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Abstract: On the one hand, the twin perspectives of the construction industry and urban agglom-
eration proliferate economic prosperity. However, on the other hand, construction activities and
increased population density give rise to environmental challenges. This study is an initial attempt
to explore links between the construction industry, urban agglomeration, non-renewable energy
utilization, carbon dioxide emissions (CO2e), and economic output within a system of simultaneous
equation modeling. This study develops modeling specifications to include the construction industry
as a shifting factor and CO2e as a determinant of technical efficiency. A heterogeneous fully modi-
fied ordinary least squares (FMOLS) technique, capable of providing concrete empirical outcomes
even in the presence of modern panel-data econometric issues, is utilized for the data of China’s
30 provincial/ city divisions during the 2003–2019 period. It has been revealed that: (i) the influence
of urban agglomeration on the economic output was heterogeneous, with an adverse link for China’s
western part, neutrality connection for the central part, and favorable for China’s eastern part; and
(ii) shifting from China’s western to eastern parts, the expansion of the construction industry has a
significant impact on economic output, and, hence, has been described as “the Economic Effects of
Urban agglomeration” for the Chinese economy. The policies of this study have crucial lessons for
global economies.

Keywords: simultaneous equation modeling; construction industry; urban agglomeration; non-renewable
energy utilization; CO2e; economic output; heterogeneous panel; China

1. Introduction

During the preceding few decades, the curtailment of greenhouse gas (GHG) emissions,
such as carbon dioxide emissions (CO2e), has become the prime concern of the developed
and rapidly developing economies worldwide to pursue climate-change mitigation. For
that purpose, the primary step taken by those economies was the FCCC (Framework
Convention on Climate Change) framework, established in Kyoto (Japan) in 1997, which
was found to be insufficient in strategic plans to obtain the desired aims. Thus, it was
followed by the enactment of the Kyoto Protocol in the same year [1]. However, the Kyoto
Protocol became effective in 2005, under which around 37 European and some highly
industrialized economies of the world agreed to provide emissions reduction targets [2].
Most recently, the number of member countries reached 191 after the backlash of the USA’s
withdrawal from the Paris Agreement [3]. The members of the Kyoto Protocol are directed
to ensure the progress of environment-friendly energy technologies and enforcement of
climate-change-mitigation strategies and policies.

In view of the 13th Five-Year Plan of China, the pace of urban agglomeration and
infrastructure prosperity is proposed to be boosted through the promotion of urban resi-
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dency facilitation, urban-infrastructure development, green-energy development for the
sustainable-construction sector, the transformation of cities in terms of better environ-
mental quality, the competitiveness of cities, and living standards of people. The lessons
drawn from this work comply with the above-mentioned plans. This work would be
helpful in policy reforms in countries with varying levels of development, which are un-
dergoing rapid construction-industry development and urban agglomeration, along with
confronting environmental-sustainability challenges. The future avenues of this work
may involve including renewable-energy consumption in relation to its role in urban and
construction-sector development to mitigate environmental degradation.

Considering the long-standing tendency of previous studies on construction industry-
energy-environment-urban agglomeration-economy nexuses, the review of existing lit-
erature can be classified into the following research streams: (1) urban agglomeration-
environment-economic output, (2) non-renewable energy-environment-economic output, and
(3) construction industry.

Reviewing the first research stream, Zhang et al. [4] mainly focused on what it was,
how it was explained, and what effective models were related. Their study demonstrated
four steps for urban concentration and different methods and tactics to describe it in detail.
The prime focus of Jayasooriya [5] was to investigate the origin of its sustainable progress.
It explored the effect of urban concentration in regional China by taking 31 Chinese regions
from 2004–2015, in which the population and population density were used as a proxy
for urban agglomeration, and tested their relationship with economic output. Population
and population density were used to expose the influence of urban agglomeration on
economic output. The hypothesis developed stated whether there was any relationship
between agglomeration and energy output. The outcomes elaborated their affirmative
interlink, which implied that the growth increased with an increase in agglomeration, but
it started declining upon reaching a specific point. Tripathi [6] focused on exploring the
impacts of urban agglomeration on economic output in India by using dynamic and static
panel-data methods from 2000–2009. The study was composed of 52 cities in India. The
findings indicated a positive and statistically significant linkage between urban concentra-
tion and economic output by considering Williamson’s hypothesis that urban concentration
increased economic output up to a limited level; after that, it started declining. Economic
output could also be increased through human capital. Besides, Ahrend et al. [7] explored
the effect of urban concentration on economic output. In addition, it examined the addi-
tional factor of labor productivity, and an increase in population caused an increase in labor
productivity in large cities as large cities provide ‘agglomeration economies’ for laborers
who worked in bigger cities comparatively.

Moreover, Aftab et al. [8] attempted to find the effect of urban agglomeration on energy
output in Punjab, Pakistan. For this purpose, data were collected from different districts
of Punjab. A recursive economic technique was used. Their outcomes indicated that laws
made by the government, the area of districts, and the size of the market positively affect
urban agglomeration. But the two factors, the level of urbanized districts and the number
of vehicles, affected it negatively. The findings based on the economic output model sign-
posted the existence of a positive and statistically significant impact of urban concentration
on economic output. A piece of research by Khobai and Roux [9] explained the influence of
urban agglomeration on electricity utilization in South African economies from 1971 to 2013.
The labor, capital, and trade openness are taken as confounding variables. After utilizing
the Granger causality approach (GCA) and Johansen cointegration, their outcomes revealed
cointegration among all variables. Faisal et al. [10] researched the connection among power
utilization, energy output, trading, and urban agglomeration in Iceland over the period
of 1965 to 2013 by applying GCA under the vector error correction model (VECM). The
empirical outcomes illustrated the short- and long-term causality among energy utilization
and its variables. In a similar fashion, Wang and Li [11] inspected the relationship of
urban agglomeration with energy efficiency by taking data from 77 nations during the
1995–2012 period and employing a random approach. The outcomes demonstrated that
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agglomeration increased electricity usage but decreased energy-utilization efficiency. The
said inefficiency of electric energy utilization was of a profound level for the nations with
greater GDP.

Besides, Zhang et al. [12] conducted an exploration of the influence of urban ag-
glomeration on electricity usage and CO2e in different provinces of China. Their findings
illuminated that urban agglomeration contributes a substantial part to increasing electric
energy utilization and CO2 discharge. Also, it varied from province to province, as, in
northern China, there was more urban concentration, discharge, and electric energy uti-
lization compared to its southern part. Based on the surveyed literature, Du and Xia [13]
studied the linkage between urban agglomeration and GHG emissions over a period of
1971 to 2012, employing panel data from sixty countries and utilizing threshold modeling.
They revealed that the urban agglomeration increased those emissions more intensively
when the CO2e surpassed 42,287 kt. Similarly, Liu and Liu [14] investigated the effect
of disparity among regions of China and the spatial influence of urban agglomeration
on CO2e by modifying the STIRPAT and spatial Durbin models and found a significant
effect of both on CO2e. Dong et al. [15] took data from 126 countries from 1990 to 2026
and examined the linkage between urban agglomeration and PM2.5 discharge by using a
stochastic approach. The results found an inverted U-shaped curve between the variables
of interest. In another empirical research, Wang et al. [16] tested the spatial effect of urban
concentration on CO2e in different sectors of China by using a weighted regression model
and found there is a different spatial effect of urban agglomeration in different regions for
different sectors.

