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Abstract: Coal pillars from old mines undergo creep, a type of time−dependent deformation. Re-
search on underground engineering stability of coal mines has increasingly focused on long−term
strength as an important mechanical index of the creep characteristics of coal pillars. This study
performed conventional triaxial compression and triaxial creep tests of anthracite under different
confining pressures. The creep law of anthracite and the long−term strength of anthracite was stud-
ied according to the test results. The test results demonstrated the following: (1) The conventional
elastic modulus and peak strain of anthracite increased exponentially with the confining pressure.
(2) Under low stress levels, anthracite exhibited only instantaneous deformation and attenuation
creep. In contrast, anthracite exhibited instantaneous deformation, attenuation creep, and steady
creep under high stress levels; accelerated creep occurred until failure when the stress reached a
particular value. (3) By fitting the steady−state creep rate of anthracite under high stress levels, the
functional relationship between axial stress and steady−state creep rate was established, and the
threshold of the steady−state creep rate in high−stress−level areas was suggested as the optimum
long−term strength of anthracite. (4) The ratio of the long−term strength to instantaneous strength
under various confining pressure grades ranged from 70% to 91%.

Keywords: creep; anthracite; test; long−term strength; improved steady−creep rate method

1. Introduction

Before the 1990s, many mines in the Qinshui coalfield in China mostly adopted the
roadway pillar (digging instead of mining) and roadway caving mining methods, leaving
many coal pillars in the abandoned mining areas [1]. With the gradual depletion of coal
resources, large−scale residual coal recovery from high−quality coal resources in old
mining areas has become necessary; however, long−term stability discrimination of coal
pillars remaining in old mining areas is a problem that must be considered for the safe
recovery of residual coal [2–4]. Coal pillars have time−dependent creep characteristics.
Coal pillars from old mines have been subjected to roof loads for a long time, and their
creep characteristics are more apparent. The creep deformation process of coal pillars
has a critical stress value. When the load on the coal pillar is greater than this critical
value, the coal pillar stabilises with time and creep is accelerated until instability and
failure. In contrast, when the load on the coal pillar is less than the critical value, the coal
pillar remains intact regardless of time. In rock mechanics, this critical value is known as
long−term strength [5–8]. From the initial formation to the recovery of coal pillars, whether
the deformation of the coal pillar was within the safe allowable range with an increase in
time or reached long−term strength, lost stability, and was destroyed should be considered
when studying the creep of coal pillars. In addition, the stress environment of the elastic
core area inside the coal pillar is generally a low−confining−pressure triaxial stress state.
Therefore, triaxial creep characteristics under low confining pressure must be investigated,
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and long−term strength tests must be performed to predict the long−term stability of
coal pillars.

In recent years, many scholars have primarily studied the creep law and constitutive
model of various rocks under different conditions. Zhang et al. [9] performed compression
and creep tests on peridotite and concluded that creep deformation occurs only when the
deviatoric stress is higher than the creep starting threshold. Chen et al. [10,11] performed
triaxial creep tests on quartz, metamorphic, and red sandstones under freezing and thawing
at different temperature differences and discussed their pore structure development law
and creep damage characteristics. Zhang et al. [12] studied the triaxial creep test law of
salt rock at different temperatures and established a fractional viscoelastic–plastic creep
damage model of salt rock considering the temperature effect. Jiang et al. [13] performed
creep tests on gypsum rock under different confining pressures and obtained its creep
deformation characteristics under low− and high−stress conditions. Cheng et al. [14]
performed uniaxial compression and graded creep tests on cemented backfill in coal mines
by ultrasonic monitoring and established the hardening–damage nonlinear constitutive
model of cemented backfill by introducing hardening and damage functions. Other re-
searchers have also performed creep tests on soft rock [15], granite [16], clay rock [17],
and siltstone [18] among others. They discussed the creep laws of various rocks under
different conditions, such as creep strength and creep deformation changing with stress,
and established creep models of various rocks according to the test data.

