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Abstract: This paper aimed to introduce multiple-rack strategies in miniload automated storage
and retrieval systems (AS/RSs), which included first fit (FF) and best fit (BF) assignment methods
based on a matrix real-coded genetic algorithm (MRCGA) in the storage and retrieval process. We
validated the probability occurrence of item sizes as a contributory factor in multiple-rack strategies,
and compared their capacities, utilization of units and space by equal probabilities or the 80/20 law.
According to the analytical methods, BF showed a reduction of more than 11.2% than FF on travel
distance, and Type B-FF, Type B-BF and Type C-BF were better able to meet high-density requirements.
These strategies provide diversified storage and retrieval solutions for the manufacturing and express
delivery industry.

Keywords: multiple-rack strategies; probability occurrence of item sizes; first fit and best fit; matrix
real coded genetic algorithm (MRCGA); miniload automated storage and retrieval system (AS/RSs)

1. Introduction

As the costs of manpower and land resources continue to rise [1], the traditional logis-
tics warehousing technology gradually shows the disadvantages of low-space utilization
and inconvenient operations. At the same time, under the influence of the acceleration
of emergency support capacities of industries during the COVID-19 pandemic [2], higher
requirements have been placed on automated warehouse technology [3]. Automated ware-
house technology is the core of modern logistics technology, and its scope of application
involves almost all industries [4].

Automated storage and retrieval warehouse systems (AS/RSs) satisfy high require-
ments for items promptly accessed and distributed, and a flexible rack strategy is an
effective way to reduce costs and improve the space utilization of the warehouse. Gener-
ally, AS/RSs are composed of high-speed conveyors, dense racks, storage/retrieval (S/R)
machines, input and output stations, and automatic control systems. As shown in Figure 1,
a miniload AS/RSs take bins or cartons as the containers, realizing quick access to items of
various sizes [5]. The stacker cranes fly back and forth on the lanes, loading and unloading
the goods according to the control system’s order lists. For example, stacker cranes move
the cartons at the entrance (input station) of the lanes and store them into loaded units
in racks. The racks are composed of metal brackets, partitions, and pallets, and they are
widely used in intensive storage. Normally, a tunnel (two racks, and a stacker crane) can
satisfy more than 100 items per hour for storage and retrieval operations [6].
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The remainder of this paper is organized as follows. Section 2 provides a literature
review, and the optimal solutions come from two main aspects, avoiding fragmentation and
increasing rack capacity. In Section 3, three rack strategies are given. Then, their advantages
and disadvantages using first fit (FF) and best fit (BF) methods based on MRCGA are
expounded. In Section 4, their capacities and utilization are compared, considering the
probability occurrence of item sizes by equal probabilities or the 80/20 law, and experimen-
tal results are discussed. Further more, we have explained the limitations of the study and
the recommendation for future research.

2. Literature Review

AS/RSs have complex components and a large composition, and the modes of machine
movement and transportation are diverse. Scholars at home and abroad have adopted
many methods to improve their efficiency and practicability. Roodbergen et al. [7] provided
an overview of the AS/RSs for the past 30 years, and a range of methods focusing on travel
time estimation, storage assignment, and dwell-point location was explained. Jeroen P. van
den Berg [8] considered the problem in selecting the dwell point position and machine idle
time and presented analytic expressions for class-based and randomized policies. Hachemi
et al. [6] solved the S/R assignment as a sequencing problem and used a step-by-step
optimization method to gain the minimum double command (DC) time.

For improving system performance, Berglund et al. [9] developed an analytical solu-
tion procedure to minimize the expected path distance for the picker using a simplifying
assumption. Manzini et al. [10] presented a new design and management approach by
considering variable demand patterns. Banu et al. [11] developed an open queuing network-
based software tool which estimated some important performance metrics in an SBS/RS
system. Tony et al. [12] proposed a general mathematical method to minimize the waiting
time by decomposing scheduled requests, such as location assignments and sequencing
problems. Yener et al. [13] investigated the effectiveness of designing warehouses to reduce
travel distance and order picking time. Chung et al. [14] presented a two-stage assignment
(clustering and assignment) to minimize the picking delays from traffic congestion and
travel time. Tone et al. [15] presented analytical travel time models to handle the calculation
of expected cycle time in automated vehicles storage and retrieval system (AVS/RS) with a
multiple-tier shuttle vehicle.

