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Abstract: Shale oil reservoirs are characterized by complex lithology, complex mineral composition
and strong heterogeneity. This causes great difficulty in lithologic evaluation. In this paper, a method
of lithology identification is proposed by means of intersection plot method and machine learning
method, and lithology evaluation is carried out by combining the calculation of mineral content
with a multi-mineral optimization model. The logging response characteristics of five lithologies are
analyzed by using the logging curves selected by principal component analysis (PCA) discriminant
analysis. In lithology identification, the system clustering algorithm is selected to identify shale oil
reservoir lithology through layer-by-layer subdivision of sample lithology classification. Logging
data has high vertical resolution and good continuity, and mineral prediction using logging data can
ensure high accuracy. In this paper, the method of calculating mineral content by using multi-mineral
optimization model has achieved good results in practice.

Keywords: lithological evaluation; principal component analysis; systematic clustering method;
optimal multi-mineral model

1. Introduction

Shale oil reservoir exploration and development started relatively late in China, and
the progress is relatively slow. Although some breakthroughs have been made, a compre-
hensive shale oil reservoir evaluation method system has not been formed in general [1,2].
At present, the shale oil reservoir evaluation system that has been formed mainly refers to
the logging evaluation methods of shale gas, tight oil and gas and other unconventional oil
and gas. As exploration and development put forward deeper requirements for logging
technology, it has begun to upgrade from “four characteristics” to “seven characteristics”
evaluation, and on this basis, the “three quality” comprehensive evaluation of the reservoir
was carried out [2,3]. Compared with tight oil, shale oil reservoirs are more complex, with
higher requirements for evaluation of mobility and compressibility and more parameters.

Lithology evaluation, as an important part of this, includes lithology identification
and rock mineral composition calculation. The lithologic identification method requires
strong regional experience, and needs to be established by combining specific lithologic
categories and logging response features to extract characteristic parameters that can
distinguish the main lithologic categories. At present, lithology identification is mainly
carried out through the crossplot method and machine learning methods, such as gradient
lifting decision tree (GBDT) algorithm, PSO-SVM method, convolution-based cyclic neural
network and ensemble learning, LSTM cyclic neural network, and BP neural network
model optimization using principal component analysis.
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Shale oil reservoir lithology is complex and changeable, its mineral composition is
diverse, and its formation heterogeneity is strong. Therefore, its lithology evaluation is
extremely difficult [3,4]; a set of evaluation methods for lithology identification has not
yet been formed in the study area. Moreover, the calculation model of shale content and
mineral composition, as well as the fracturing index characterizing the reservoir, have not
been established [5].

Lithology evaluation is a very important basic research work in shale oil reservoir
logging evaluation. Its results can provide basic laws and cognitive support for establishing
the logging calculation method of key parameters of shale oil. Fine lithologic evaluation
serves as the basis for the evaluation of reservoir physical properties and oil-bearing
properties, and can also provide a reliable basis for the fracturing and later development of
the reservoir. In terms of lithology evaluation, its main contents are lithology classification
and naming, and determination of mineral components. The corresponding qualitative
identification of lithology, quantitative calculation of mineral components and accurate
calculation of brittleness index are particularly critical [6,7].

2. Lithology Determination and Determination of the Mineral Fraction of
the Formation
2.1. Determination of Reservoir Lithology

On the basis of previous research, various factors were carefully analyzed and sum-
marized. Comprehensive geological data, core analysis data, etc., combined with 448 thin
section data points in the area, were analyzed and sorted. Then, the shale oil lithofacies
division scheme of layer C with logging operability was determined. For subsequent
research, the lithology of this interval has been given a simplified name. Therefore, the
lithology of layer C is divided into the following five categories: (1) medium natural gamma
siliceous shale (fine sandstone), (2) high natural gamma siliceous shale (muddy siltstone),
(3) high natural gamma argillaceous shale (dark mudstone), (4) ultra-high natural gamma
siliceous shale (black shale), and (5) high natural gamma tuff shale (tuff). It can be seen from
Figure 1 that in the stratum, medium natural gamma siliceous shale (fine sandstone) and
high natural gamma siliceous shale (muddy siltstone) account for the largest proportion.
According to Figure 2, not all wells contain all five lithologies in layer C [5].
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Figure 1. Statistical histogram and pie chart of the number of slices with different lithologies.
(a) Histogram of the number of lithologic slices; (b) Statistical pie chart of lithology slice quantity.
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Figure 2. The proportion of different lithologic rocks in the stratum of Well J1 and Well J2. (a) Well J1;
(b) Well J2.