Regarding the second research stream, Wang et al. [17] examined the linkage between
energy utilization and the progress of the economy in Kazakhstan by integrating labor,
capital, and openness to trade as additional factors and used annual data from 1991 to
2014. For this purpose, VECM, GCA, and autoregressive distributed lag (ARDL) bounds
testing methods were used. The findings indicated that energy utilization increased energy
output and labor-force participation, and that trade openness boosted energy output.
Therefore, there was a strong relationship between them in the long run. In another work,
Ali et al. [18] focused on examining the linkage between energy utilization, the progress
of the economy, and trade for the case of the Indian economy by using GCA, VECM, and
the long-run cointegration approach from the period of 1971 to 2016. The findings directed
that energy utilization accelerated economic output. The causality that flowed from power
consumption to economic output also existed. Li and Wei [19] inspected the correlation
between electricity use and economic output in China from 1980–2013 by applying unit
root test statistics. Dynamic linkages between both variables were determined using a
VECM approach. The results emphasized a bidirectional linkage between electricity use and
economic output in the long-term perspective. It meant that economic output was amplified
with an expansion in electricity use. In another pioneer research, Sun et al. [20] assessed
the linkage between energy utilization and economic output by using GCA in seventeen
industries in Taiwan from the time period of 1998 to 2014. The findings designated the
presence of bilateral causal linkage, and a long-term linkage existed between both variables.
Therefore, energy utilization encouraged economic output. Additionally, the linkages
between energy utilization and economic output in different income segments of different
countries have focused on the 1970–2015 period by applying the GCA and panel ARDL
boundary approach. Besides, Salman et al. [21] inspected the impact of local institutions
on economic growth and CO2e in East Asian economies (Thailand, South Korea, and
Indonesia) from 1990 to 2016. They ended up with a significant and affirmative effect of
institutions on economic growth and CO2e as economic growth increased, while CO2e
decreased by using fully modified OLS (FMOLS) and dynamic OLS (DOLS) methods.
Yaşar [22] aimed to find whether the strength of the relationship differs in different income
group levels of different countries. After testing the hypothesis, it was found that the
linkage between power utilization and energy output varies per the variation in various
levels of income groups from different countries.
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Furthermore, Saint et al. [23] assessed the relationship between energy utilization,
CO2e, energy output, and globalization in Turkey from 1970 to 2014 by using the ARDL
approach. Their results uncovered that there was an insignificant impact of globalization on
CO2e, while energy utilization and real earnings significantly affected pollutant discharge.
Wang et al. [24] examined the effect of economic structure, investment, and intensity of
energy on CO2e by using decoupling and decomposition methods in the USA and found
that CO2e increases due to economic structure and investment effect. At the same time, it
decreases due to energy intensity. Similarly, Han et al. [25] studied the trilateral causal link-
age between CO2e, material reserves, and energy output by using decoupling analysis in
less urbanized provinces of China and found relative decoupling as average elasticity was
smaller than one. Rahman [26] investigated the impact of electricity use, energy output, and
globalization on CO2e by taking data from 1971 to 2013 from the top ten power-utilizing
countries. The findings showed that electric energy utilization and output imparted a sta-
tistically significant and positive influence on CO2e. However, globalization demonstrated
a significant adverse effect on CO2e. Kahouli [27] investigated the causality linkage among
energy utilization, CO2e, energy output, and research and development (R&D) stocks in
Mediterranean countries. In this regard, a unidirectional causality was found between R&D
stocks and electricity consumption in 3SLS, and also unidirectional causality flowing from
R&D to CO2e and R&D to economic growth was found through the generalized method
of moments (GMM) estimator. Furthermore, Ardakani et al. [28] tested the influence of
energy utilization, economic output, and financial growth on CO2e by using GCA from
1980 to 2013 in Kuwait. Their findings showed that electricity use, energy output, and
foreign direct investment accelerate CO2e. Zhao et al. [29] discussed that switching towards
electrical devices in replacement of fossil-fueled appliances can cause a decrease in CO2e
in China by maintaining economic output and gross domestic product. Thus, coal and oil
electricity transformation resulted in a reduction of CO2e, while there was no significant
effect of gas electricity transformation on CO2e abatement.

Concerning the third literature stream, a few studies dealt with establishing linkages
of the construction industry with the environment and economy. For instance, Ahmad
and Jabeen [30] applied the GMM technique to data from China’s 30 provincial divisions
to analyze the interactions among the construction sector, aggregate output, and electric
power consumption. The authors revealed a positive contribution of the construction
sector to electric power consumption. However, they overlooked the consideration of
environmental indicators in their study, leaving a critical research void. Cheng et al. [31]
applied a Malmquist carbon emissions performance index (MCEPI) to China’s provincial
data over the 2004–2016 period to examine the contributions of the construction industry to
regional CO2e. They observed the highest performance of those emissions across eastern
China. Similarly, Zhao et al. [32] used a Logarithmic Mean Divisia Index (LMDI) approach
to data from Hangzhou city, China, in order to estimate the contribution of the construction
industry to the CO2e of the city. They uncovered that the construction industry-based
indirect emissions exceeded those produced within Hangzhou by construction activities.
In their work, Yao et al. [33] employed the social–technological transition model in China’s
data to inspect the low-carbon transitional level (LTL) achieved by the construction industry.
They found that technological factors could promote the positive effects of LTL within the
construction industry.

The above-illustrated review of previous works identifies the following literature gaps.
Firstly, studies on links between urban agglomeration and the construction industry are
scarce. Secondly, no single research has been found to examine the interlinks of the con-
struction industry, energy utilization, and urban agglomeration in the economic-modeling
framework. Thirdly, the previous studies lack unanimous agreement on the nature of
connections based on the urban agglomeration–CO2e nexus, construction industry–CO2e
nexus, and economic output–CO2e nexus. Fourthly, concerning the present work, no study
has been discovered delving into the combined connections among urban agglomeration,
construction industry, energy utilization, economic output, and CO2e in the economic mod-
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eling specifications. Finally, the previous research works did not employ heterogeneous
FMOLS, which allows for heterogeneity across cross-sectional units.