For low-carbon emissions, Ali et al. [16] presented a methodology model aiming to
minimize the total cost of greenhouse gas (GHG) efficiency, and an ant colony optimization
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(ACO) and genetic algorithm (GA) were developed to validate the obtained results. Liu
et al. [17] proposed a robust facility method to measure system performance under disaster
conditions, and the result was validated, at the same time, it was superior to traditional
approaches. Yang et al. [18] presented a mathematical function model to analyze the picking
strategy of delivery operation, and the overall operating efficiency was improved. Li [19]
proposed a robotic mobile fulfillment system (RMFS) using three modules (task assignment,
path planning and traffic control), which showed a higher warehouse space utilization in
high-density storage warehouses, and saved approximately 10% storage spaces on average.

The explored research studies were concentrated on several themes, as shown in
Table 1. We compared studies in system features, operating modes, and objectives. These
objectives included time spent looking for items and items prior to sorting, and energy
consumption. On the whole, practical application cases were mainly studied from the
following aspects:

1. First, reducing the travel or expected time of single single command (SC) or dual
command (DC). Azzi et al. [20] suggested a new model to estimate the travel time
and conducted a new Monte Carlo simulation. Huaining et al. [21] proposed an
optimization model which was aiming to short the time of the retrieval and storage
operation by combining free search (FS) and amendment circle algorithm. Ngoc
et al. [22] proposed an efficient combination algorithm which reduced the travel
distance in AS/RSs;

2. Second, improving the compartment allocation strategies. Peng et al. [23] presented a
variable neighborhood search (VNS) algorithm to solve the large-sized item operations
under shared storage in multi-shuttle AS/RS. They used random or nearest storage
strategies, classified, or shared according to the original data and resources, such as
item numbers, material types, sizes, weights, etc.;

3. Lastly, improving the performance of the AS/RSs platform, such as better planning of
scheduling operations. Tostani et al. [24] proposed a novel bi-level and bi-objective
model which could offer better planning of operations. Tian et al. [25] proposed two
continuous travel time models, such as a dedicated lift per job type and rack, and two
models were validated by simulation and showed accurate results.

Table 1. The studies of optimization in AS/RSs.

Literature System Type System Features Operating Modes Objectives

[8] AS/RS position where the S/R
machine resides Undefined minimizing the expected time to the first

operation after an idle period

[7] AS/RS dynamic scheduling and design SC/DC
improving system performance of large
computation times and finite
planning horizons

[4] AS/RS accelerating/deceleration of the
S/R machine SC/DC reducing the expected travel time

[20] AS/RS dual-shuttle SC/DC SC and DC travel times
[6] AS/RS unit-load location rule DC minimizing DC travel times

[26] Miniload AS/RS identical shelves which handle
different widths cartons Undefined storage space utilization

[25] AS/RS multi-shuttle Undefined operational efficiency
[12] Miniload AS/RS dual shuttle crane DC minimizing the prioritized waiting time
[27] AS/RS single crane scheduling SC/DC a novel classification scheme
[16] AS/RS unit-load multiple-rack DC minimizing the cost of GHG efficiency

[28] flow-rack AS/RS a multi-deep rack and
two machines SC/DC an analytical model for the performance

evaluation and design

[5] Miniload AS/RS shuttle vehicles-type Undefined enhancing the buffering function of
flexible storage and sorting operations

[25] Split-platform AS/RS 2 flexible lifts/2 racks DC DC travel time
[15] AVS/RS multiple-tier shuttle vehicles SC/DC an analytical travel time models

[19] RMFS
high-density storage warehouses
with limited space or high
rental costs

DC saving labor costs and achieve higher
picking efficiency

This paper Miniload AS/RS Multiple rack design strategies DC reducing the fragmentation and
increasing rack capacity
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In manufacturing enterprises, the daily input and output (I/O) goods include all
kinds of materials from whole products and components to tiny spares. The material
characteristics include multiple types, varieties, sizes, and tens of thousands of shapes.
Meanwhile, no one strategy could perfectly solve all storage and retrieval problems.