2.2. Determination of Mineral Fractions

Argon ion polishing SEM experiments and X-ray crystal diffraction (XRD) experiments
were carried out on a total of 30 samples from the C formation, including semi-quantitative
XRD analysis of whole rock samples and semi-quantitative XRD analysis of clay minerals.
Based on the results of the XRD and argon ion polishing SEM experiments (Figure 3), the
mineral fractions and clay types of the C section can be determined. The results show that
the mineral components in the study area are diverse, mainly including quartz, feldspar,
clay minerals, calcite, carbonate particles and pyrite particles, as shown in Figure 3. The
content percentage of each mineral and clay mineral component is shown in Figures 4
and 5, respectively. It is obvious that the main components of the mineral are quartz, clay
mineral, plagioclase, potassium feldspar, pyrite and dolomite, and the average content
is calculated to be 44.33%, 26.56%, 9.68%, 7.31%, 4.95% and 2.89%, respectively. The clay
minerals are mainly composed of illite-montmorillonite mixed layer(I/S), illite, kaolinite
and chlorite, and the average content is calculated to be 44.86%, 33.57%, 8.25% and 2.81%,
respectively.
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3. Qualitative Lithology Identification Techniques Based on Principal Component
Analysis Optimized Clustering Algorithms

The principal components analysis (PCA) technology was used to screen the logging
curve, and the curve with a large correlation with the target curve was selected as the input
curve of cluster analysis [8–12]. Ten logging curves including CNL, RT, RXO, DEN, GR, PE,
AC, U, TH and K were input for PCA analysis. It can be seen that the correlation between
TH curve and K curve is high, and the characteristics between them are not obvious.
Although the correlation between Rt and Rxo is relatively low, Rxo is greatly affected by
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cement sheath, borehole, mud filtrate, etc., and cannot fully reflect the characteristics of
the actual reservoir. The independent characteristics between other curves are obvious, as
shown in Figure 6. The PCA analysis results are shown in Table 1. The correlation between
RT and other curves is significantly higher than that of RXO, and the correlation between
TH curve and other curves is lower than that of K curve. The eight curves of RT, PE, CNL,
DEN, GR, AC, K, U can be determined as lithologic cluster identification logging curves.
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Comprehension
Slowness −0.693173 1 0.805944 0.948787 0.610787 0.266069 0.0723262 0.21398 0.260662 0.772366

Gamma
Ray −0.737776 0.805944 1 0.8082 0.644885 0.429516 0.253071 0.140882 0.269512 0.972025

Neutron
Porosity −0.560614 0.948787 0.8082 1 0.761449 0.221603 0.0243947 0.300354 0.308405 0.759762

Photoelectric
Factor −0.153228 0.610787 0.644885 0.761449 1 0.11066 −0.0334943 0.402085 0.216005 0.598149

Deep
Resistivity −0.645156 0.266069 0.429516 0.221603 0.11066 1 0.89983 −0.314645 −0.336595 0.534918

Shallow
Resistivity −0.540367 0.0723262 0.253071 0.0243947 −0.0334943 0.89983 1 −0.320226 −0.398188 0.357767

Potassium
Concentration 0.274423 0.21398 0.140882 0.300354 0.402085 −0.314645 −0.320226 1 0.703384 −0.0528857

Thorium
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3.1. Optimal Selection of Sensitive Parameters Based on Principal Component Analysis Techniques

The logging curves were screened using principal components analysis (PCA) and
those with a high correlation with the target curve were selected as input curves for the
cluster [13–17]. A total of ten log curves, including CNL, RT, RXO, DEN, GR, PE, AC, U,
TH and K, were inputted for PCA analysis, as shown in Figure 6 and Table 1.

