs due to its higher density and smaller particle size.

Manojkumar et al. [102], using the multiple path particle dosimetry (MPPD) model to
study the sedimentation and deposition of PM2.5, PM10 and PM1.0 inhalable particles of
three different particle sizes in the trachea; of which about 45% of PM2.5 and PM1 particles
were deposited in the lungs; found the PM2.5 sedimentation rate wass the highest, and the
upper, middle, and lower parts are lobular sedimentation, accounting for 66.4%, 6.4%, and
27.2%, respectively. For the MDDP model, Manojkumar [103] also conducted a study on the
influence of age and seasonal differences on the deposition rate. Using the MDDP model,
the inhalable particulate matter of residents of different age groups in a certain area of India
in different seasons was estimated. For deposition in the respiratory system, the research
result shows that the total deposition rate of PM10 is the highest, and its deposition rate
is significantly higher than that of PM2.5 in different age groups and different seasons,
and the deposition rate of particles in summer is significantly higher. In other seasons, the
accumulation rate of particles increased with age.

Khan [104] also used the MDDP model to analyze the respiration of PM1, PM2.5, and
PM10 particles of three kinds of particle sizes in different age groups (3 months to 21 years
old) in different seasons of monsoon, winter, and summer. The deposition conditions in
the system have been simulated, and the research results show that the total deposition
rate of particulate matter in winter is about 47%, which is significantly higher than the
deposition rate of 45% in monsoon and summer. The deposition conditions are shownin
Figure 7. The deposition rates of PM10, PM2.5 and PM1 in the respiratory tract are about
90%, 65% and 45%, respectively, that is, the deposition rate of PM10 in winter is the highest
among all cases.
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C = Children; A = Adolescent; A (18) = Adult of 18 years; A (21) = Adult of 21 years.
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For research on different age groups, Miao Liu et al. [105] conducted a special simula-
tion study on children. This study mainly focused on whether children’s blood pressure
(BP) is related to the deposition rate of PM2.5 in the respiratory system. A total of 253
children in two cities in southern China were followed up and tested, and the MPPD
model was also used for simulation to estimate the thoracic/head region (ET), trachea
and bronchi (TB) and alveoli (AR). Regarding the deposition efficiency (DF) of particulate
matter, through the relevant data (Table 4), it is concluded that the deposition of PM2.5 in
children is closely related to children’s blood pressure and interacts, and the deposition is
related to children’s prehypertension. Prevalence is also somewhat relevant.

Table 4. Associations of the tertile of human PM2.5 and its respiratory tract depositions with blood
pressure and risk for prehypertension and hypertension at lag 2 day.

SBP DBP MAP Prehypertension Hypertension

Exposure level % Change
(95% CI)

% Change
(95% CI)

% Change
(95% CI) Case/Total Odds ratio

(95% CI) Case/Total Odds ratio
(95% CI)

PM2.5
T1 (1.14–26.62 µm/m3) Ref. Ref. Ref. 21/263 Ref. 30/263 Ref.
T2 (26.73–49.26 µg/m3) 1.47 (−0.07, 3.02) 2.00 (−0.22, 4.22) 1.75 (0.05, 3.45) 29/266 1.37 (0.75, 2.52) 45/266 1.28 (0.76, 2.15)

T3 (49.41–341.60
µg/m3) 3.62 (1.84, 5.40) 5.14 (2.55, 7.72) 4.44 (2.47, 6.42) 36/265 2.25 (1.13, 4.47) 77/265 2.03 (1.17, 3.53)

P-trend ≤0.001 ≤0.001 ≤0.001 0.023 0.013
ET

TI (2.82–68.26 µg) Ref. Ref. Ref. 16/264 Ref. 20/264 Ref.
T2 (68.41–154.55 µg) 2.66 (1.04, 4.29) 1.46 (2.15, 6.76) 3.64 (1.87, 5.41) 27/265 2.34 (1.23, 4.44) 37/265 2.02 (1, 4.09)
T3 (154.89–1644.8 µg) 4.85 (2.91, 6.78) 8.32 (5.54, 11.09) 6.86 (4.74, 8.98) 43/265 4.39 (2.03, 9.47) 95/265 3.78 (1.77, 8.07)