This study’s objective is to investigate the potential for causal linkages between the
construction industry, urban agglomeration, utilization of non-renewable energy sources,
CO2e, and economic output for thirty Chinese provinces and cities throughout the period
2003–2019. The results of this research provide crucial policy recommendations in addition
to stylized empirical findings. Hereunder are some innovative additions that this research
offers to the growing corpus of the new pool of literature. To put it in more technical
words, first, this study expands the economic output model by Ahmad and Jabeen [30] to
include the construction sector and urban agglomeration as shift components and CO2e as
a predictor of technical efficiency. This was done in order to make the model more com-
prehensive. Second, this study develops a theorized connection between the construction
industry, urban agglomeration, the utilization of non-renewable energy sources, CO2e,
and economic output. Third, to investigate the five different ways research variables are
connected to one another, this study devised a simultaneous five-way structural model
system. Fourth, this research work takes into account the potential panel heterogeneity for
which the second-generation heterogeneous FMOLS technique developed by Pedroni [34]
has been used in order to provide accurate estimates that are resistant to cross-sectional
dependency and heterogeneity.

2. Materials and Methods
2.1. Data and Theoretical Modeling

The data for this research, which covers a period spanning from 2003 to 2019, comes
from a variety of China Statistical Yearbooks and includes 30 provinces and cities in China.
Table 1 provides explanations of variables. The data calculations of CO2e are presented
in Figure 1. The data trends of the study variables can be viewed in Figure 2. Besides, the
data trend comparisons for value addition of the construction industry across various parts
of China are shown in Figure 3.

The official data on CO2e were unavailable for the Chinese economy’s provincial
divisions. Hence, a dataset of CO2e for 30 provincial divisions of China has been calculated.
The burning of fossil fuels has been attributed to be the chief source of industry-based [35]
and households’ direct and indirect CO2e [36]. According to the methodology set up by the
Intergovernmental Panel on Climate Change (IPCC) [37], the CO2e data are calculated by
choosing the nine frequently utilized energy products by both industries and households.
These energy products included coal, coke, fuel oil, diesel oil, crude oil, gasoline, natural
gas, kerosene, and electricity. Luo et al. [38] opted for the same energy products for the
CO2e data calculation. The following equation has been used to calculate CO2e:

CO2el = ∑30
k=1 ∑9

l=1 CO2ek,l = 44/12×∑30
k=1 ∑9

l=1 CENPk,l × NCAMk,l × FCOMk,l (1)

where ‘k’ and ‘l’ demonstrate China’s provincial divisions and energy products, respectively.
44/12 denotes the constant measure of weighted CO2e fraction in the carbon element of
CO2e, CENP represents the energy products’ consumption, NCAM denotes the average net
calorific measurement, and FCOM indicates the factor of combined CO2e from nine energy
products. The CENP data are compiled from province-specific China Energy Statistical
Yearbooks from 2002 through 2020. Moreover, the parametric values for NCAM and
FCOM are extracted from IPCC [37]. Figure 1 shows the average of NCAM and FCOM
for the consumption of each energy product. Detailed explanations of the formation and
calculations of NCAM and FCOM can be obtained from the previous studies [35–38].
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Table 1. Data explanations.

Data Explanations Variable and Symbols

Gross domestic product Transformed into per-capital format Economic output (ECO)

Urban population Population in urban settings percent of the
aggregated population Urban agglomeration (UBA)

Total non-renewable energy utilization Transformed into per-capital format Non-renewable energy utilization (EUT)
Physical capital Calculated from the perpetual inventory method Physical capital (PCP)

Carbon dioxide emissions CO2e is calculated following [32] CO2e

Value-addition by the construction industry Transformed using the economic output and used
in percent format Construction industry (CNI)Processes 2023, 11, x FOR PEER REVIEW 6 of 22 
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To begin with, technical efficiency has been added to a model of economic output that
is based on the Cobb–Douglas production system and uses the constant scaling returns
method described by Ahmad and Jabeen [30]:

ECOi,t = Ai,tPCPα
i,tEUTβ

i,t N1−α−β
i,t (UBAi,t)

ϕ (2)

where ECO denotes economic output, A denotes the technical efficiency, PCP is indicative
of the physical capital formation, EUT is the demonstration of the non-renewable energy
utilization, N is the demonstration of the skilled and unskilled labor force, and UBA is
indicative of the urban agglomeration.

Equation (2) is modified by integrating the factor of the construction industry (CNI)
to give Equation (3):

ECOi,t = Ai,tPCPα
i,tEUTβ

i,t N1−α−β
i,t (UBAi,t)

ϕ(CNIi,t)
ψ (3)

Next, according to Ahmad and Wu [39], CO2e can influence technical efficiency.
Herein, CO2e is injected into Equation (3) to determine the technical efficiency. Ceteris
paribus, CO2e is plugged into Equation (3):

ECOi,t = PCPα
i,tEUTβ

i,t N1−α−β
i,t (UBAi,t)

ϕ(CNIi,t)
ψ
(

CO2ei,t

)λ
(4)

As per recommended specification of Ahmad and Khan [40], Equation (4) is normal-
ized by the labor force. Furthermore, natural log transformation is applied:

lnẼCOi,t = αlnP̃CPi,t + βlnẼUTi,t + ϕlnUBAi,t + ψlnCNIi,t + λlnCO2ei,t (5)

where ~ is indicative of the per-labor format of Equation (5). As a next step, Equation (5)
has been modified into an empirical modeling format.

2.2. Empirical Modeling

Equation (5) can be expressed as follows in the econometric formulation:

lnẼCOi,t = αlnP̃CPi,t + βlnẼUTi,t + ϕlnUBAi,t + ψlnCNIi,t + λlnCO2ei,t + ei,t (6)
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From Equation (5), five modeling specifications are presented to consider each of
economic output, non-renewable energy utilization, urban agglomeration, construction
industry, and CO2e as regressand variables turn-by-turn in each specification:

lnẼCOi,t = α1lnP̃CPi,t + α2lnẼUTi,t + α3lnUBAi,t + α4lnCNIi,t + α5lnCO2ei,t + ei,t,1 (7)

lnẼUTi,t = β1lnẼCOi,t + β2lnUBAi,t + β3lnCNIi,t + β4lnCO2ei,t + ei,t,2 (8)

lnUBAi,t = γ1lnẼUTi,t + γ2lnẼCOi,t + γ3lnCNIi,t + γ4lnCO2ei,t + ei,t,3 (9)

lnCNIi,t = θ1lnẼUTi,t + θ2lnUBAi,t + θ3lnẼCOi,t + θ4lnCO2ei,t + ei,t,4 (10)

lnCO2ei,t = ∅1lnẼUTi,t +∅2lnUBAi,t +∅3lnCNIi,t +∅4lnẼCOi,t + ei,t,5 (11)

In the above specifications, ei,ts′ are the demonstrations of residuals; the symbols α1,
α2, α3, α4, and α5 capture the impact of physical capital, non-renewable energy utilization,
urban agglomeration, construction industry, and CO2e on economic output, respectively;
β1, β2, β3, and β4 capture the impact of economic output, urban agglomeration, construc-
tion industry, and CO2e on non-renewable energy utilization, respectively; γ1, γ2, γ3, and
γ4 capture the impact of non-renewable energy utilization, economic output, construction
industry, and CO2e on urban agglomeration, respectively; θ1, θ2, θ3, and θ4 capture the
impact of non-renewable energy utilization, urban agglomeration, economic output, and
CO2e on the construction industry, respectively; and, ∅1, ∅2, ∅3, and ∅4 capture the in-
fluence of non-renewable energy utilization, urban agglomeration, construction industry,
and economic output on CO2e, respectively. As Equations (7)–(11) are in logarithmic form,
the coefficients of their respective regressors indicate the elasticity coefficients, captur-
ing the responsiveness of each regressand to changes recorded in the regressors of the
stated equations.