According to the logging curves selected by PCA discriminant analysis, and verifying
the correctness of PCA method, the logging response characteristics of five lithologies were
analyzed by adding AF10 curve, as shown in Figure 7. The patterns of ultra-high natural
gamma siliceous shale, high natural gamma argillaceous shale and high natural gamma
tuffaceous shale are obviously different. The ultra-high natural gamma siliceous shale
has the characteristics of high gamma, high resistance, low neutron and low potassium,
as shown in Figure 7d. The clayey shale with high natural gamma has the characteristics
of high potassium, high density and low gamma, as shown in Figure 7c. High natural
gamma tuffaceous shale has the characteristics of high neutron, high density, low potassium
and low resistance, as shown in Figure 7e. Medium natural gamma siliceous shale and
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high natural gamma siliceous shale have similar logging response characteristics and poor
discrimination effect, as shown in Figure 7a,b. When put in the shale formation for separate
analysis, the results show that the natural gamma siliceous shale in the shale layer has the
characteristics of relatively high resistance, low potassium and high neutron. High natural
gamma siliceous shale has relatively high potassium, low resistance and low neutron in
the shale layer, as shown in Figure 7f (where the red part of the figure is the high natural
gamma siliceous shale and the blue part is the medium natural gamma siliceous shale). It
can be seen that the AT10 curve does not respond significantly to the above lithological
characteristics, which can verify the correctness of PCA method.
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natural gamma siliceous shale; (b) High natural gamma siliceous shale; (c) High natural gamma clayey
shale; (d) Very high natural gamma siliceous shale; (e) High natural gamma tuff shale; (f) Separate
analysis of shale layers.

3.2. Lithology Identification Techniques for Logging Based on Cluster Analysis

Cluster analysis is an unsupervised classification algorithm that relies only on the
similarity of things as the basis for classification. There are several methods such as
systematic clustering, decomposition clustering, fuzzy clustering, dynamic clustering,
legend clustering and clustering forecasting method. In this lithology identification, the
systematic clustering method is chosen to subdivide the samples layer by layer in the
process of lithology classification. The basic idea and principle are shown in Figure 8,
where the input of logging parameters of samples with known lithology is firstly subjected
to hierarchical clustering learning, then the lithology identification model is constructed,
and finally the constructed model is applied to the logging data with unknown lithology for
lithology identification [1,2,18–21]. The clustering analysis algorithm model and operation
written in this paper are based on Python software.

First of all, the deep learning algorithm requires a large amount of data, so it needs
rich lithological data as a sample learning well and as a cluster supervisor to complete the
construction of the model and increase the recognition accuracy. Here, J3 well with rich
core thin section data is taken as a sample for learning, and eight curve data corresponding
to lithology of different depth layers are input into the algorithm model. As shown in
Figure 9, it is the depth and curve data corresponding to the thin section lithology. The
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legends of various lithologies in the log interpretation diagram are shown in Table 2. In
order to use the lithologic identification model of J3 well to identify other wells, J3 well
must be standardized as a standard well, so that the identification accuracy of the model
can be improved. The lithologic identification model based on clustering algorithm to Well
J2 is applied, so that it can complete the lithologic identification of Well J2 (Figure 10), and
determine the accuracy of lithologic identification of unknown wells.
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This clustering algorithm is used to identify the lithology of different depth sections
of Well J2, and 86.37% of the identified rock properties correspond to the actual core thin
section lithology. There are 13.63% deep layer lithology identification errors, which is
within the allowable range of industrial production. As shown in Figure 10, core is the thin
section lithology, iden is the identification lithology. It can be considered that it is feasible
to use J3 well as a sample and J2 well as a test set to verify the model in shale oil reservoir
lithology identification. Well J3 can be used as a sample input and the algorithm can be
extended to lithologic identification in the study area.

