
Citation: Zhang, Y.; Xu, H.; Huang, J.;

Xiao, Y. Research on Multiple

Constraints Intelligent Production

Line Scheduling Problem Based on

Beetle Antennae Search (BAS)

Algorithm. Processes 2023, 11, 904.

https://doi.org/10.3390/pr11030904

Academic Editor: Sergey Y. Yurish

Received: 2 February 2023

Revised: 9 March 2023

Accepted: 14 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Research on Multiple Constraints Intelligent Production Line
Scheduling Problem Based on Beetle Antennae Search (BAS)
Algorithm
Yani Zhang 1,2, Haoshu Xu 3,*, Jun Huang 1,2 and Yongmao Xiao 1,2,*

1 School of Computer and Information, Qiannan Normal University for Nationalities, Duyun 558000, China
2 Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Duyun 558000, China
3 Office of Academic Affairs, Qiannan Broadcast Television University, Duyun 558000, China
* Correspondence: zyn19800126@sina.com (H.X.); xym198302@163.com (Y.X.)

Abstract: Aiming at the intelligent production line scheduling problem, a production line scheduling
method considering multiple constraints was proposed. Considering the constraints of production
task priority, time limit, and urgent task insertion, a production process optimization scheduling
calculation model was established with the minimum waiting time and minimum completion time
as objectives. The BAS was used to solve the problem, and a fast response mechanism for emergency
processing under multiple constraints was established. Compared with adaptive particle swarm
optimization (APSO) and non-dominated sorting genetic algorithm-II (NSGA-II) operation, this
algorithm showed its superiority. The practical application in garment processing enterprises showed
that the method was effective and can reduce the completion time and waiting time.

Keywords: production line scheduling; multiple constraints; beetle antennae search; multi-objective

1. Introduction

The optimization of production line scheduling is the key to realizing high-efficiency
production in modern manufacturing systems. The production line scheduling problem
is a complex optimization problem. The state of modern production lines is constantly
changing, so the production line needs to have the ability to quickly adjust [1–3]. As
the pillar industry of economy and social development, the manufacturing industry is
facing severe tests under the background of economic globalization. It is very necessary
to upgrade related industries’ informatization and intelligence [4,5]. Due to the great
differences in the production process, raw materials, and the production equipment of
different products produced in the workshop, the complexity of production scheduling
is a problem [6–8]. Therefore, it is necessary for enterprises to use the control system
to schedule the production line to ensure the stability and continuity of production and
improve the production capacity.

The production line scheduling problem is also typical due to its variable production
environment, diverse research objects, complex constraints, and other factors. Its main
characteristics are complexity, randomness, multivariable, and multi-objective. Therefore,
the difficulty of solving shop floor scheduling will increase exponentially with the passage
of time and the accumulation of tasks, which is recognized as a NP problem. Therefore, in
the research on the production line scheduling problem, the improvement and perfection
of the solution method has become the key research field to solve the problem. For
the production line scheduling problem, scholars at home and abroad have carried out
corresponding research. Hu et al. [9] proposed a production scheduling model based
on grey prediction, which predicted the product demand and planned the inventory
production capacity through the grey prediction method. The method is verified by a
case study of a glass manufacturing enterprise. Zhang et al. [10] proposed a new firefly
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algorithm based on Levy Flight, aiming at problems such as hunger and blockage in the
intelligent production line scheduling process. Compared with GSO (glowworm swarm
optimization), SGSO (glowworm swarm optimization of scene understanding), and CGSO
(chaos glowworm swarm optimization), it has better solving accuracy, convergence, and
stability. Ma et al. [11] built an enterprise production line simulation model based on
Agent modeling technology, which can effectively simulate the actual production process
of the factory. Jia et al. [12] proposed a Petri net model suitable for the study of flexible
production line scheduling and verified the method by taking the machine tool seat-type
flexible production line as an example. Wu et al. [13] proposed a data-driven semiconductor
production line scheduling framework. Based on scheduling optimization data samples
and a machine learning algorithm, the framework can determine the approximate optimal
scheduling strategy in real time according to its current production state. Jin et al. [14]
developed a central control and scheduling system based on the logistics scheduling
method of discrete production lines. Eroglu et al. [15] carried out research on large-scale
loom scheduling, focusing on the series-related setting time and scheduling model with
machine resource constraints, and proposed an improved hybrid genetic algorithm that
could solve machine resource constraints. Wang et al. [16] improved and optimized the
knitting shop scheduling model and used the improved genetic algorithm to solve the
above model. Zhang et al. [17] proposed a production optimization method based on deep
reinforcement learning and applied it to reservoir models. This approach maximized the
net present value throughout the lifecycle and enabled real-time adjustments to the good
control solution. Duan et al. [18] proposed a fixed-time, time-varying output formation-
containment (FT-TV-OFC) control system for heterogeneous universal multi-agent systems
and verified the system through a case study. Wang et al. [19] proposed a generalized
growth-oriented remanufacturing services (GGRMS) method, which can maximize the
residual value of retired products and reduce process consumption and resource waste.
The method was verified by gearbox remanufacturing. Cao et al. [20] constructed a multi-
objective optimization model for multi-segment heterogeneous vehicles, which took into
account four objective functions: total cost, maximum time, carbon emission, and load
utilization. A meme algorithm based on Two_Arch2 is proposed to deal with the model.