As an important mechanical index of rock mechanics, long−term strength has been the
research focus in creep tests. The commonly used methods for determining the long−term
strength of rock include the isochronous stress–strain curve, steady creep rate, and tran-
sition creep methods [19,20]. Many researchers have conducted studies on and made
improvements to these methods. According to the uniaxial creep test results of red sand-
stone, Cui et al. [21] suggested that the critical stress of rock entering radial steady creep
should be considered as the long−term strength of rock. Zhang et al. [22] improved the
isochronous stress–strain curve method and proposed a method that considers the criti-
cal stress value of rock lateral volume expansion rate greater than the axial compression
rate to be long−term strength. Liu et al. [23] separated the creep stages of rock, estab-
lished the functional relationship between steady creep rate and stress, and took the stress
value corresponding to the creep rate tending to zero as the long−term strength of rock.
Wang et al. [24] improved the traditional steady−state creep rate method to determine the
long−term strength of salt rock, taking the reciprocal of stress level and steady−state creep
rate as independent variables and strain as function curves. They proposed that the stress
corresponding to the linear fitting intersection point of high− and low−stress areas should
be considered the long−term strength of rock.

Although many scholars have proposed improved methods for determining the
long−term strength of various types of rocks, these methods were inconsistent, and the
strength values were irregular owing to the discreteness of engineering rock mass and the
uniqueness of its internal structure. Therefore, this study performed triaxial compression
instantaneous and creep tests under different confining pressures on anthracite taken from
coal seam No. 3 of the Qinshui coalfield in Shanxi Province and obtained the relationship
between axial deformation law, creep deformation rate, and stress level. Moreover, the
long−term strength determination method is discussed. The results of this study provide a
relevant theoretical reference for the study of coal creep mechanical properties, long−term
stability evaluation of coal pillars left behind in coal mines, and control of surrounding
rock in re−mining stopes.

2. Sample Preparation and Test Equipment
2.1. Sample Preparation

The coal samples were taken from coal seam No. 3 in the re−mining area of the
Guanlingshan Coal Mine in the Qinshui coalfield, as shown in Figure 1a. Coal samples
with a block size of approximately 300 mm × 300 mm × 300 mm were drilled on site
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using pneumatic picks, as shown in Figure 1b, The samples were wrapped tightly with
plastic wrap to prevent contact with air, protected and packaged with sawdust and foam,
and transported to the laboratory. The coal bodies were processed into standard cylinder
samples of Φ 50 mm× 100 mm using a yarn−cutting machine according to the International
Society of Rock Mechanics (ISRM) test standards, as shown in Figure 1c. The two ends
of the coal samples were ground using an end grinder to ensure parallelism between
the upper and lower ends, as shown in Figure 1d. Considering the discreteness of the
anthracite samples, the sonic testing method was used to screen coal samples with similar
wave velocities before triaxial compression and creep tests, as shown in Figure 1e. Figure 1
shows the sample processing and screening process.
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Figure 1. Coal sample preparation and specimens ready for testing.

2.2. Test Equipment

Triaxial compression instantaneous and creep tests were performed using an LDHJ−III
rock triaxial high−temperature creep−testing machine jointly developed by the Taiyuan
University of Technology and Jiangsu Huaan Scientific Research Instrument Chief, as
shown in Figure 2. The maximum axial pressure of the device was 300 kN, and it had a
measuring accuracy of less than ±0.1 kN. The maximum confining pressure was 20 MPa,
with the accuracy controlled within ±0.02 MPa. The measuring deformation range was
0–10 mm in the axial and radial directions. All measuring resolutions were at 0.001 mm.
The temperature range was 5–80 ◦C, with the temperature control accuracy at 0.2 ◦C. To
provide creep parameters for studying the long−term stability of coal pillars, the test
temperature was set according to the actual temperature of the coal pillar stratum of 20 ◦C.
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3. Conventional Mechanical Experiment of Anthracite
3.1. Triaxial Compression Test

Four groups of conventional triaxial compression tests with confining pressures of 0.5,
1.0, 1.5, and 2.0 MPa were performed before the creep test. Three coal samples were tested
in each group. Finally, the experimental data of a successful sample was selected from each
group of experiments for analysis.

Before the start of the experiment, a layer of heat−shrinkable sleeve was wrapped
on the surface of the coal sample and heated slowly and evenly with a hot air gun to
tightly seal the heat−shrinkable sleeve. The coal sample was installed on the base of the
triaxial pressure chamber such that the upper and lower pressure heads were consistent
with the coal sample in the vertical direction. Subsequently, water was injected into the
triaxial chamber to drain the air in the chamber. The confining pressure was applied to
the preset stress level and maintained at a constant value. Then, the axial pressure was
applied at a rate of 50 N/s until the coal sample was unstable and destroyed. After saving
the experimental data, the pressure was relieved, the water was drained, and the control
panel was cleared for the next group of experiments.