4. Quantitative Calculation of Mineral Composition

Calculation of mineral content is a complex and important work in the fine logging
evaluation of reservoirs, and the evaluation results have important guiding significance
for the evaluation of physical properties. The commonly used mineral content logging
calculation methods mainly include the following methods: multi-mineral optimization
calculation model, petrophysical modeling of a single mineral, lithologic capture logging,
and element logging. However, when there are many kinds of minerals, it is difficult
to calculate the mineral content using the petrophysical modeling method of a single
mineral, and the cumulative error is too large. The element capture logging method is a
new method with high accuracy to calculate mineral content, but it is mostly measured
in key exploration wells. At present, the comprehensive popularization of all wells is
still difficult in terms of funding and instrument quantity, so this method is not universal;
the calculation of mineral content by element logging method has the same problem as
that by element capture logging method. Its calculation accuracy is very high, but not all
wells have element logging data. Formation C is rich in lithology, and a limited number of
core mineral analysis cannot effectively describe the distribution characteristics of various
mineral contents in shale. Therefore, on the basis of measured mineral content, more
accurate classification is needed by other means. Logging data has high vertical resolution
and good continuity, so the accuracy of mineral prediction using logging data is high.
Compared with several methods, the method of calculating mineral content using a multi-
mineral optimization model is a relatively good choice. The interpretation of the two well
sections by the multi-mineral optimization model adopted in this paper depends on the
TECHLOG software.
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4.1. Calculation of Shale Content Based on Combination Method

Calculation of shale content is usually based on the radioactivity of the reservoir.
Previous researchers have explored many methods for calculating shale content in con-
ventional reservoirs, which can also ensure the accuracy and reliability of the results. This
mainly includes the natural gamma method, natural gamma spectrum logging method and
neutron-density intersection method. However, for shale oil reservoirs, the high content of
rock debris and terrigenous debris, coupled with the development of highly radioactive
minerals such as potassium feldspar in the C section of the formation, lead to inaccurate
results of shale content calculation using GR parameters. Due to the complex and variable
lithology in the C section formation, the same variety and complexity of mineral com-
ponents, and the intercalation of thin layers, there are many influencing factors, so the
accuracy of calculating shale content is poor if one of the four types of methods is chosen
arbitrarily, and through previous experience, the calculation results of shale content are
generally upper limits.

In shale development intervals, kerogen content and oil saturation are significantly
higher than non-shale intervals. The formation will change under the influence of these
factors, and these changes will be reflected in the response of logging curves. Using the
different logging response characteristics of shale and non-shale reservoirs, it is basically
possible to identify shale sections of sand-mud thin interbedded type by overlaying neutron
and resistivity curves, density and neutron curves, overlaying neutron and PE curves, and
envelope filling of PE and density curves (e.g., Figure 11). By dividing the shale and
non-shale sections, and using the response characteristics of the logging curves as an entry
point, we can avoid the interference of layering on the lithology calculation and choose a
more targeted shale content calculation method according to the response characteristics.
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Figure 11. Well log curve and mineral content percentage diagram of Well J2.

Based on the division of shale interval and non-shale interval, the characteristics
of logging curve are analyzed, the optimal calculation method of shale content in the
formation is selected, and the accuracy of multi-mineral component calculation results is
improved. According to the analysis, the clay content of the non-shale interval is low, as
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shown in Figure 12. In the figure, the blue is the shale interval, and the yellow is the non-
shale. In the non-shale section, the distribution range of neutron, density, acoustic transit
time, natural gamma and PE values is small, and the calculation accuracy of conventional
data curve is poor, so it is suitable to use the gamma curve to calculate shale content. The
shale content in the shale interval increases, and the distribution range of neutron, density,
acoustic transit time, natural gamma and PE values changes greatly, so it is suitable to
calculate the shale content using the neutron-density combined gamma curve.