2.3. Analytical Strategies
Estimating the five-way links that exist between the construction industry, urban

agglomeration, utilization of non-renewable energy sources, CO2e, and economic output re-
quires the employment of five structural modeling equations. An advanced panel approach
known as the heterogeneous FMOLS technique, proposed by Peter Pedroni [34], was used
in this work. Using the heterogeneous FMOLS, as opposed to one of the alternatives, has
the following advantages: the typical longitudinal data approaches in practice to solve
endogeneity issues are only effective in a stationary state of variables. This is because these
techniques depend on the assumption that the mean and variance of the variables would
remain constant over time. While the conventional FMOLS technique by Phillips [41] was
applicable to cointegrated panels, it failed to incorporate the heterogeneity aspect of mod-
ern panel data econometrics. However, the heterogeneous FMOLS deals with this dilemma
even in a non-stationary framework. As a result, it gives concrete results in the presence of
non-stationary and cross-section dependency (CSD) features within heterogeneous cointe-
grated panels. Following Pedroni [34], the log-linearized form Equations (7)–(11) that need
to be estimated using heterogeneous FMOLS may be expressed as:

lnẼCOi,t = αi1lnP̃CPi,t + αi2lnẼUTi,t + αi3lnUBAi,t + αi4lnCNIi,t + αi5lnCO2ei,t + ei,t,1 (12)

lnẼUTi,t = βi1lnẼCOi,t + βi2lnUBAi,t + βi3lnCNIi,t + βi4lnCO2ei,t + ei,t,2 (13)

lnUBAi,t = γi1lnẼUTi,t + γi2lnẼCOi,t + γi3lnCNIi,t + γi4lnCO2ei,t + ei,t,3 (14)
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lnCNIi,t = θi1lnẼUTi,t + θi2lnUBAi,t + θi3lnẼCOi,t + θi4lnCO2ei,t + ei,t,4 (15)

lnCO2ei,t = ξi1lnẼUTi,t + ξi2lnUBAi,t + ξi3lnCNIi,t + ξi4lnẼCOi,t + ei,t,5 (16)

Before applying the heterogeneous FMOLS technique, testing the assumptions of het-
erogenous and cointegrated panels becomes inevitable. In this context, this study applies
the slope heterogeneity testing approach by Pesaran and Yamagata [42]. The following
expressions are employed to estimate the statistical score of slope heterogeneity:

∼
∆ =

√
N(N−1S̃− k/2q) ∼ χ2

k (17)

∼
∆adj =

√
N(N−1S̃− k/v(T, k)) ∼ N(0, 1) (18)

where N is the demonstration of provincial divisions, S is indicative of Swamy’s statistical
component from [43], k is the representation of stimulus variables, and v(T, k) is the
depiction of error terms. Where Equations (17) and (18) estimate parameters for large and
small panels, respectively. This study utilized both expressions to test the null hypothesis
of slope homogeneity.

Moreover, to test the assumption of whether the panels are cointegrated, this study
applied an error-correction-based approach to cointegration devised by Westerlund [44].
This approach accounts for both CSD and slope heterogeneity. It evaluates the null hy-
pothesis of no cointegration against the alternative hypothesis of cointegration. Under
this approach, two kinds of statistical measures are estimated: panel-based (Pt, Pa) and
group-based (Gt, Ga). In addition, this study utilized Kao cointegration [45] for robustness
testing of the outcomes of the Westerlund cointegration.

In order to verify that the estimated parameters make sense, this study employed
a heterogeneous causality test proposed by Dumitrescu and Hurlin [46]. This testing
approach evaluates the null hypothesis of homogenous non-causality against the alternative
hypothesis of heterogeneous causality among the data under analysis.

3. Results
3.1. Basic Analysis

It is appropriate to evaluate the time series and cross-sectional property of panel data
before utilizing the primary estimate technique. This may be done by dividing the data into
sections at regular intervals. The selection of an estimating method, or the decision to go
with one, is a very important step. When used in situations with cross-sectional dependency,
traditional unit root tests might provide results that aren’t entirely accurate. Therefore,
before testing for the stationary feature, CSD has been assessed by utilizing the technique
described in Pesaran [47]. According to the findings of the tests, each of the series is reliant
on its cross-sectional counterpart. As a consequence of this, the second-generation cross-
sectionally adjusted Im–Pesaran–Shin (CSIPS) testing technique of stationarity [48] since it
produces accurate results despite the existence of CSD. The results of the tests indicated that
all series, with the exception of economic production, were not level-stationary. In addition,
after the initial difference, all of the series became immobile. It demonstrated the existence
of cross-sectional dependency as well as a unit root in the longitudinal data, which can
be seen in Table 2. The heterogeneous FMOLS estimator is used in order to estimate the
contents of all four panels of panel data in order to address this particular circumstance.

Table 3 records the results of the slope heterogeneity analysis. In this regard, the
significant parameters verified the rejection of null hypotheses of slope homogeneity,
authenticating the slope heterogeneity in all the panels.
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Table 2. Results of CSD and CSIPS testing approaches.

Samples Regressors CSD CSIPS
(@level)

CSIPS
(1st Differenced)

Whole country

ECO 42.71 *** −2.372 ** −2.957 ***
EUT 23.48 *** −1.375 −3.183 ***
UBA 48.28 *** −1.183 −3.673 ***
CNI 17.28 *** −1.203 −2.758 ***

CO2e 45.10 *** −1.048 −3.102 ***
PCP 33.08 *** −1.684 −3.463 ***

China’s eastern part

ECO 42.00 *** −2.528 *** 2.775 ***
EUT 19.77 *** −1.291 −3.164 ***
UBA 29.04 *** −1.068 −3.274 ***
CNI 57.39 *** −1.003 −3.684 ***

CO2e 11.74 *** −1.281 −3.293 ***
PCP 18.92 *** −1.773 −2.995 ***

China’s central part

ECO 24.27 *** −2.625 *** −4.001 ***
EUT 18.02 *** −1.056 −2.972 ***
UBA 35.62 *** −1.689 −3.294 ***
CNI 57.38 *** −1.572 −3.683 ***

CO2e 27.40 *** −1.583 −4.192 ***
PCP 12.58 *** −1.009 −4.394 ***

China’s western part

ECO 10.37 *** −2.119 * −3.694 ***
EUT 34.69 *** −1.184 −2.996 ***
UBA 15.47 *** −1.927 −3.2945 ***
CNI 35.11 *** −1.483 −2.845 ***

CO2e 12.65 *** −1.524 −2.365 ***
PCP 55.48 *** −1.293 −3.078 ***

Note: *** p < 0.01, ** p < 0.05, and * p < 0.10.