3.2. Conventional Mechanical Parameters of Anthracite under Different Confining Pressures

Figure 3 shows the complete stress–strain curves of anthracite during the triaxial
compression tests with different confining pressures. The triaxial compressive strength
of anthracite increased with an increase in the confining pressure. When the confining
pressures were 0.5, 1.0, 1.5, and 2.0 MPa, the corresponding compressive strengths were
17.31, 21.88, 27.10, and 31.50 MPa, respectively. In the initial stage, under the action of
triaxial stress, the primary microcracks and micropores in the coal samples were compacted
and closed, and nonlinear strain occurred. The coal samples entered the elastic strain stage
with an increase in the axial stress. The stress threshold in this stage accounted for approxi-
mately 20–40% of the triaxial compressive strength. With the continuous crack propagation
and damage accumulation, the coal samples began to undergo plastic deformation and
entered the strain−hardening stage. When the axial stress exceeded the peak strength, the
elastic energy of the coal samples was released in large quantities, the axial stress decreased
and the axial strain increased rapidly. Moreover, strain softening occurred, resulting in
instability and failure of the sample.
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Elastic modulus and peak strain are important parameters reflecting the deformation
performance of coal and rock mass. In rock mechanics, elastic modulus is defined as the
ratio of stress and strain of coal or rock mass in the elastic deformation stage [25]. Therefore,
the elastic modulus of anthracite under different confining pressures was calculated by



Processes 2023, 11, 947 5 of 19

intercepting the stress and strain in the peak stress front deformation stage from the triaxial
complete stress–strain curve. The stress and strain corresponding to the peak point of the
total stress−strain curve of anthracite (Figure 3) are the instantaneous compressive strength
(σp) and peak strain (ε1c), as shown in Table 1. In Table 1, σ3 represents the confining
pressure and σc refers to the peak strength of the deviatoric stress, which is the difference
between σp and σ3.

Table 1. Mechanical parameters of the anthracite samples under different confining pressures.

Sample σ3/MPa σp/MPa σc/MPa Es/GPa ε1c/10−3

WY−S01# 0.5 17.31 16.81 4.23 4.78
WY−S02# 1.0 21.88 20.88 4.26 5.73
WY−S03# 1.5 27.10 25.60 4.65 6.99
WY−S04# 2.0 31.51 29.51 5.18 7.09

Figure 4 shows the exponential function fitting relationship between the instantaneous
compressive strength, elastic modulus, and peak strain of anthracite under different confin-
ing pressures. The figure shows that in the conventional triaxial compression experiment,
the compressive strength of anthracite increased linearly with confining pressure and
that the elastic modulus and peak strain of anthracite increased with an increase in the
confining pressure, showing an exponential function increasing trend. As the confining
pressure increased, the elastic modulus of anthracite increased faster and the peak strain
increased slower.
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4. Creep Test of Anthracite
4.1. Test Program

The triaxial creep test of anthracite was divided into four groups according to the
confining pressure grade, with two coal samples in each group. The triaxial creep test of
eight samples was performed with the staged loading mode. Figure 5 shows the loading
path. During the experiment, confining pressure was first applied to the specimen to a
predetermined value. Subsequently, axial pressure, with the same amount as that of the
confining pressure, was applied to the specimen such that the specimen was temporarily in
hydrostatic pressure. After setting the other test parameters, axial stress was applied to the
specimen in a stepwise manner until the specimen was unstable and destroyed. Each load
was retained for 2 d.
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4.2. Creep Test Results

According to the test results, the ideal test data were extracted from each group
of experiments, and the “axial strain–time” curves of the coal samples under different
confining pressures were obtained, as shown in Figure 6.
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Figure 6 shows that under different confining pressures, the anthracite samples pro-
duced a particular amount of instantaneous elastic strain at the moment of loading; then,
creep deformation gradually occurred with an increase in time under the action of axial
stress. When the axial stress level was low, the creep rate decreased with an increase in
time and gradually tended to zero, the deformation of coal samples no longer increased,
and anthracite underwent only instantaneous elastic strain and decay creep. With an
increase in the axial stress level, the creep rate gradually decreased with an increase in
time after an instantaneous elastic deformation and finally tended to a non−zero value
and remained unchanged. At this time, the anthracite entered the steady creep stage and
had the characteristics of instantaneous elastic strain, attenuation creep, and steady creep.
When the stress level was higher (exceeding the long−term strength of anthracite), the
creep rate of anthracite was higher, and the accelerated creep occurred in a short time until
the coal sample was destroyed.