P-trend ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001
TB

T1 (0.67–12.85 µg) Ref. Ref. Ref. 18/264 Ref. 25/264 Ref.
T2 (12.96–25.14 µg) 1.86 (0.33, 3.39) 2.98 (0.79, 5.18) 2.50 (0.82, 4.18) 28/265 1.67 (0.87, 3.22) 44/265 1.63 (0.90, 2.94)

T3 (25.15–190.61 µg) 4.49 (2.74, 6.24) 5.99 (3.44, 8.54) 5.35 (3.41, 7.30) 40/265 3.22 (1.56, 6.63) 83/265 2.27 (1.24, 4.14)
P-trend ≤0.001 ≤0.001 ≤0.001 ≤0.002 ≤0.006

AR
T1 (0.91–19.66 µg) Ref. Ref. Ref. 17/264 Ref. 20/264 Ref.
T2 (18.7–39.34 µg) 1.62 (0.04, 3.20) 3.93 (1.68, 6.18) 2.90 (1.18, 4.62) 29/265 1.79 (0.93, 3.45) 36/265 1.81 (0.95, 3.43)

T3 (39.53–319.54 µg) 4.54 (2.64, 6.44) 7.68 (4.95, 10.41) 6.35 (4.27, 8.44) 40/265 2.41 (1.15, 5.05) 96/265 3.35 (1.72, 6.54)
P-trend ≤0.001 ≤0.001 ≤0.001 ≤0.017 ≤0.001

Mean arterial pressure (MAP), Systolic blood pressure (SBP), Diastolic blood pressure (DBP).

Several studies have examined the question of whether outdoor sports and the perfor-
mance of outdoor sports is related to the deposition of particulate matter. Zoladz et al. [106]
conducted a simulation study on the running performance of marathon runners and the
deposition of PM2.5 and PM10 in the human respiratory system. The research results show
that when the breathing rate of ordinary marathon runners is 8 L/min, the deposition rate
is 9 µg/h. When the breathing rate is 65 L/min, the deposition rate reaches 45 µg/h. For
professional marathon runners, the deposition rate will be 22% higher than that of ordinary
marathon runners. The analysis results show that there is a certain relationship between
marathon performance and deposition rate, and there is an inverse correlation.

7. Deposition of Respirable Particulate Matter in Pathological Models

The general population is exposed to polluted air for prolonged durations due to
unavoidable factors such as daily commute and occupation, leading to the develop-
ment of respiratory diseases. As a consequence, pneumonia, bronchial obstruction and
chronic obstructive pulmonary (also known as COPD) diseases have become common lung
diseases [42,107], all of which affect the deposition pattern of particulate matter of the lungs.
COPD is particularly associated with a high death rate [108,109]. Darquenne et al. [110] in
their analysis of healthy individuals and patients with COPD found that the total deposition
of aerosols did not significantly differ among any of these groups (Table 5). Additionally,
total deposition increased with the diameter of the particulate matter and flow rate, but
heterogeneity was greater in COPD patients. Ganguly et al. [111] experimentally simulated
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the deposition of particulate matter in the lungs of COPD patients with varied success.
Here, deposition, distribution and clearance of particulate matter in the lungs of COPD
patients were greatly influenced by particle characteristics.

Table 5. The relevant anthropometric data of the subjects [110].

Anthropometric Data
Health Status Subject No. Gender Age Height, m Weight, kg FEV Predicted FEV/FVC

H 1 M 35 1.70 68 1.13 0.88
H 2 M 52 1.65 97 1.17 0.79
H 3 M 47 1.83 89 0.85 0.74
H 4 M 26 1.83 82 0.94 0.8
H 5 M 34 1.93 100 1.04 0.84
H 6 M 21 1.68 54 0.89 0.73
H 7 M 21 1.73 64 0.95 0.81
C 1 M 57 1.64 70 0.60 0.56
C 2 M 55 1.78 66 0.56 0.48
C 3 M 45 1.80 83 0.69 0.67
C 4 M 54 1.87 84 0.58 0.52
C 5 M 62 1.88 87 0.67 0.47
C 6 M 45 1.78 75 0.83 0.66

M: Male, F: Female, H: Healthy, C: COPD.