According to the regional experience, the effect of calculating shale content by remov-
ing uranium gamma curve (CGR) is better. The CGR curve has been measured in new
wells, but for some old wells, the CGR curve of shale and non-shale layers has not been
measured, so it is necessary to reconstruct the curve to calculate the shale content of this
interval to make the calculation of shale content more accurate.
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In order to make the calculation result of shale content more accurate, shale oil for-
mation identification should be carried out before calculation, and shale content of shale
section is the average value of neutron density method and uranium removal gamma
method. The shale content in the non-shale section is calculated using the uranium removal
gamma curve to form the shale curve.

(1) Calculation of shale content by neutron-density crossplot
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In conventional triple porosity logging curves, neutron and density logging are more
sensitive to the logging response characteristics of changes in formation hydrocarbon flow
and shale content than sonic time difference logging and are largely independent of the
form of formation mud distribution. The neutron-density rendezvous method is therefore
often used to calculate the shale content of high shale content formations, low pore low
permeability formations and high natural gamma formations, and is calculated as follows.

Vsh = A/B (1)

A = ρb(Nma − 100)− CNL·(ρma − ρ f )− Nma × ρ f + ρma (2)

B = (ρsh − ρ f )(Nma − 100)− (Nsh − 100)(ρma − ρ f ) (3)

In the formula, Nma is the neutron value of the rock skeleton, Nsh is the neutron value
of the mudstone, CNL is the neutron value measured by the target layer section, %; ρma
is the density value of the rock skeleton, ρsh is the pure mudstone density value, ρ f is
the formation fluid density value, ρb is the density value measured by the target layer
section, g/cm3.

(2) Calculation of shale content by reconstructing uranium-free gamma curve method

The formation in the study area is rich in uranium, but for the high uranium for-
mation, the conventional gamma curve cannot truly reflect the change of shale content
in the formation. Usually, energy spectrum logging or element logging can be used to
better identify such reservoirs. However, for the well section without energy spectrum
and element logging, it is necessary to establish a quantitative relationship between the
conventional logging information and the shale content of the formation. This curve is
called the uranium-free gamma curve (CGR). Correlation analysis on CGR and GR, CNL,
DEN, AC, AF90, PE and other logging curves (Table 3) should be carried out, and the mul-
tiple regression calculation model of log parameter reconstruction with good correlation
selected.

Table 3. Correlation analysis of logging curves in interval c in the study area.

AC AF20 AF90 CNL DEN GR PE CGR

AC 1
AF20 0.307215 1
AF90 0.414528 0.96554 1
CNL 0.952085 0.270417 0.384129 1
DEN −0.83244 −0.49978 −0.58967 −0.74327 1
GR 0.910569 0.291836 0.396808 0.922276 −0.81952 1
PE 0.664827 0.107605 0.17078 0.779276 −0.33254 0.713711 1

CGR 0.309785 −0.3616 −0.33071 0.420375 0.009589 0.335664 0.414639 1

Based on the correlation analysis, the acoustic AC, neutron CNL, gamma GR and
PE curves were selected to be fitted to the de-uranium gamma curve, and the multiple
regression calculation model for the reconstruction of uranium-free gamma (CGR) curve
(R2 = 0.786) was

CGR = −0.58494AC + 3.42469CNL − 0.02413GR + 3.02460PE + 157.512

The formula for calculating the shale content using the reconstructed de-uranization
gamma curve is

∆CGR =
CGR − CGRmin

CGRmax − CGRmin
(4)

Vsh =
2GCUR×∆CGR − 1

2GCUR − 1
(5)
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In the formula, CGR represents the formation uranium-free gamma curve measure-
ment value, CGRmin is the pure formation uranium-free gamma value, CGRmax is the pure
mudstone uranium-free gamma value, Gapi and GCUR is the formation correction factor,
which is 3.7 in the study area.