The above literature studies the production line scheduling and puts forward some
optimization methods. However, the research on the constraints of the production line is
not comprehensive enough and seldom considers the characteristics of multiple constraints.
The multi-constraint intelligent production line is a process in which multiple modules and
different devices run at the same time under multiple constraints. Aiming at the complexity
and multi-constraint characteristics of the intelligent production line scheduling problem,
this paper determines the optimization model of the scheduling problem by analyzing
the scheduling process of the production line. The scheduling model takes the minimum
capacity completion time and the minimum station waiting time as the optimization
objectives, and the processing time, worker skill proficiency, process, and equipment as
constraints. The model is solved by BAS, and the comparison of BAS with APSO and
NSGA-II algorithms shows that BAS is faster and more accurate. The model is oriented to
the scheduling problem of the manufacturing production line, and the problem of untimely
mass production scheduling of the garment production line is analyzed as an example.

2. Multi-Constraint Intelligent Production Process

The main body of the production line scheduling problem mainly includes production
tasks and plans, schedulable resources, scheduling constraints, and production optimiza-
tion indicators. For general production line scheduling problems, production tasks and
plans generally refer to jobs, and the schedulable resources are generally the production
and processing equipment of enterprises [21]. The key to production line scheduling is to
allocate tasks reasonably and efficiently to the schedulable resources. The optimization
index of production line scheduling, that is, the optimization objective, has diversity and
variability according to the different strategies of the production enterprise. The determi-
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nation of the optimization objective mainly depends on the production cost and product
quality [22]. For most enterprises, common optimization objectives include: minimum
sum of production material cost, processing cost, and logistics cost, maximum product
output per unit production time, minimum and maximum completion time of production
tasks, timely delivery of urgent orders and high-priority production tasks without delay,
high utilization rate of workshop equipment, and low energy consumption of key produc-
tion and processing equipment. The constraints of production line scheduling problems
mainly include: product process constraints, transport path constraints of material handling
equipment such as AGVs, operating load constraints of processing machine tools, and
constraints of limited resources, such as the number of personnel, equipment, and tools
and fixtures [23,24].

2.1. Multi-Constraint Intelligent Production Line Scheduling Process Analysis

The multi-constraint intelligent production line process mainly includes a scheduling
control module, transportation module, loading and unloading module, execution module,
and an auxiliary equipment module. The multi-constraint intelligent production line
scheduling control module sends out instructions based on the detected location of the
workpiece and material.

The workpiece and material should be timely delivered to the pre-processing area of
the corresponding station, as required. The operator in the processing area will execute the
processing order, and then transfer to the next area for further processing or return to the
unloading area of the material center [25,26].

2.2. Scheduling Requirements

The operation process of the multi-constraint intelligent production line is a process
in which multi-functional modules run at the same time with different equipment [27].
The production task of each equipment is formulated according to the demand. Multiple
single equipment runs at the same time to complete specific tasks, such as transportation,
production and assembly, loading and unloading, etc., and the equipment and processing
time of product production during the operation process may be adjusted. The operation
process of the multi-constraint intelligent production line is a combination of equipment,
personnel, and materials formed to complete a specific task under specific constraints.
Therefore, the operation process of the multi-constraint intelligent production line should
meet the following requirements [28–30]:

(1) Multi-constraint intelligent production line operation requires that under specific
constraints, multiple devices in the intelligent production line work cooperatively to com-
plete the production task. Real-time dynamic priority division can be conducted on the
urgency of production tasks according to the actual situation of multi-constraint production,
the production sequence can be arranged according to the level, and production tasks can
be rescheduled during the process of task execution. The balance rate of the intelligent
production line is optimized to improve the overall utilization rate of resources and reduce
the waiting time to achieve optimal scheduling objectives.

(2) Each process of the multi-constraint intelligent production line needs different
modules to cooperate. The function of the same module is the same, and the theoretical
maximum production capacity of each process is the same. If there are multiple execution
combinations in the same process, the distribution of production tasks shall be coordinated
according to the total amount of tasks, and the task shall be equally distributed when the
maximum production capacity of all combinations is met. If a production task does not
meet the maximum capacity, allocate devices based on production requirements.

(3) Multi-constraint intelligent production line product production under constraints
requires multiple sets or groups of equipment to work together. According to the different
process route to establish different constraints.
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(4) The multi-constraint intelligent production line can set the overall ideal production
balance rate, and schedule and adjust the production process according to the actual
production balance rate.

(5) The higher the daily production capacity, the better, and it is necessary to try to
reduce the number of scheduling adjustments in the production process.