Wang et al. [112] elaborated on aerosol deposition, dissolution, absorption and clear-
ance in diseased lungs, and found that varied lung lesions with varied degrees also greatly
influenced aerosol deposition. Zhuang [113] discussed the moving and deposition pat-
terns of respirable particulate matter in the respiratory tract of COPD patients utilizing
mathematical physical models and numerical discussions. The effect of multiple factors
such as obstruction rate and location, as well as work intensity, on the simulation results
were analyzed. The results revealed that (1) respiratory tract deformation has an effect
on the form of deposition, (2) the level of intensity of motion has a great effect on the
symmetry of particulate matter deposition, and (3) the size of the particles has an effect on
the deposition rate.

Tohidi et al. [114] simulated the deposition of micron-sized droplet particulate matter
in the nasal cavity of two patients with nasal airway obstruction and showed that patients
with nasal tract obstruction had significantly higher inertia than healthy individuals; the
deposition rate increased by about 23.4%. The inertial mechanism was the main factor
influencing the amount of deposition relative to the diffusion mechanism,. Deng et al. [88]
simulated the airways of healthy and asthmatic patients with the gas-solid mix flow,
utilizing three different flow rates. The research results revealed that the deposition rate of
particulate matter was bigger in the asthma simulation, therefore concluding that asthmatic
patients were more susceptible to PM2.5. Similar research was finished by Zhang et al. [115]
for childhood asthma, where the airway of a 4-year-old with asthma was modeled in
two dimensions; the airway diameter of the model was reduced by about 40% and 60%
compared with normal children, and CFD was used to simulate the airway airflow as
well as the deposition of particulate matter; the particle size of the particles was 1–10 µm.
To investigate the influence of obstruction on particulate matter deposition in COPD
patients, using the ideal COPD model (Figure 8), Luo et al. [116] used CFD to solve the
three-dimensional incompressible N-S equation and showed that particle deposition had a
significant effect (Figure 9) at the lower end of the obstructed airway.
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8. Simulation of COVID-19 Models

In the present day, COVID-19 has become a major respiratory illness, warranting in-
depth research. Prinz et al. [117] through a survey and study of 100,000 German residents
(Tables 6 and 7), found that patients with COVID-19 who lived for a long time in an
environment with large amounts of respirable particles in the air had a higher PM2.5; in
the air with an increase of 1 µg/m3, the incidence of COVID-19 patients will increase by
0.002%, and for each increased concentration of PM10 in the air by 1 µg/m3, the incidence
of COVID-19 patients will increase by 0.00053%. So in the air, there is a positive relational
between the concentration of pollutants and the incidence of COVID-19. Bianconi et al. [118]
investigated the mortality rate of COVID-19 patients and the air quality in various regions
of Italy and showed that PM2.5 and PM10 in the air were responsible for increased mortality.
Mehmood et al. [119] found that the level of PM2.5 in the air had a great influence on the
incidence of COVID-19.

Table 6. COVID-19 cases per 100,000 inhabitants and Kriging-interpolated PM10 pollution [117].

Variable Basic Model Standardized
Coefficients

State Fixed Effects
Model

Standardized
Coefficients

Distance to Ischgl −1.892 −0.4349298 −1.802 −0.4141894
Distance to nearest German hotspot 1.782 0.1530381 1.955 0.1679186

Nursing home places per 100 k
inhabitants at 75 and older 0.017 0.03517896 0.047 0.09850678

Share of people >75 years 3709.915 0.0668369 1551.69 0.02795485
Population density 0.275 0.2033308 0.167 0.1234201

Commuter flow −0.004 −0.09751138 −0.003 −0.0743129
Avg. PM10, 2002 to 2020 52.381 0.1689943 36.08 0.1164028
Avg. Income 2002 to 2018 4.772 0.01166486 10.994 0.02687409

East Germany 544.945 0.2241532
Border with Czech Republic 1900.803 0.3644518 1422.722 0.2727866

Constant 1600.346
Fixed effects NO YES
Observations 400 400

Adj. R2 0.463 0.145
F Statistic 35.406 10.166

Table 7. COVID-19 cases per 100,000 inhabitants and Kriging-interpolated PM2.5 pollution [117].