Figure 6 also shows that the instantaneous elastic deformation of anthracite accounted
for a large proportion of creep deformation. The axial creep deformation of anthracite
was small when the stress level was low. Moreover, the axial creep increased slowly with
an increase in the stress level. Taking the deformation curve of anthracite at a 1.5 MPa
confining pressure as an example, under the first four stress levels, the coal samples
underwent only instantaneous elastic deformation and attenuation creep stage, and there
was no steady creep deformation. Under the last four axial stress levels, the coal samples
underwent attenuation creep and then entered the steady creep deformation stage. With an
increase in the stress levels, the steady creep rates increased continuously, with values of
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0.022 × 10−5/h, 0.121 × 10−5/h, 0.244 × 10−5/h, and 0.691 × 10−5/h. When the last load
was applied to the specimen, the strain rate increased continuously after a long period
of steady creep until the specimen was unstable and destroyed; that is, the specimen
experienced an accelerated creep stage.

The confining pressure level directly affects the creep deformation and failure stress of
anthracite. The larger the confining pressure, the stronger the lateral action of anthracite,
the smaller the creep deformation, and the higher the stress level during failure. When the
confining pressures were 0.5, 1.0, 1.5, and 2.0 MPa, the corresponding axial stress levels of
the coal samples during failure were 17.0, 23.0, 26.0, and 26.0 MPa, respectively. The creep
failure strength of anthracite decreased under different confining pressures compared with
the conventional triaxial compressive strength of anthracite in Table 1; that is, the ageing
effect of creep reduced the anthracite strength. Therefore, long−term strength is a key
factor to be considered in studying the long−term stability of coal pillars.

4.3. Instantaneous Elastic Strain

Figure 7 shows the instantaneous elastic strain–deviatoric stress relationship curve of
anthracite under different confining pressures. The figure shows that the instantaneous
elastic strain was almost linear with the loading stress under each confining pressure grade
with an increase in the deviatoric stress, and the slopes of linear fitting were 0.446, 0.322,
0.222, and 0.173 with different confining pressures. The linear fitting effect was good,
and the fitting coefficients were greater than 0.99; that is, the instantaneous strain of the
sample increased continuously with the axial stress. Under the same deviatoric stress
level, the smaller the confining pressure, the greater the instantaneous elastic strain. This
implies that the confining pressure significantly influenced the lateral constraint of the coal
samples. In addition, the smaller the confining pressure, the smaller the axial deformation.
Moreover, the ability of the anthracite specimens to resist instantaneous elastic deformation
increased with an increase in the confining pressure level. Figure 7 also shows that the
smaller the confining pressure, the greater the growth rate of the instantaneous elastic
deformation with the axial stress level. The change curve of the instantaneous elastic strain
growth rate with confining pressure was plotted according to the slope of the fitting line,
as shown in Figure 8. The figure shows that the growth rate of the instantaneous elastic
strain of anthracite decreased gradually with an increase in the confining pressure, and the
relationship between them decreased exponentially.
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4.4. Creep Strain Rate

Figure 9a shows the three−stage creep characteristics of the anthracite sample under
the loading condition with a 0.5 MPa confining pressure and 16.5 MPa single−order
deviator stress. Because the deviatoric stress level was very close to the peak strength of
the coal sample, the accelerated creep occurred instantaneously when the coal sample was
loaded at the next stage after creep for a particular time, leading to its instability and failure.
Figure 9a also shows that the instantaneous elastic deformation occurred at the moment of
loading and then entered the creep stage. The entire creep process lasted approximately
48 h. The initial creep deformation was apparent. The deformation rate decelerated and
decreased. The axial strain rate decreased from 0.5 × 10−3 min−1 to 0.1 × 10−4 min−1 and
then stabilised. Stable creep occurred approximately 11 h after loading, showing apparent
linear creep characteristics. Creep deformation increased linearly. The axial creep rate was
maintained at approximately 0.1 × 10−4 min−1. Stable creep lasted approximately 37 h.
The deformation rate increased sharply when a greater load was applied, and the coal
sample became unstable and was destroyed.