Table 3. Results of slope heterogeneity.

Sample Test Stat. Prob. Sample Test Stat. Prob.

Whole country
∼
∆ 5.10 0.000 ***

China’s eastern part
∼
∆ 5.99 0.000 ***

∼
∆adj 4.92 0.000 ***

∼
∆adj 4.81 0.000 ***

China’s central part
∼
∆ 6.03 0.000 *** China’s western part

∼
∆ 5.72 0.000 ***

∼
∆adj 4.76 0.000 ***

∼
∆adj 6.25 0.000 ***

Notes: *** p < 0.01;
∼
∆ and

∼
∆adj indicate the test types; Stat. and Prob. are the depictions of statistics and probability.

In order to make the estimation of long-run parameters permissible, this study applies
cointegration testing. The findings of Westerlund and Kao’s approaches are documented
in Table 4. The outcomes revealed the group-based as well as panel-based statistic to be
significant (at a 1% level of significance) for all the study panels, thus allowing the rejection
of the null hypothesis (i.e., non-cointegration). Furthermore, the statistical outcomes from
the Kao test are also consistent with these outcomes. Therefore, it implies that economic
output, non-renewable energy utilization, urban agglomeration, construction industry, and
CO2e have a long-run equilibrium association, which makes it legitimate to estimate the
long-run parameters.

Table 4. Results of panel cointegration.

Test Stat. Whole Country China’s Eastern Part China’s Central Part China’s Western Part

Westerlund

Gt
−7.538 ***

[0.000]
−5.379 ***

[0.000]
−4.027 ***

[0.004]
−6.384 ***

[0.005]

Ga
−5.375 ***

[0.000]
−5.886 ***

[0.001]
−4.274 ***

[0.003]
−7.336 ***

[0.000]

Pt
−6.059 ***

[0.000]
−7.291 ***

[0.000]
−7.572 ***

[0.000]
−6.803 ***

[0.001]

Pa
−5.483 ***

[0.000]
−6.118 ***

[0.000]
−6.894 ***

[0.000]
−8.075 ***

[0.000]

Kao t-ratio −3.978 ***
[0.000]

−3.486 ***
[0.000]

−3.931 ***
[0.000]

−3.299 ***
[0.004]

Notes: *** p < 0.01; Stat. is indicative of statistic; Brackets [ ] enclose the p values.
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3.2. Main Analysis

Table 5 shows the estimation outcomes of the five models under analysis based on the
heterogeneous FMOLS technique. Herein, the findings of all the modeling specifications in
this section have been interpreted and discussed.

Table 5. Analytical findings for the long run based on the heterogeneous FMOLS technique.

Regressors Whole Country China’s Eastern Part China’s Central Part China’s Western Part

Model 1: Regressand: Economic output

Non-renewable energy utilization 0.193 ** 0.199 *** 0.191 *** 0.179 **
Urban agglomeration 0.198 ** 0.205 *** 0.180 −0.156 ***
Construction industry 0.201 *** 0.211* 0.200 ** 0.175 ***

CO2e −0.267 *** −0.232 *** −0.213 *** −0.136 ***
Physical capital 0.510 *** 0.534 *** 0.479 * 0.361 **

Model 2: Regressand: Non-renewable energy utilization

Economic output 0.476 *** 0.487 *** 0.463 * 0.396 **
Urban agglomeration 0.243 *** 0.255 ** 0.231 *** 0.147 **
Construction industry 0.290 ** 0.302 ** 0.268 ** 0.204 ***

CO2e 0.301 0.325 0.243 0.191

Model 3: Regressand: Urban agglomeration

Economic output 1.102 *** 1.391 ** 1.218 *** 1.012 ***
Construction industry 0.172 *** 0.158 *** 0.174 *** 0.186 **

Non-renewable energy utilization 0.258 0.299 0.214 0.142
CO2e 0.287 0.281 0.229 0.118

Model 4: Regressand: Construction industry

Urban agglomeration 0.128 *** 0.134 ** 0.117 ** 0.095 ***
Economic output 0.164 ** 0.175 *** 0.162 *** 0.140 **

Non-renewable energy utilization 0.224 0.235 0.176 0.089
CO2e 0.197 0.206 0.155 0.117

Model 5: Regressand: CO2e

Non-renewable energy utilization 0.401 *** 0.415 ** 0.396 ** 0.325 ***
Urban agglomeration 0.137 *** 0.144 * 0.131 ** 0.101 *
Construction industry 0.284 *** 0.291 *** 0.272 *** 0.245 **

Economic output −1.568 *** −1.681 *** −1.492 ** 1.107 ***

Note: *** p < 0.01, ** p < 0.05, and * p < 0.10.

3.2.1. Model of Economic Output

The urban agglomeration demonstrated highly dramatic and fascinating behavior in
terms of the difference in its influence on economic output throughout all parts of China in
the model of economic output (see Table 5). It had a negative effect on economic output in
the less developed China’s western part. It also put forward a neutral effect in moderately
developed areas, i.e., China’s central part. Finally, in the case of China’s eastern part, which
is the most established one, its effect was observed to be positive. This phenomenon is
known as the effect of urban agglomeration. As entities (countries/regions) evolve, the
role of urban agglomeration in economic output shifts from detrimental to neutrality to
favorable conditions. The second is the positive and statistically significant impact of the
construction industry and physical capital on the economic output of each panel, with the
highest magnitudes of elasticity for China’s eastern part and the lowest for China’s western
part. The term “industrial expansion effect” refers to the phenomenon wherein the growth
of an industry results in a more significant and beneficial contribution to overall economic
output. This phenomenon holds true for the construction industry. Non-renewable energy
utilization elasticities are positive and statistically meaningful, with the highest magnitude
for China’s eastern part and the lowest for China’s western part. However, CO2e was
negative and statistically significant for economic output, with strong effects in the case of
China’s eastern part and less for China’s western part.

3.2.2. Model of Non-Renewable Energy Utilization

Turning to the model of energy utilization, the non-renewable energy utilization was,
for all the panels, impacted positively by economic output, urban agglomeration, and the
construction industry. The magnitude is the highest for China’s eastern part and the lowest
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for China’s western part. Despite the geographical variations, more crucial results were
obtained in urban agglomeration. In more advanced areas, such as China’s eastern parts,
a rising urban agglomeration is expected to increase non-renewable energy utilization
substantially more than that in less developed areas, such as China’s western part. Besides,
the parameter estimate of CO2e shows its insignificant contribution to the non-renewable
energy utilization of all panels.

3.2.3. Model of Urban Agglomeration

In the model of urban agglomeration, a positive and statistically significant impact
of economic output is experienced on urban agglomeration, demonstrating a relatively
stronger impact for China’s eastern part and a relatively weaker effect on China’s western
part. In terms of the different impacts across regions, the case of construction industry is
very unusual. The positive and statistically significant impacts on urban agglomeration
have been demonstrated, with a greater impact on China’s western parts and less on China’s
eastern parts. Compared to the more job-saturated zones, such as China’s eastern parts, a
boost in the construction industry is expected to promote rapid urban agglomeration in
an area with fewer jobs. It can be entitled as the effect of work saturation. Moreover, the
statistically insignificant impact on urban agglomeration was expressed by non-renewable
energy utilization and CO2e.