Variable Basic Model Standardized Coefficients State Fixed Effects Model Standardized
Coefficients

Distance to Ischgl −1.892 −0.4349298 −1.802 −0.4141894
Distance to nearest German hotspot 1.782 0.1530381 1.955 0.1679186

Nursing home places per 100 k
inhabitants at 75 and older 0.017 0.035117896 0.047 0.09850678

Share of people >75 years 3709.915 0.668369 1551.69 0.02795485
Population density 0.275 0.2033308 0.167 0.1234201

Commuter flow −0.004 −0.09751138 −0.003 −0.0743129
Avg. PM10, 2002 to 2020 52.381 0.1689943 36.08 0.1164028
Avg. Income 2002 to 2018 4.772 0.01166486 10.994 0.02687409

East Germany 544.945 0.2241532
Border with Czech Republic 1900.803 0.3644518 1422.722 0.2727866

Constant 1600.346
Fixed effects NO YES
Observations 400 400

Adj. R2 0.463 0.145
F Statistic 35.406 10.166
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A large body of literature also suggests that air pollution increases mortality in COVID-
19 patients and sequelae in recovered patients [120–123]. Cruz et al. [124] studied the
deposition of particulate matter during endurance exercise and the entry of the COVID-
19 virus into the respiratory tract. A surface study of the virus revealed that COVID-19
enters the respiratory tract similarly to when the human body does endurance exercise.
Workman et al. [125] studied the aerosol dispersion in the olfactory and respiratory ep-
ithelium of COVID-19 patients and discovered that olfactory dysfunction affected particle
deposition in COVID-9 patients. Ongoing studies focusing on COVID-19 patients are
proposing effective prevention and treatment options for the respiratory characteristics and
physiological properties of COVID-19.

9. Future Key Research Directions and Contents

In summary, RSP has a great influence on the human respiratory system, and the flow
and deposition pattern of particulate matter, slowly changing from universal to specific
effects. The current research methods include theoretical analysis, computer simulation
(CT and MR), and solid modeling mostly utilizing computer simulation. Future research
is predicted to be on (1) the affection of various respiratory diseases on the deposition of
particulate matter, (2) the influence of external factors such as temperature and humidity
of the air during respiration, as breathing affects the humidifying and heating of air,
(3) the validation of computer simulation experiments by comparing with the simulation
of air and non-physical experiments, which would be better compared with physical
animal experiments, 4) the biological characteristics of the human body, whereby computer
simulation cannot completely simulate the human body, for example, the elasticity and
viscosity of the bronchi, and the roughness inside the trachea. Therefore, these data are
ignored during simulation, although they carry clinical significance for the in-depth study
of the deposition of particulate matter.

10. Conclusions

This article introduces the impact of particles with different particle sizes on human
health, and the impact on the human body at different concentrations. At the same time, it
also introduces the moving and deposition of particulate matter in the upper respiratory
tract, lower respiratory tract and pulmonary acinus of the human body, modeling the
upper respiratory tracts and lower respiratory tracts in various ways, and then conducting
CFD simulations, as well as research on the deposition of particles in the alveoli, and
some typical ill-conditioned models are simulated. With the continuous advancement of
technology, the continuous development of CT, MR and computer simulation technologies
have an important role in the prevention, treatment and research of diseases caused by
particulate matter and complications of some other diseases (such as COVID-19, COPD,
lung cancer, etc.).

The next direction of work:
1. Since human respiration is a complex process, under normal circumstances, the

respiration rate changes periodically with time, and the process of exhalation and inhalation
will have a great influence on the deposition of particles. In future research, the effects
of periodic changes in the respiratory rate in COVID-19 patients on particulate matter
deposition should be considered.

2. Further research is needed on the deposition and transport of ultrafine particulate
matter (PM ≤ 0.1) [126–128] and heavy metal particulate matter in the respiratory system
of COVID-19 in humans.

3. Due to the underdevelopment of children’s respiratory tract, children are more
seriously affected than adults by the deposition of particles [129]. A study on the deposition
of particles in children with congenital breathing diseases and infected with the COVID-19
virus, and research on the deposition of particulate matter in elderly persons with COVID-
19 who suffer from geriatric diseases are future research topics. Another research area is
the causes of harm to COVID-19 patients.
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4. The incidence of certain respiratory diseases (such as asthma) at night is different
from that during the day. It will be further discussed whether the deposition of particles in
the respiratory system of COVID-19 patients is affected by night or day.

5. The production of inhaled COVID-19 targeted drugs and improvement of the
targeting of drugs [130], and the precise delivery of drugs to lesions will be the main
research direction of the World Medical Organization in the future. Inhalation therapy will
be effective to treat COVID-19 and prevention will play an important role.
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