The materials are loaded in containers, but for different shapes and sizes, their quick
and efficient S/R operations are hard to realize. The containers, storing materials such as
spares, components, and whole products, are sophisticated (such as the containers used in
the auto manufacturing enterprises). Daily orders are uncertain and urgent. In this paper,
we assumed that order could be predicted within a variation range. In limited physical
spaces, the solutions are derived from two aspects:

1. Avoiding fragmentation. Tokola and Niemi [26] proposed a minimizing fragmentation
method in a horizontal direction, reducing the gaps between cartons due to several
times for input/output operations. When the gaps were too narrow to load any
cartons, they were wastes of space. The horizontal direction was fully discussed in
their paper, but the vertical direction was dismissed. In this paper, we used space
utilization as one of the optimal indexes, discussing the utilization of space in various
rack strategies. In addition, we added vertical direction as an important model
parameter, and a unity and equal-depth model to reduce the computation amounts;

2. Increasing rack capacity. In order to increase rack capacity, the quantity of loaded units
should be as large as possible, and various sizes of containers or cartons, multiple
types of rack strategies were proposed. Rao and Adil [29] presented a class-based
method using a modified version (an ABC curve) on turnover density. Jason et al. [30]
presented an effective heuristic algorithm to locate products for a pick-and-pass
system. Sunil et al. [31] presented a decision model according to various parameters
such as total delivery time, total investment on each item and total cost. Chen
et al. [32] proposed a hierarchical two-stage-exchange method to minimize the total
dispersion degree in large-scale transshipment (commercial cars). Derhami et al. [33]
presented a block-stacking method by bay depth, cross-aisle types and the number
of aisles and cross-aisles in the beverage industry, and the resulting layout reduced
operation costs by 10%. Ghomri et al. [28] proposed an analytical method that took
into account various items’ physical parameters, such as length, width, and depth.
Extensive research is based on same-size containers and the same racks, and each
unit is only loaded one container. Obviously, there are horizontal and vertical wastes
of space. In our paper, the above-mentioned rack strategies were considered as the
Type A model, and we added other models to increase the rack designs for various
storage requirements, aiming to maximum use of racks by measuring their capacities
and utilization.

Gaku and Takakuwa [5] presented a method to demonstrate bottlenecks in different
layouts and take operation priorities and allocation rules into consideration in mini-load
AS/RSs. Ouhoud et al. [34] proposed a continuous model to study configurations and
analyzed various discrete distributions in horizontal and vertical movements in multi-aisle
AS/RS. Zhang et al. [35] presented a dynamic stocking decision and two heuristics for
small lots and generated more efficient picklists. On the other hand, the quantities of
materials are different and increase the storage difficulties. Boysen et al. [27] presented
a novel classification scheme to precisely define variety scheduling problems in single
storage/retrieval machines. Based on these studies, we used equal probabilities and the
80/20 law [36] to simulate input lists and storage/retrieval operations, and to validate rack
strategies by a matrix real-coded genetic algorithm (MRCGA), and the whole verification
methods to compare the advantages and disadvantages of models in an efficient way.

To meet the needs of storing complexity, high utilization, and efficiency, we proposed
multiple rack strategies for storage and retrieval assignment policy in miniload AS/RSs.

In this paper, our discussions mainly focused on avoiding fragmentation and increas-
ing rack capacity in limited space in miniload AS/RSs. In our methods, the limited space
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for racks was designed as a three-dimensional model, and the mathematical model was
established as follows.

1. Single-deep rack and stack design;
2. All kinds of cartons are suitable for storage, no matter the size;
3. Racks have same outline, means that they have same length, height and depth. At

the same time, cartons have same depth as racks. In this way the space utilization is
based on length and height (horizontal and vertical);

4. Every carton’s length is equal to its height;
5. One rack has several lines, and each line has several loaded-units, and each loaded

unit’s length is equal to its height. In this paper, a rack has 10 to 40 locations per line,
and 4 to 12 locations per column;

6. Time costs on preparing storage and retrieval are handled as constants in travel
process and could not be count in when calculating the travel distance. In the process
of storage/retrieval operations, there are short time periods for preparing storage and
retrieval. For example, from stacker cranes grab the cartons to start moving, or from
stacker cranes load the cartons to start moving. Compared to travel times, these time
periods are short. In addition, every DC operation has the same short time periods so
that we set them as constants, and when we compare the travel distances in three rack
strategies, these time periods are subtracted. Thus, we arrived at the conclusion that
these time periods could not be counted on.

Table 2 summarizes the definitions of parameters and variables used in this paper.

Table 2. Table of notation.