3.2.4. Model of Construction Industry

The model of the construction industry shows statistically significant and positive
contributions of urban agglomeration and economic output. The impact is strong for
China’s eastern part, while China’s central and China’s western parts, respectively, depict
a less strong impact. It is the demonstration of the rapid construction industry progress
of increasing urban agglomeration and economic growth at a high level of development
as contrasted to a low level of development. This is the case because high levels of
development are more advanced. In addition, the neutral effect of non-renewable energy
utilization and CO2e on the construction industry was revealed.

3.2.5. Model of CO2e

The model of CO2e revealed positive and statistically significant contributions of
non-renewable energy utilization, urban agglomeration, and the construction industry
to CO2e. Energy utilization has contributed significantly in this respect to CO2e, with
stronger impacts for the whole country and China’s eastern part, while weaker impacts
are achieved for China’s western part. The construction industry’s influence is dominant
in China’s eastern part as the construction industry is less developed in China’s central
part and China’s western part. However, for the whole country, China’s eastern part, and
China’s central part, the economic output revealed a negatively significant impact on those
emissions, while a positive effect was experienced for China’s western part. Thus, economic
output promotes CO2e for less-developed regions, such as China’s western part. While,
economic output significantly mitigates CO2e for most developed regions such as China’s
eastern part. The increased growth is expected to increase CO2e for the less developed
regions due to composition and structure effects in place, whereas the CO2e is expected
to decrease for the more developed regions in response to an enhanced economic output
in the face of technique effect in place, which is called the environmental Kuznets Curve
(EKC) theory, consistent with the previous studies [49–51].

3.2.6. Diagnostic Checks

In order to validate the credibility of estimated results, several diagnostic checks are
applied (see Table 6). To begin with, the coefficients of determination scores are more than
80% for all of the models and for all data samples. This means at least 80% of the variations
in regressand are captured by the regressors included in the respective models, depicting
the goodness of fit (GoF) of these models. Next, the significant probability scores of χ2 also
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demonstrate the GoF of the considered models. After that, the analysis of residuals of the
estimated models declared those residuals free from the unit root and CSD concerns, as
indicated by CSIPS and CSD tests, respectively. The diagnostic checks signal the credibility
of the estimated models.

Table 6. Results of diagnostic checks.

Items Whole Country China’s Eastern Part China’s Central Part China’s Western Part

Model 1: Regressand: Economic output

R2 0.923 0.851 0.874 0.909
χ2 [prob.] 11.1 [0.02] 12.3 [0.04] 11.1 [0.02] 10.0 [0.05]

CSD (AACC) 0.399 0.478 0.512 0.598
CSD [prob.] −0.6 [0.49] −1.1 [0.12] −1.0 [0.11] −0.8 [0.34]

CSIPS −2.947 ** −2.995 ** −3.694 *** −2.827 **
RMSER 0.010 0.002 0.006 0.001

Model 2: Regressand: Non-renewable energy utilization
R2 0.910 0.946 0.835 0.807

χ2 [prob.] 8.1 [0.06] 11.2 [0.01] 8.9 [0.04] 7.4 [0.05]
CSD (AACC) 0.475 0.501 0.418 0.490
CSD [prob.] −0.8 [0.38] −1.1 [0.22] −1.6 [0.10] −1.03 [0.25]

CSIPS −3.185 ** −2.996 *** −3.471 * −3.152 ***
RMSER 0.020 0.014 0.000 0.000

Model 3: Regressand: Urban agglomeration
R2 0.886 0.928 0.916 0.793

χ2 [prob.] 11.7 [0.04] 13.3 [0.01] 12.8 [0.01] 15.4 [0.00]
CSD (AACC) 0.536 0.485 0.493 0.557
CSD [prob.] −0.6 [0.20] −0.9 [0.17] 0.8 [0.39] −1.2 [0.19]

CSIPS −2.851 *** −2.692 *** −2.951 *** −3.844 **
RMSER 0.050 0.000 0.002 0.018

Model 4: Regressand: Construction industry
R2 0.922 0.959 0.908 0.813

χ2 [prob.] 14.6 [0.00] 13.1 [0.01] 14.4 [0.00] 11.5 [0.01]
CSD (AACC) 0.492 0.523 0.578 0.511
CSD [prob.] −0.8 [0.38] −0.7 [0.41] 0.5 [0.52] −1.0 [0.29]

CSIPS −3.250 * −3.481 * −2.697 *** −3.602 **
RMSER 0.001 0.038 0.003 0.005

Model 5: Regressand: CO2e
R2 0.935 0.927 0.862 0.807

χ2 [prob.] 11.1 [0.03] 9.5 [0.05] 10.1 [0.04] 8.9 [0.03]
CSD (AACC) 0.569 0.601 0.618 0.503
CSD [prob.] −0.7 [0.41] −1.0 [0.29] 1.5 [0.18] 0.6 [0.44]

CSIPS −2.780 *** −2.997 *** −3.471 ** −5.002 ***
RMSER 0.021 0.000 0.019 0.003

T 17 17 17 17
N 30 11 8 11
n 510 187 136 187

Notes: where χ2 [prob.] stands for Chi-squared score with probability score within bracket [ ]; R2 is the coefficient
of determination of the estimated models; CSD (AACC) is the CSD test-based average absolute correlation
coefficient; CSD [prob.] indicates the CSD statistical score and its associated probability scores in bracket [ ]; CSIPS
provides the statistical score of the CSIPS test; RMSER stands for the root mean square error; T indicates the time
dimension of panel data; N indicates the cross-sectional dimension of panel data; n represents the number of
observations. *** p < 0.01, ** p < 0.05, and * p < 0.10.

3.3. Heterogeneous Causality Analysis

Table A1 (see Appendix A) records the results of heterogeneous causality by Du-
mitrescu and Hurlin [46] to provide the direction of causal association among the study
variables. The statistical outcomes reveal the existence of the following causal connections:
(a) economic output established a bilateral causality with non-renewable energy utilization,
urban agglomeration, construction industry, and physical capital for the samples of the
whole country, China’s eastern part, and China’s western part. (b) Economic openness
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set up a unilateral causality with urban agglomeration for China’s central part. (c) The
construction industry yielded a bilateral link with urban agglomeration across all data
samples. (d) The urban agglomeration and construction industry unfolded a unilateral link
with non-renewable energy utilization and CO2e for all data samples. (e) Non-renewable
energy utilization revealed a unilateral connection with CO2e for all samples under analy-
sis. Notably, these findings are consistent with the main estimation analysis of this study,
implying that the results obtained in the parametric estimations are logical and valid.