Figure 9b shows the creep deformation and rate characteristic curves of the anthracite
sample under a 1.5 MPa confining pressure and 24.5 MPa last−order deviatoric stress. The
figure shows that the specimen exhibited three apparent stages of creep characteristics:
attenuation creep, stable creep, and accelerated creep. The total creep duration was approx-
imately 52 h. The amount of creep deformation was large during the decay creep period;
however, the deformation rate decreased rapidly. After approximately 8 h, it entered the
stable creep stage. The strain curve increased linearly and slowly in the steady creep stage,
and the creep rate was relatively maintained at approximately 0.5 × 10−5 min−1. After
the steady creep stage lasted approximately 39.2 h, the strain speed increased slowly at
first and then increased sharply. The creep deformation also increased slowly at first and
then increased rapidly until the coal sample was destroyed; that is, the sample experienced
accelerated creep.
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Figure 9. Creep rate variation of the anthracite samples with time (taking the last level as an
example). (a) W−3 coal sample, σ1 = 26 MPa, σ2 = σ3 = 1.5 MPa; (b) W−4 coal sample, σ1 = 26 MPa,
σ2 = σ3 = 2.0 MPa.

5. Long–Term Strength of Anthracite

The long−term strength of coal is an important evaluation index of the stability and
safety of coal pillar length in coal mines. The long−term strength of coal is the critical
stress value when the steady creep changes to the unsteady creep during creep deformation.
When the stress level is lower than the critical value, coal remains intact regardless of the
stress loading duration. By contrast, creep failure of coal eventually occurs when the stress
level is higher than the critical value. The commonly used methods for determining the
long−term strength of rock include the transition creep, isochronous stress–strain curve
cluster, and steady creep rate methods.

5.1. Transition Creep Method

According to the transitional creep (TC) method, rocks have a stress threshold. Rocks
will not be damaged when the external load is lower than this value; that is, the instanta-
neous strain and attenuation creep stage will only appear in the creep loading process. By
contrast, when the external load is higher than this stress threshold, the internal damage
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in rocks will accumulate continuously with the creep loading time until instability failure
occurs; that is, the rocks undergo a stable or accelerated creep stage. The long−term
strength of rock is defined as the maximum load that rock can bear without stable creep.
The long−term strength of rock is determined by observing the change in the creep rate,
which is the governing concept of the TC method.

Figure 10 shows the axial creep curve of axial compression under staged loading under
different confining pressures. Because there were many loading grades when the confining
pressure was 2.0 MPa, the TC method was used to determine and analyse its long−term
strength. The slopes of the fitting curves were 0, 0, and 2.439 × 10−5 (with corresponding
axial stress levels of 19.5 MPa, 23 MPa, and 26 MPa, respectively), obtained by fitting the
data of the first three stress levels before failure of the anthracite samples. Steady creep
occurred only under the last stress; therefore, 26 MPa can be considered as the long−term
strength of anthracite under this confining pressure. Similarly, the long−term strength of
anthracite at confining pressures of 0.5, 1.0. and 1.5 MPa were 14 MPa, 20 MPa, and 23 MPa,
respectively.
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Figure 10. Axial creep curves of graded loading under different confining pressures. (a) σ3 = 0.5 MPa;
(b) σ3 = 1.0 MPa; (c) σ3 = 1.5 MPa; (d) σ3 = 2.0 MPa.

5.2. Isochronous Curve Method

The isochronous curve (IC) method involves drawing the relationship curve between
the creep strain and stress corresponding to equal times under different stress levels accord-
ing to the strain–time curve obtained by graded loading and determining the long−term
strength of rock using the stress value corresponding to the apparent inflection point of the
isochronous curve. The IC method is a widely used method for determining the long−term
strength of rock. Figure 11 shows the stress–strain isochronous curves of anthracite under
different confining pressures obtained through the IC method.