Lrack Length of rack, all racks have same Lrack
Hrack Height of rack, all racks have same Hrack
Lunit Length of loaded-unit
Hunit Height of loaded-unit
Lcarton Length of carton
Hcarton Height of carton
Qrack the total of racks
Qunit the total of units
Qcarton the total of cartons
T: the total of types of unit sizes
i: index of rack, i ∈ [1, Qrack]
j: index of units, j ∈ [1, Qunit]
m: index of carton, m ∈ [1, Qcarton]
TG: the required time for grabbing cartons and ready to move in storage operation, here it is
defined as a constant.
TL: the required time for grabbing cartons and ready to move in retrieval operation, here it is
defined as a constant.
Qin: the quantity of stored cartons in daily order
e: index of stored cartons, e ∈ [1, Qin]
Qout: the quantity of retrieval cartons in daily order
f : index of retrieval cartons, f ∈ [1, Qout]
GEN: the quantity of initial population in MRCGA, containing all chromosomes.
k: index of chromosome, k ∈ [1, GEN]
ITER: the total of iteration
d: the index of iteration,d ∈ [1, ITER]

2.1. Type A Rack Strategy

In Type A rack strategy, one unit permits only one carton loading. To satisfy the
permission, all rack units are big enough to all cartons, no matter the sizes of cartons are.
In these situations, it is clear that there are gaps in units when the cartons are smaller than
rack units (gaps are represented by blue arrows in Figure 2).
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The capacity of Type A is:

Qunit = Qrack ·
Lrack
Lunit

· Hrack
Hunit

(1)

When rack units are loaded with cartons, we define the units utilization as Utilizationunits,
and space utilization in x-y square (the square area is calculated as Lrack ·Hrack) as Utilizationxy.

Utilizationunits =
Qcarton

Qunit
· 100% (2)

Utilizationxy =

Qcarton
∑

m=1
(Lcarton,m · Hcarton,m)

Qunit · Lunit · Hunit
· 100% (3)

In Formula (2), m is represented as the index of cartons, from 1 to Qcarton.

2.2. Type B Multiple Sizes Rack Strategy

The design of Type B aims to reduce the gaps in the Type A strategy. Considering
that an appropriate carton is placed in an appropriately sized rack unit, ideally, the gap is
totally avoided, as shown in Figure 3. There are 11 types of cartons, meanwhile, the sizes of
the rack units have 11 types. It is obvious that the quantity of storage units is greater than
that of Type A in the same limited space.

Setting the quantity of smallest unit racks is Qrack,1, the second smallest is Qrack,2, . . . ,
and the biggest is Qrack,T (T is the quantity of unit types, and t is the index, from 1 to T),
and Qrack,1 + Qrack,2 + . . . + Qrack,t + . . . + Qrack,T = Qrack. Moreover, Lunit,t and Hunit,t is
the unit’s length and height of #t size rack, and the capacity of Type B is:

Qunit = Qrack,1 ·
Lrack

Lunit,1
· Hrack

Hunit,1
+ Qrack,2 ·

Lrack
Lunit,2

· Hrack
Hunit,2

+ . . . + Qrack,T ·
Lrack

Lunit,T
· Hrack

Hunit,T
(4)

When the units are stored with cartons, we define Utilizationxy as follow:

Utilizationxy =

Qcarton
∑

i=1
(Lcarton,i · Hcarton,i)

Qrack · (Lrack · Hrack)
· 100% (5)
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2.3. Type C Multiple Cartons Rack Strategy

Nowadays, the racks are normally designed in same unit sizes, and it is simple for
items’ placement and transportation. In reality, as technology advances, containers (pallets
or cartons) can share their units shown in Figure 4, and it is obvious that the containers or
pallets are unified into one size.
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Figure 4. Examples of multiple items in one load unit.

In the Type C strategy, assuming that one unit could be stored several cartons, and
space allows. As shown in Figure 5, one unit could load three size #1 cartons, or one size #1
and one size #6 carton.

The capacity of Type C is:

Qunit = Qrack ·
Lrack
Lunit

· Hrack
Hunit

(6)

When the units are stored with cartons, we define Utilizationxy as follow:

Utilizationxy =

Qcarton
∑

i=1
(Lcarton,i · Hcarton,i)

Qrack · (Lrack · Hrack)
· 100% (7)

Using Formula (2), Utilizationunits could be more than 100% in Type C due to multiple
cartons in one unit.
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2.4. FF and BF Location Assignment Methods

According to the locations of cartons, there are two methods usually used in the
location assignments, First Fit (FF) and Best Fit (BF). As shown in Figure 6, every location
is defined as their coordinates (ArrayIndex, LevelIndex). For example, the array 2, level 1
unit is (2,1), showed as arrow #1 and arrow #3, or (1,4) is showed as arrow #4 and arrow #2.
Besides, the searching order is from left to right, then bottom to top. Using this searching
rule, there are several locations are suitable for loading #6 carton, for example, (1,4), (2,1),
(2,2), (2,3), (3,4), and (2,4) in Type C rack.
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FF method chooses the first location as the load destination, thus the (1,4) is the final
position coordinate, in array 1 and level 4. In Formula (8), the quantity of solutions is K,
and k is their index.