4. Discussion

A combined consideration of parametric estimation and heterogeneous causality re-
sults led to the comprehensive findings to be discussed. At the outset, the causal correlation
between the construction industry and non-renewable energy utilization is unidirectionally
affirmative for all panels of research. This finding is intuitive in that the construction indus-
try relies heavily on non-renewable energy sources since the transition toward clean energy
in China’s construction sector is yet at the nascent stage of development [52]. This finding
is aligned with Cheng et al. [31] from the Chinese perspective and Arıoğlu Akan et al. [53]
in the Turkish context. Furthermore, for all four panels, non-renewable energy utilization
has a positive and not vice versa impact on CO2e. This finding is consistent with several
previous studies such as Ahmad and Satrovic [54] in the Organization for Economic Co-
operation and Development (OECD) countries, Usman et al. [55] in the top 15 CO2e emitter
economies, and [56] in 34 high-income global economies. Moreover, the bidirectional causal
negative relationship is revealed for all samples, except China’s western part, between
CO2e and economic output. On the one hand, this finding presents an analogy with the
conception of EKC supported by a plethora of previous research [49–51]. On the other hand,
similar to this finding, Apergis et al. [57] found that increased CO2e accelerated healthcare
expenditures in the USA, adding a burden to the economy. Therefore, this argument is
a viable justification for the adverse impact of CO2e on economic output. The impact of
economic output on non-renewable energy utilization is recorded to be stronger for all
panels than its counterpart. It means that energy utilization aggravates economic output,
which consequently demonstrates relatively more substantive “feedback” on non-renewable
energy utilization. The stated influence is relatively more substantial for China’s eastern
part, whereas China’s central part and China’s western part are less strong. Initially, growth
led to energy utilization and CO2e, but it is not the same for all panels under analysis.
This finding lends credence to the findings of Shahbaz et al. [58] in the case of the United
Kingdom and Salari et al. [59] for the state-level analysis of the USA.

Furthermore, the construction industry has contributed to CO2e, and it is not the
same for all the panels. A possible explanation for this outcome is that China’s eastern
part is at the highest urbanization level across the country [60]. Since more urbanization
means constructing more urban infrastructure, leading to a high level of CO2e driven by
the rich construction industry [31]. There were more flexible outcomes for the mutual
connection between economic output and urban agglomeration. In the case of the whole
country and China’s eastern part, a positive bidirectional link is formed between the
two factors. A unidirectional positive relationship is observed for China’s central part,
from growth to urban agglomeration. However, these variables showed bidirectional
causal associations with mixed signs for China’s western part. A positive causal connection
from economic output to urban agglomeration and a negative causal link originating from
urban agglomeration to economic output has also been found to exist. It can be explained
in a way that, on the one hand, the poorly developed provincial divisions cannot offer
employment opportunities to rapidly urbanizing individuals. On the other hand, more
people in cities require governments to allocate more resources for the urbanized people,
thus increasing the burden on the regional economy. However, moderately developed
provincial divisions started accommodating the urban population to urban industrial
units, thus reverting and neutralizing the adverse economic effects of rapid urbanization.
While the developed provincial divisions focus on planned urbanization as opposed to
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the poorly developed provinces. It might allow them to reap the economies of scale of
available cheap labor for the urban industry, capitalizing on the economic gains of urban
economic agglomeration. Finally, for all the study panels, there is a bilateral positive causal
association between urban agglomeration and the construction industry. However, the
strength of influence of the construction industry is observed to be greater in China’s
western part and less in China’s eastern part. This finding can be explained in the following
manner. It has been observed that rural-to-urban migration in China was mainly driven
by the motive of finding employment opportunities in the industrial sector [61]. Against
this backdrop, increased construction activities demand more labor and induce urban
agglomeration further. However, more developed provinces incur saturation in terms of
employing new labor due to already available rich urban infrastructure, thus leading to a
less aggressive boost in urban agglomeration. On the contrary, less developed provinces
have a less saturated construction industry in terms of offering employment opportunities,
thus inducing urban agglomeration more aggressively [61].

5. Conclusions

The present study examined and established five-way links between urban agglomer-
ation, the construction industry, non-renewable energy utilization, economic output, and
CO2e through simultaneous equation systems. The stylized concluding remarks based on
heterogeneous FMOLS-based data inspection are given as follows:

First, the bidirectional causal link has been found between economic output and
energy utilization, economic output and construction industry, economic output and ur-
ban agglomeration, and urban agglomeration and construction industry. Nevertheless, a
unidirectionally positive causal link has been revealed from the construction industry to
energy utilization and CO2e, and energy utilization and urban agglomerations to CO2e. A
negative causal bidirectional link between economic output and CO2e is revealed for the
under-analysis panels. These findings varied from region-to-region, particularly for the
connection between economic prosperity and urban agglomeration, CO2e and economic
output, and construction industry and economic growth. Secondly, the urban agglom-
eration behavior showed a very intuitive effect on the economic output, which ranged
from adverse to neutrality to favorable influence for China’s western, central, and eastern
parts. In view of the various rates of development in these areas, this result is especially
significant. This trend is referred to as the consequence of the urban agglomeration ladder.
This means that urban agglomeration will have a positive effect on economic output for
the provincial/ city divisions. In addition, provincial/ city divisions have shown the great-
est difference in their effects on economic output in projecting the urban agglomeration.
Third, the long-term construction industry elasticity estimates showed that its impact on
economic output ranged from less to stronger for China’s western to central to eastern
parts. This means that business development has a greater and more optimistic impact on
economic output in rapidly developing regions.

Fourth, economic output revealed a very peculiar behavior with regard to its effects
on urban agglomeration in different regions, as it ranged between high positive effects for
China’s western part and lower impacts for China’s eastern part. The assumption is that
economic output has facilitated swift urban agglomeration, compared to the reverse in less
urbanized and less jobs-saturated regions. It is described as the “effect of work saturation”.
Fifth, the non-renewable energy utilization led to huge CO2e. The construction industry
remains the leading player in this regard, though urban agglomeration is also a giant
contributor to CO2e. Sixth, economic output and the use of resources push one another, but
later than before, the consequences of the former dominate. It shows that energy utilization
promotes economic output, which in turn has a stronger “feedback” impact on power
consumption. China’s eastern part is strong, while China’s central and western parts are
less-to-medium strong. Finally, economic output had a negative impact on CO2e for the
complete sample, China’s eastern and central parts, while the effect for China’s western
part was positive. It means that economic output has reduced CO2e for the whole country,
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China’s eastern part, and China’s central part, while economic output is being fostered in
response to CO2e for China’s eastern part. In more developed areas such as China’s eastern
part, economic output is directed to reduce CO2e, while for the less developed regions like
China’s western part, CO2e is upsurged by economic output.