As shown in Figures 13 and 14, the results of the through-combination method of
calculating shale content have small errors compared with experimental measurements
and can meet the needs of fine calculation of shale content in the study area.
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Figure 14. Cross diagram of shale content in core experiment analysis and shale content calculated
by combination method.
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4.2. Optimisation-Based Multi-Mineral Model Approach to Calculate Mineral Content

The petrophysical properties of the formation and its logging response mechanism
are used to discover logging information and evaluate hydrocarbons. According to the
petrophysical model of rock volume, the logging signal is derived from the rock skeleton
and pore fluids, and its numerical magnitude is weighted and averaged according to
its eigenvalues and the proportion of volume it occupies. Optimization of the multi-
mineral model, based on the non-linear weighted least squares principle, establishes the
target equation based on a suitable mineral volume model and reasonable reservoir logging
parameters, and uses optimization techniques to continuously adjust the unknown reservoir
parameter values by selecting initial values. Therefore, based on the above principles, the
logging response equation general equation is established as

log date = ∑n
i=1 vi × xi (6)

v1 + v2 + v3 + · · ·+ vn = 1 (7)

The logging response values of natural gamma, bulk density and acoustic time differ-
ence can be considered as the average of the physical quantities of the components of the
response per unit volume of rock. Specific examples of logging response equations and
objective functions for density, acoustic time difference and neutron are as follows.

ρb = ρ1v1 + ρ2v2 + ρ3v3 + · · ·+ ρnvn (8)

∆t = ∆t1v1 + ∆t2v2 + ∆t3v3 + · · ·+ ∆tnvn (9)

CNL = CNL1v1 + CNL2v2 + CNL3v3 + · · ·+ CNLnvn (10)

In the formula: i = 1, 2, . . . , n, n is the number of mineral components and fluids in
the formation; vi is the percentage content of the i-th mineral to be determined, the sum of
the volume percentage content of each component of the rock is 1, and they are all greater
than or equal to 0; xi is the logging response value of the i-th pure mineral; logdate is the
measured logging curve of the formation, which is the comprehensive logging response
value of all minerals, and its value is directly read from the logging curve. The percentages
of each mineral can be found by combining ρi, ∆ti, and CNLi are the log response values
for density, acoustic and neutron for each mineral, respectively.

In theory, the number of solved minerals cannot be higher than the number of indepen-
dent logging physical quantities to constrain the set of equations to have a higher accuracy
in solving for minerals. Multi-mineral component calculations of lithology can be based on
existing results by adding new parameter conditions to obtain more detailed and accurate
calculations. The addition of porosity curves and water saturation curves to the model can
make the calculation of the fluid component more accurate and the results of the in situ
formation profile calculations more closely match the actual formation characteristics.

According to core data, thin section data and XRD data, it can be determined that the
composition of rock minerals in the study area is eight skeleton minerals. These are quartz,
feldspar, illite, chlorite, calcite, dolomite, pyrite and organic kerogen. Combined with the
calculated shale content and the characteristics of the constituent minerals themselves, using
the logging response equation comprehensively, under the given constraint conditions, the
optimization algorithm can be used to obtain the approximate solution of mineral content.
As shown in Figure 15, the results of the log interpretation of the mineral profile of well J3,
which is in general agreement with the mineral content measured by XRD experiments.
Figure 16 shows the log interpretation of the mineral content calculated by the optimized
multi-mineral model of Well J2.
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5. Conclusions

Given that reservoirs of different lithologies are often shown on one logging data as a
combined effect of being shown on multiple logs, it is inevitable that statistical learning
techniques will be used to explore lithology identification using multiple logging data.

Firstly, the principal component analysis algorithm is introduced to analyze the im-
portance of the weight of each lithologic feature on the clustering analysis. After that,
a shale oil reservoir lithology identification technology based on principal component
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analysis and optimized clustering algorithm is established. Combined with the application
of the optimized multi-mineral model, the quantitative calculation of the formation mineral
components has been completed. This paper uses high-precision lithologic identification
technology to lay a good foundation for the subsequent analysis of physical properties and
oil-bearing properties and the establishment of the calculation model of key parameters of
shale oil reservoirs.

In terms of the corresponding coincidence rate of core results, the lithologic identifica-
tion based on principal component analysis has good effect and can be used in production
practice.
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