FF = First (coordinate1, . . . , coordinatek, . . . , coordinateK), k ∈ [1, K] (8)
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BF method uses judgement function to choose the final solution, and it is given in
Formulas (9) and (10). In Type A or Type B rack strategy, judgement function is represented
by the least travel distance of all feasible solutions (BFD,Dis tan ce), for instance, we get (2,1)
in Figure 6.

BFD,Dis tan ce = Min(
√

ArrayIndexj
2 + Level Indexj

2), j ∈ [1, Qunit] (9)

In Type C rack strategy, judgement function has 1 or 2 steps.
Step 1, calculate the most suitable locations (BFD,Gap, in Formula (10)). If BFD,Gap is no

less than Lunit, meaning that there no shared unit for carton, then go to Step 2; or BFD,Gap
gives a shared unit space for the loading carton, and function end.

Step 2, calculate BFD,Dis tan ce, using Formula (9).
For instance, we get shared unit (2,4), showed as arrow #5 and #6 in Figure 6, for #6

carton in Type C rack (in Figure 6).

BFD,Gap = Min
Qunit

∑
j=1

(Lunit,j − Lcarton,j), j ∈ [1, Qunit] (10)

In Formulas (9) and (10), Qunit is the quantity of units, and j is the index of units.

2.5. Analysis of DC Using MRCGA

There are large amounts of storage and retrieval requests in daily production, and
scholars develop some improved Genetic Algorithm (GA) algorithms for these S/R assign-
ments in many research studies. GA has a wide range of applications and the characteristics
of biological selection and heredity in nature [37]. In the process of iterations, it makes
good use of its own crossover and mutation to find the optimal solution quickly, and has
an excellent ability to search for solutions in the global range [8,38]. Li et al. [37] presented
a greedy genetic algorithm for a new dynamic storage assignment problem. Hu et al. [39]
proposed a yard sharing Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) to ease
container congestion in surplus storage space, and the analysis is conducted by weight
coefficient and feasible distance. Peng et al. [38] presented a mixed integrated programming
model and improve the standard NSGA-III by crane scheduling and relocating rate. In
this paper, we propose a matrix real-coded genetic algorithm (MRCGA), which is based
on matrix selection, crossover, and mutation operations for each generation of population
individuals, and the process is shown in Figure 7. Each randomly generated matrix is
regarded as a chromosome (feasible solution), and the initial population is a number of
matrixes. This matrix coding method can not only reduce the computational workload,
but also ensure the feasibility and legitimacy of each offspring in the process of crossover
and mutation.

As shown in Figure 8, a DC operation is traced. First, stacker crane grabs the #1 carton
from the input-port and transports it into the target location (using FF or BF method to get
the target location), the location is showed as arrow #1 and #2. Then the machine moves
to the #7 carton, the trajectory is showed as arrow #3, and grabs it and transports it to the
output-port, the carton location is showed as arrow #4 and #5. In the whole process, TG
and TL (defined in Table 2) is handled as constants and ignored in this paper, and the travel
distance (Dtravel) is the main factor in the R/S processes.
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In Formula (11), a double dual-command cycles contain a loading coordinate repre-
sented as (ArrayIndexe, Level Indexe), and a picking coordinate (ArrayIndex f , Level Index f ).
The travel distance (Dtravel) is showed in Formula (11).

Dtravel =
√

ArrayIndexe2 + Level Indexe2+√∣∣∣ArrayIndex f − ArrayIndexe

∣∣∣2 + ∣∣∣Level Index f − Level Indexe

∣∣∣2
+
√

ArrayIndex f
2 + Level Index f

2

(11)

Normally, there is an amount of loading and picking requests in a period, and we
proposed to optimize the combinations by MRCGA. Combining the loading and picking co-
ordinates randomly, and single chromosome Chrk was generated as below. It is remarkable
that the quantities of storage and retrieval could be unequal.