The figure shows that the isochronous curves changed from linear to nonlinear with
an increase in the axial stress level and that the degree of nonlinear bending increased
continuously. Moreover, the curves gradually deviated from the strain axis, and the
isochronous curves changed from dense to sparse. The inflection point was identified
according to the principle of the IC method. The stress corresponding to this point was the
long−term strength of anthracite. The long−term strengths of anthracite under different
confining pressures were 12.91 MPa, 16.43 MPa, 18.04 MPa, and 21.75 MPa.
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Figure 11. Stress–strain isochronous curve clusters under different confining pressures. (a) σ3 = 0.5 
MPa; (b) σ3 = 1.0 MPa; (c) σ3 = 1.5 MPa; (d) σ3 = 2.0 MPa. 
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5.3. Improved Steady−State Creep Rate Method

The principle of the steady−state creep rate method is relatively the same as that of
the transitional creep method. That is, when the axial load was lower than the long−term
strength, the specimen only underwent attenuation creep, and the creep rate remained
unchanged at zero with the progress of time, keeping the rock intact. In contrast, when the
applied load was higher than the long−term strength, the sample entered the accelerated
creep stage after a period of steady creep and lost stability. The steady creep rate changed
from zero to non−zero and increased gradually with the axial load, whereas the steady
creep time decreased gradually. Therefore, the long−term strength of rock is defined as the
maximum load with zero steady creep rate. However, in the creep test, owing to the large
differences between the loading stress levels, determining the minimum stress level with a
zero steady creep rate was subjective and resulted in a large error.

The uniaxial creep curve of anthracite in Section 4.2 shows that when the stress level
is low, the anthracite only undergoes instantaneous elastic deformation and attenuation
creep, and long−term stability is maintained. In contrast, when the stress level is high,
instantaneous elastic deformation, attenuation creep, and steady creep occur; the deforma-
tion increases with time; and creep failure occurs. Thus, the coal sample will lose stability
and fail after creeping for a particular time when the non−zero steady−state creep rate
increases continuously. Therefore, the long−term strength of coal is the critical stress of
the steady creep rate of the coal sample. This study improved the steady−state creep
rate method, and this new method is referred to as the improved steady−state creep rate
method (ISCR). The method involves fitting the steady−state creep rate of anthracite under
high stress levels, establishing the functional relationship between the axial stress and
steady−state creep rate, and obtaining the long−term strength of anthracite. Figure 12
shows the steady−state creep rate fitting curve of anthracite in a high−stress range under
different confining pressures.

Figure 12 shows that the steady creep rate of anthracite was zero when the axial stress
was low. In contrast, the steady creep rate of anthracite increased exponentially with the
stress when the stress level was high. The stress σ corresponding to the fitting function
ε∞→ 0 is the long−term strength of anthracite under the confining pressure. The long−term
strengths of anthracite under different confining pressures calculated through the ISCR
method were 13.46 MPa, 17.01 MPa, 20.85 MPa, and 23.97 MPa.
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Figure 12. High−stress axial steady creep rate of anthracite under different confining pressures. (a) 
σ3 = 0.5 MPa; (b) σ3 = 1.0 MPa; (c) σ3 = 1.5 MPa; (d) σ3 = 2.0 MPa. 
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Figure 12. High−stress axial steady creep rate of anthracite under different confining pressures.
(a) σ3 = 0.5 MPa; (b) σ3 = 1.0 MPa; (c) σ3 = 1.5 MPa; (d) σ3 = 2.0 MPa.

5.4. Comparative Analysis

Based on the creep test results of anthracite under different confining pressures, the
long−term strength of anthracite was obtained through the abovementioned methods. The
TC method is simple in terms of data processing, and only the axial strain–time curves
under various stresses need to be observed or fitted to determine the critical stress from
stable to unstable creep. This method is influenced by the stress level of the creep test.
The accurate long−term strength of anthracite could not be determined; however, an
approximate value or approximate interval of long−term strength can be determined. In
addition, the stable creep stage could not be observed intuitively in the triaxial creep of
anthracite in this test; therefore, the long−term strength value of anthracite determined
through this method needs further evaluation. The IC method is complicated in terms of
data curve processing. First, the entire strain–time curve of anthracite must be transformed
into the strain–time curve under various stresses. Subsequently, an appropriate period is
selected, and the curve is further transformed into stress–strain isochronous curves. In this
study, when this method was used to determine the long−term strength of anthracite, the
inflection point of the curve cluster was not apparent, and the obtained long−term strength
of anthracite was significantly affected by subjective factors. The ISCR method maximises
the characteristic that anthracite goes through a steady−state creep stage with an increasing
creep rate when the axial stress level is high. The steady−state creep rate–stress curve in
high stress level intervals was plotted, the long−term strength of anthracite was determined
according to the functional relationship of the fitting curve, and the error caused by the
subjective judgement of determining the sudden change point of creep rate was eliminated.
This method can determine the long−term strength of anthracite reasonably and accurately.
Table 2 shows the long−term strength of anthracite under different confining pressures
determined by each method.