Based on the empirical findings of this study, the following policies are advised.
(i) The negative contribution of urban agglomeration towards economic output for China’s
western part is an indicator of a lack of jobs in the region. Thus, rural-to-urban migration
should also be followed by creating employment in the western part. Furthermore, there
have been significant differences in the effect of urban agglomeration on the economic
output of Chinese provinces, suggesting that the policies of provinces are better than
those of nationwide strategies. (ii) Construction industry expansion has had a strong
economic impact for the more developed China’s eastern part but a less strong economic
impact for China’s western part. This suggests that the expansion of the construction
industry in China’s western part might boost economic output if the development in the
region is centered. As China’s eastern part is detected as the biggest CO2e emitter due
to non-renewable energy utilization, it is recommended to use efficient energy methods
to minimize CO2e. This process can reduce the difference between the various regions of
China. (iii) Energy can be conserved by means of a transport system in two different ways:
(a) public transport development in large cities such as Beijing and Shanghai must be aimed
at reducing the use of personal vehicles and thus helpful in reducing CO2e; (b) green energy
vehicles that should run on green energy could be promoted, increasing the likelihood of
reducing CO2e [62]. China has already surpassed the existing national emission standards,
as stated earlier. Economic output in the developing region, which is China’s eastern part,
is observed to greatly reduce CO2e. Nevertheless, in the less developed, China’s western
part, economic output supported CO2e. Thus, it could be proposed that CO2e is anticipated
to increase as economic output rises to a certain level of production in less-developed parts
of China. Given these conclusions, both developed and developing countries may learn
some lessons from the case study of China involving diversified development scales.

Though this study has offered novel contributions to the existing knowledge, there
are certain concerns that need attention by future scholars aiming to research in the same
domain. Firstly, this study considered varying provincial development levels to provide
useful heterogeneous inferences across those local development levels. However, for
the generalizability of these findings across global development levels, the follow-up
studies should take into account the global panel data to investigate the heterogenous
results across different economic development levels globally. Secondly, as CO2e is not the
only indicator responsible for environmental unsustainability, future studies shall benefit
from employing a comprehensive indicator such as ecological footprint consumption.
Finally, this study has introduced non-renewable energy utilization, which is a potential
driver of CO2e, in the growth modeling. However, the inclusion of renewable energy and
environment-related technological innovation could prove critical determinants of both
CO2e and economic output within a Cobb–Douglas production function. Therefore, future
studies shall capitalize on the academic value of such inclusions in their growth modeling
to deliver useful recommendations for economic and environmental sustainability goals of
Sustainable Development.
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Appendix A

Table A1. Results of heterogeneous causality.

Whole Country

ECO→EUT EUT→ECO ECO→UBA UBA→ECO ECO→CNI CNI→ECO

Z-stat. 7.684 *** 5.736 ** 6.280 *** 8.114 *** 5.617 ** 6.146 ***
Prob. 0.000 0.036 0.002 0.000 0.028 0.005

ECO→CO2e CO2e→ECO ECO→PC PC→ECO EUT→UBA UBA→EUT

Z-stat. 6.148 *** 8.319 *** 5.728 ** 4.612 * 3.105 5.782 **
Prob. 0.007 0.000 0.026 0.079 0.261 0.028

EUT→CNI CNI→EUT EUT→CO2e CO2e→EUT UBA→CNI CNI→UBA

Z-stat. 2.461 8.015 *** 6.972 *** 1.463 5.128 ** 5.691 **
Prob. 0.197 0.000 0.003 0.158 0.042 0.029

UBA→CO2e CO2e→UBA CNI→CO2e CO2e→CNI

Z-stat. 4.764 * 2.189 5.693 ** 1.962
Prob. 0.071 0.126 0.046 0.402

China’s eastern part

ECO→EUT EUT→ECO ECO→UBA UBA→ECO ECO→CNI CNI→ECO

Z-stat. 8.130 *** 4.965 ** 7.336 *** 5.479 ** 7.352 *** 4.181 *
Prob. 0.000 0.045 0.001 0.048 0.000 0.075

ECO→CO2e CO2e→ECO ECO→PC PC→ECO EUT→UBA UBA→EUT

Z-stat. 5.957 ** 4.361 * 4.173 * 5.668 ** 2.917 7.115 ***
Prob. 0.044 0.079 0.076 0.035 0.165 0.002

EUT→CNI CNI→EUT EUT→CO2e CO2e→EUT UBA→CNI CNI→UBA

Z-stat. 1.850 6.377 *** 8.164 *** 2.378 6.722 *** 5.137 **
Prob. 0.215 0.004 0.000 0.225 0.009 0.034

UBA→CO2e CO2e→UBA CNI→CO2e CO2e→CNI

Z-stat. 5.289 ** 1.335 6.922 *** 2.401
Prob. 0.034 0.158 0.006 0.269

China’s central part

ECO→EUT EUT→ECO ECO→UBA UBA→ECO ECO→CNI CNI→ECO

Z-stat. 3.952 * 6.739 *** 8.723 *** 2.472 5.691 ** 6.722 ***
Prob. 0.081 0.002 0.000 0.197 0.018 0.004

ECO→CO2e CO2e→ECO ECO→PC PC→ECO EUT→UBA UBA→EUT

Z-stat. 7.226 *** 5.835 ** 8.349 *** 6.815 *** 2.583 6.990 ***
Prob. 0.000 0.031 0.000 0.001 0.207 0.001

EUT→CNI CNI→EUT EUT→CO2e CO2e→EUT UBA→CNI CNI→UBA

Z-stat. 3.001 4.960 * 5.627 ** 1.390 4.874 * 9.226 ***
Prob. 0.256 0.058 0.002 0.156 0.093 0.000

UBA→CO2e CO2e→UBA CNI→CO2e CO2e→CNI

Z-stat. 6.581 *** 2.794 7.152 *** 2.580
Prob. 0.000 0.185 0.002 0.311

http://www.stats.gov.cn/english/
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Table A1. Cont.

Whole Country

ECO→EUT EUT→ECO ECO→UBA UBA→ECO ECO→CNI CNI→ECO

China’s western part

ECO→EUT EUT→ECO ECO→UBA UBA→ECO ECO→CNI CNI→ECO

Z-stat. 5.880 ** 3.974 * 5.916 ** 7.112 *** 4.569 * 5.338 **
Prob. 0.027 0.068 0.049 0.003 0.065 0.032

ECO→CO2e CO2e→ECO ECO→PC PC→ECO EUT→UBA UBA→EUT

Z-stat. 4.971 * 7.335 *** 6.993 *** 4.528 * 1.947 5.781 **
Prob. 0.049 0.001 0.008 0.091 0.136 0.015

EUT→CNI CNI→EUT EUT→CO2e CO2e→EUT UBA→CNI CNI→UBA

Z-stat. 2.164 6.882 *** 9.356 *** 2.728 7.160 *** 5.238 **
Prob. 0.135 0.000 0.000 0.189 0.000 0.029

UBA→CO2e CO2e→UBA CNI→CO2e CO2e→CNI

Z-stat. 8.369 *** 2.157 8.107 *** 1.332
Prob. 0.000 0.208 0.005 0.249

Notes: *** p < 0.01, ** p < 0.05, and * p < 0.10; Prob. stands for the p values; Z-stat. is indicative of the statistic of
heterogeneous causality test.
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