Chrk =


LoadingIndex1
LoadingIndex2
LoadingIndex3

...
LoadingIndexN

PickingIndex1
PickingIndex2

...
PickingIndexM

 (12)



Processes 2023, 11, 950 11 of 19

Dtravel is considered as the fitness function, and Dtravel,chrk
is the Dtravel of Chrk. When

Dtravel,chrk
is smaller, Chrk is more likely to be the optimized solution.

Fitd = min(Dtravel,chrk
) (13)
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In the selecting steps, we use tournament method to choose better parents chromosome
by Fitd, then the crossover and mutation probability (cp, mp) are setting as constants (such
as cp = 0.9, mp = 0.2). When the number of iterations reaches the maximum setting
(ITER, in Table 2), the optimal solution is output. The solution is the optimized location
assignment for the S/R cartons.

3. Numerical Experiments
3.1. The Capacity and Utilization of Type A

In Type A, there is an advantage that it is simple to allocate the cartons when all the
loaded-units are same sizes. Setting Qrack = 1, Lrack = 30, Hrack = 12, Lunit = 3, Hunit = 3,
and we get Qunit = 40. Setting Qin = 40, Qout = 0, and 11 carton sizes (in Figure 9) are
presented randomly.

As shown in Figure 9, 11 sizes are expressed as (Lcarton, Hcarton), such as #1 (1,1),
#2 (1.2,1.2), #3 (1.4,1.4), . . . , #6 (2,2), . . . , #10 (2.8,2.8), #11 (3,3). When the probability
occurrence of 11 sizes of cartons are nearly equal, more or less than 10%, and the rack is full
of cartons, then we get that Utilizationunits is 100% and Utilizationxy is 49.72% by Formulas
(2) and (3). It suggests that even all units are loaded, there is nearly a half space could be
improved, then we discuss the Type B and Type C strategies.
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3.2. The Capacity and Utilization of Type B

In Type B, we set Qrack = 11, and the 11 rack-unit sizes are matched with the 11 carton
sizes in Figure 9. The capacity is Qunit = 360 + 250 + 168 + 126 . . . + 40 = 1339, more than
2 times of Type A (Qunit = 440). Discussing the advantages and disadvantages of Type A
and Type B strategies as follow (in Table 3).

Table 3. The capacity and utilization of each rack in Type B (Qrack = 11).

Size No. Capacity Number of Cartons Utilizationunits Utilizationxy

#1 360 49 13.61% 13.61%
#2 250 44 17.60% 17.60%
#3 168 53 31.55% 28.86%
#4 126 43 34.13% 30.58%
#5 96 43 44.79% 38.70%
#6 90 37 41.11% 41.11%
#7 65 50 76.92% 67.22%
#8 48 47 97.92% 75.20%
#9 44 44 100% 82.62%

#10 40 40 100% 87.11%
#11 40 40 100% 100%

Total 1339 490 36.59% 52.96%

1. In Type A, 11 racks could content 440 cartons, no matter the sizes they are. In the worst
situation, when the input cartons are all #11 size, Type A could be loaded 440 cartons,
however Type B is 40. In brief, the utilization largely depends on the probability
occurrence of the cartons’ sizes.

2. When the probability occurrence of 11 cartons’ sizes is the same, the Type B’s average
capacity can over 460.

In Table 3, racks are loaded in 490 cartons, 4.5% more than Type A, then the
Utilizationunits = 36.59%, and Utilizationxy = 52.96%.

In fact, the rack-unit sizes in the manufacturing industry are limited, for too many
different sizes of units are not convenient for sharing S/R machines, cranes, and lifters
resources. Under this consideration, the loaded-units and cartons are simplified as three
sizes, such as small, medium, and large. Using 80/20 law, the probability occurrence
of small and medium cartons is nearly 80% in daily R/S activities, then we discuss the
quantities and utilization of three racks strategies.

The procedure of Type B strategy is summarized as follow Algorithm 1.
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Algorithm 1. The utilization of Type B strategy.

Input: Qrack = 11, racks are empty. The quantities of small, medium and large racks are all at least 1.
qs: The quantity of small racks, ∈ [1,9]. qm: The quantity of medium racks, ∈ [1,9]. qb: The quantity of large racks, ∈ [1,9].