Figure 13 compares the long−term strength and instantaneous compressive strength
of anthracite determined through the abovementioned methods and shows the variation
law with the increase in the confining pressure grade. The figure shows that similar to
the instantaneous strength, the long−term strength of anthracite determined through the
above methods increased with an increase in the confining pressure, which was less than
its instantaneous strength. The long−term strength to instantaneous strength ratios of
anthracite under each confining pressure grade were 0.75–0.81%, 0.75–0.91, 0.70–0.85, and
0.71–0.79. The comparison of the three methods shows that the TC method obtained the
highest long−term strength, followed by the ISCR method and finally the IC method.
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Table 2. Long−term strength of anthracite under different confining pressures determined using
each method.

σ3/MPa Transition Creep
Method

Isochronous Curve
Method

Improved Steady−State
Creep Rate Method

0.5 14 MPa 12.91 MPa 13.46 MPa
1.0 20 MPa 16.43 MPa 17.01 MPa
1.5 23 MPa 18.04 MPa 20.85 MPa
2.0 26 MPa 21.75 MPa 23.97 MPa
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Figure 13. Comparison between long−term strength and instantaneous strength of anthracite deter-
mined through different methods and its variation with confining pressure.

The long−term strength value determined through the ISCR method is considered
the optimal strength value of anthracite. This study introduces the concept of the ageing
strength drop (∆σ∞) of anthracite; that is, the difference between the instantaneous strength
and long−term strength of anthracite (∆σ∞ = σp−σ∞). Figure 14 shows the variation of
the long−term strength drop of anthracite with confining pressure.
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6. Conclusions

This study performed a triaxial compression creep test to examine the creep behaviour
of anthracite samples under different confining pressures. In addition, different methods
were used to study the long−term strength of anthracite under different confining pres-
sures. The advantages and disadvantages of each method were compared and analysed to
comprehensively determine the long−term strength of anthracite samples. The primary
conclusions of the study are summarised as follows:

(1) The conventional triaxial compression experiments showed that the elastic modulus
and peak strain of anthracite increased with an increase in the confining pressure,
exhibiting an exponential function increasing trend. The fitting degrees with confining
pressure were 0.9602 and 0.8872.

(2) The creep characteristics of anthracite were closely related to the stress level. Under
low stress levels, the anthracite samples exhibited only instantaneous elastic strain
and attenuation creep characteristics. In contrast, the anthracite samples exhibited
instantaneous elastic deformation, attenuation creep, and steady creep under high
stress levels. When the stress reaches a particular level, accelerated creep occurred
until failure.

(3) The instantaneous elastic strain and loading stress of anthracite under different con-
fining pressures increased almost linearly, and the linear fitting coefficients were all
greater than 0.99. The larger the confining pressure, the greater the lateral constraint
on anthracite and the smaller the axial strain. The growth rate of the instantaneous
elastic strain of anthracite decreased exponentially with an increase in the confining
pressure.

(4) The long−term strength of anthracite determined through each method increased
with an increase in the confining pressure, which was less than its instantaneous
strength. The long-term strength to instantaneous strength ratio under each confining
pressure class ranged from 70% to 91%. The TC method obtained the highest long-
term strength, followed by the ISCR method and the IC method.

(5) The functional relationship between the axial stress and steady-state creep rate was
established by fitting the steady−state creep rate of anthracite under high stress levels.
The threshold value of the steady−state creep rate in the high−stress−level area was
proposed as the optimal long-term strength of anthracite. The improvement of this
method provides a relevant reference for research on the long-term strength of coal
and rock mass.

(6) The ageing characteristic of creep reduced the strength of anthracite. The long−term
strength determined through the ISCR method was considered as the optimal long-
term strength value of anthracite. The ageing strength drop values of anthracite under
different confining pressures were 3.85 MPa, 4.87 MPa, 5.25 MPa, and 8.31 MPa.
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