MAX: Making sure that no loaded-unit is available for a carton after loading cartons several times, setting MAX is more than Qunit.
Procedure:
1: for qs = 1:9
2: for qm = 1:9
3: qb = 9 − qm − qs
4: if qb < 0 break; end if
5: calculate Qunit using Formula (4)
6: for i = 1: MAX
7: generate a random carton

(the probability occurrences of small, medium and big are 20%, 60%, 20%)
8: load carton into racks
9: if (no loaded-unit is available for a random carton)
10: calculate Utilizationunits and Utilizationxy, break;
11: end if
12: end for
13: end for
14: end for

The process is shown in Algorithm 1, and using this algorithm, results are shown in
Figure 10.
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In Figure 10, the consumption is largest when the small, medium, and big unit
are 1, 5 and 5. At the same time, the capacity is 1010, and 812 units are loaded, then
Utilizationunits = 80.4%, Utilizationxy = 89.2%.

3.3. The Capacity and Utilization of Type C

In Type C, one rack-unit could be loaded several cartons, setting Qrack = 11, and
Qunit = 440, using 80/20 law, we get Qcarton = 525, which represents that Utilizationunits
is 119.3%, and Utilizationxy is 60.6%. The results are better than Type A, but worse than
Type B.

However, there are some disadvantages in the Type C strategy. For instance, multiple
cartons in one unit, the single carton positions may be vague which brings difficulties in
grabbing and loading requests. Otherwise, the target carton may be disturbed by nearby
cartons and cause unsuccessfully grabs.

3.4. MRCGA Based on FF and BF Methods in Type A

When selecting loaded units to store cartons, we use FF and BF methods to compare
their travel distance.

In Type A, setting Qrack = 2, and units in rack#1 are numbered from 1 to 40, and 41
to 80 in rack #2. Two racks share a lane and a S/R machine to accomplish all storage and
retrieval requests. Racks are half full of cartons under random loading, then input and
output lists are randomly generated, as in the examples that follow.

The input list is (2 2 3 2 3 2 3 3 1 1 1 1 2 3 3 2 3 3 1 1), the numbers are matched with
small, medium, and large cartons, for instance, “2” means a medium carton and could be
loaded into a medium rack-unit, and “1” means a small carton.

The output list is (26 24 5 20 36 33 28 6 15 3 35 3 11 5 19 16), the numbers are the
locations of cartons stored in racks, for instance, “26” means the carton stored in row 2,
column 6 of rack #1.

In DC process, we obtain the optimal combination by MRCGA, which is shown in
Figure 11 (Setting as follows, the generation is 99, population size is 300, pc is 0.9, and pm
is 0.2).
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In Figure 11, the minimum travel distance is nearly 205 (the optimum of BF method
line shows at the end of iteration) using BF method, obviously 228 using FF method, these
represents a reduction of 11.2% in travel distance (Tokola and Niemi [26], optimization
of the rule gaps are narrower than 10%). It is validated that MRCGA has an obvious
advantage in solving DC problems. At the same time, one of the optimal solutions is shown
in Formula (14).

Chroptimal,BF =



2 0
2 3
3 28
2 43
3 20
2 51
3 0
3 59
1 0
1 26
1 24
1 5
2 0
3 33
3 15
2 56
3 75
3 36
1 45
1 6



(14)

As shown in Formula (14), Chroptimal,BF is a optimal solution by BF method. On the
right-hand side, the first column is the input requests, and the second is output requests,
and they are combined in rows, the DC cycles. Actually, the travel distance is 205.51 of
this solution.
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3.5. MRCGA Based on Three Types Rack Strategies

In practical application, the capacity of an Miniload AS/RSs could reach 100,000,
and the daily R/S requests are up to 2000 [16]. Based on three types of racks strategies,
Setting Qrack = 22 (In Type B, Qrack,small = 2, Qrack,medium = 10, Qrack,large = 10). At the
same time, the racks are half full of random cartons, assuming that an input list contains
100 storage cartons, and an output list contains 80 retrieval requests, considering the inputs
are more than outputs, there is a situation that no unit is available for cartons after multiple
cycles, then we compare the utilization of three rack strategies by FF and BF methods
using MRCGA.

The procedure of Type A-FF strategy is summarized as follow Algorithm 2, and an
example of Mapunits is showed in Figure 12.

Algorithm 2. The utilization of Type A-FF strategy using MRCGA.

Input: Qrack = 22, setting that the quantities of inputs and outputs are 100 and 80.
Racks are half full, and Mapunits is the racks map, which shows there are or not cartons in units. When one unit is loaded

with some carton, the unit value in Mapunits is setting as carton length; when one carton is picked and removed, the unit value in
Mapunits is setting as “0” (in Type A and Type B) or “1”/“2”/“3” (in Type C). In Type A model, one unit is loaded only one carton,
the unit value in Mapunits is setting as “1” or “0”. In Type B model, one unit is loaded only one carton in racks, no matter what
rack-unit size it is, the unit value in Mapunits is setting as “1” or “0”. In Type C model, one unit could be stored several cartons, and
the unit value in Mapunits is added or subtracted, and when one unit is loaded with a carton, the unit value add the carton’s length,
if the added unit value is more than unit length, this unit cannot be loaded with this carton, and the program runs to next unit.
As shown in Figure 12, the first column is number of units:
The value is (1, 2, . . . ,Qrack,1, Qrack,1 + 1, Qrack,1 + 2, . . . , Qrack,1 + Qrack,2, . . . , Qrack,1 + Qrack,1 + . . . + Qrack,N . . . ), N is the total
number of racks.
The second column is unit length, the value is 3 in Type A and Type C, and 1, 2, or 3 in Type B.
The last column is unit value, “0” is empty, “1”/“2”/“3” are the length of loaded cartons, and the gaps in units are equal to unit
length subtract unit value.

EI: estimate of iterations, such as “30”, making sure a situation that no unit is available for cartons after several iterations.
Then, the capacity of racks reaches a maximum, calculating Utilizationunits and Utilizationxy. Usually, calculating multiple times
(MaxCalculateTime is more than 20) for average values.
Procedure:
1: for i = 1 : MaxCalculateTime
2: function Type A_FF:
3: for j = 1 : EI
4: generate randomly inputs and outputs lists,

InputList (quantity is 100), OutputList (quantity is 80), by 80/20 law.
5: generate initial population, chromosomes are combined randomly.

use MRCGA, get Chroptimal,FF, update the Mapunits.
6: if (no unit is available for a carton)
7: get the quantity of cartons in Mapunits, and calculate Utilizationunits and Utilizationxy
8: break
9: end if
10: end for
11: end for
12: calculate the average of Utilizationunits and Utilizationxy.

Taking average values after multiple computing, we get the utilization of 6 strategies,
as shown in Table 4.
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Table 4. The capacity and utilization of DC using MRCGA.

Name Capacity Utilizationunits Utilizationxy

Type A-FF 880 100% 46.22%
Type A-BF 880 100% 46.15%
Type B-FF 2020 93.76% 98.21%
Type B-BF 2020 93.09% 98.19%
Type C-FF 880 170.85% 80.41%
Type C-BF 880 201.05% 99.68%

In Table 4, Type A has the least capacity, compared to others, and Type C has the most.
FF and BF methods are given nearly same utilization values in Type A and Type C, thus BF
is nearly 20% better than FF in Type C. The units in Type B-FF, Type B-BF and Type C-BF
methods are nearly full loaded, showing an excellent utilization.

4. Conclusions

In a limited space, choosing an appropriate rack strategy largely depends on the
containers’ sizes and probabilities. In this paper, we discussed three rack strategies in
general applications, such as that the cartons had equal probabilities or by the 80/20 law,
comparing their capacities, utilization of units and space. In the storage and retrieval
process, we provided FF and BF methods to locate cartons, and used an MRCGA to
generate the optimal solution of DC cycles and list orders. The results showed that BF
represents a reduction of 11.2% in travel distance, obviously improving productivity. The
capacity of Type B is more than two times that of Type A or Type C, and its utilization is
relatively excellent, just 1.47% less than Type C. In Type C, the BF method showed a greater
advantage than FF, adding nearly 20% utilization in space. From this analysis, we can draw
some management implications: storage requirements are changing but can be foreseeable;
considering their advantages and disadvantages, Type B-FF, Type B-BF and Type C-BF
could better meet high-density requirements, and provide diversified storage and retrieval
solutions for Manufacturing Enterprises in Miniload AS/RSs.

However, the Type A rack design is still typical in our life, and Type B and Type C have
their limits in practical applications; for example, Type B is useful when input carton sizes
are foreseeable, or the unforeseen changes of carton sizes lead to unsuitable storage units
and a greater waste of space. Type C has high requirements for the accurate calculation
of carton locations. In addition, three models were established relating to two directions,
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length and height, and the third direction (depth) was supposed as equal, greatly reducing
the amount of calculation but showing some discrepancies from the reality. In the future,
we will consider improving the models in these directions.
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