2.3. Scheduling Model

The production process, raw materials, and production equipment of different enter-
prises greatly differ, but the scheduling objectives mainly include time objectives, resource
objectives, carbon emission objectives, efficiency objectives, etc. [31,32]. The scheduling of
the multi-constraint intelligent production line is similar. Completion time is the time it
takes to complete a job or an entire process. It is the time consumed by workers to directly
process the object of labor and complete each process operation. It is the basic component
of the quota time. The waiting time is the idle time between the completion of the last
process and the start of the next process. Minimizing the waiting time can effectively
improve the device utilization. In this paper, the minimum production capacity completion
time and the minimum waiting time of the station are taken as the optimization objectives.
The completion time and station waiting time are targeted for intelligent production line
operation scheduling under multiple constraints [33–35]. The objective function is shown
as follows:

minf1 = min
n

∑
i=1

=Fijm,x (1)

minf2 =
n

∑
i=1

ni

∑
j
(Tijk − Ci(j−1)) (2)

Cijk = max{Ci(j−1)k, Tijk}+ Pijkh, k ∈ Mij (3)

where Tijk is the processable time of process j of order i on equipment k, and Ci (j−1)
is the completion time of process j−1 of order i. The objective function f1 is the total
completion time, where Fijm,x is the completion time of the assumed process on machine m.
The objective function f2 is the station waiting time, and it is the difference between the
processing time of the next process of the order Tijk, Ci(j−1) and the completion time of the
last process.

The objective function of intelligent production line is subject to the following constraints:

Pijkh =
Pijk

ah
(4)

Sijk ≥ ti,k ∈ Mij (5)

n

∑
i=1

Xijk = 1, k ∈ Mij (6)

Cijk = max
{

Ci(j−1)k, Tijk

}
+ Pijkh, k ∈ Mij (7)

Cijk ≤ Si(j+1)k, k ∈ Mij (8)

where, Pijkh is the processing time constraint of the process, Pijk is the processing time
of process j of order i on equipment k, ah is the production efficiency of employees with
different skill levels, the skill level of personnel is A, B, and C, and the production efficiency
ratio of each level is αA : αB : αC = 1.2 : 1 : 0.8. Xijk is the discriminant condition of process j
of order i processed on equipment k, and when equipment k is selected for processing, Xijk is
1, otherwise it is 0. Sijk and Cijk are the actual start time and completion time of the j process
of order i on equipment k, respectively. Formula (4) indicates that the actual processing
time of an operation is affected by the production efficiency of employees. For the same
operation, the actual processing time of efficient employees is shorter. Formula (5) indicates
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that the order can be put into production only after the user places the order. Formula (6)
indicates that a process can only be processed once on one equipment. Formula (7) indicates
the completion time constraint of the order. Formula (8) represents the processing order
constraint of the order. In addition to the above constraints, the following assumptions are
specified in this study: one machine can only process one process, the processing order of
different orders has no sequence constraints, etc.

3. Steps of BAS
3.1. Intelligent Production Scheduling Process under Multiple Constraints

The intelligent production scheduling process under multiple constraints has the
following steps [36–38]:

1. Constraint parameter expression.
2. Calculate the number of stations required by each process according to the actual

situation of the process.
3. Select all stations suitable for each process according to the configuration information

of each station.
4. Form a preliminary pipeline distribution plan according to the log-on status of em-

ployees at each station and the historical production data of employees and implement
the distribution.

5. Measure the balance rate of the production line according to the actual production
capacity of each process and judge the rationality of the current production line
process allocation.

6. Generally, the balance rate of the production line is used to measure the balance of the
production line. When the balance rate of the production line is greater than 85%, it
indicates that the load is distributed evenly. If the balance rate of the production line
is >85%, proceed to the next step, if not, return to the previous step.

7. If it is judged that the current balance rate of the production line is lower than
the present value, the working procedure shall be arranged again according to the
actual production efficiency and station configuration information of each station, and
the production data of each station shall be recorded as reference data for the next
intelligent production scheduling.

8. Check whether the site memory of each station reaches the site threshold of this process.
9. Select the appropriate number of stations according to the production capacity of each

process, site configuration information, and employee production data to help process
this process.

10. Check whether the balance rate reaches the maximum value. If yes, proceed to the
next step. If no, return to the previous step.

11. Stop emergency dispatching.

Figure 1 shows the process flow of multi-constraint intelligent production line schedul-
ing, where Y is the discriminant condition satisfied and N is the condition not satisfied.

3.2. Algorithm Analysis

Many methods have been proposed to solve the job shop scheduling problem. BAS is a
heuristic optimization algorithm proposed by Jiang et al. [39]. This algorithm simulates the
foraging behavior of beetles to build a mathematical model and solve complex problems.
The beetle does not know the location of the target food point during the foraging process
but uses the two whiskers on its head to collect the strength of the smell. When the scent
is stronger on the left than on the right, the next step is to the left, and then the next step
is to the right. The beetles are efficient at finding food based on this principle. Compared
with other traditional algorithms, BAS requires only one individual to search, and the
computation is greatly reduced. It is easy to realize, and the convergence speed is fast, so
BAS was chosen as the computational solution of this study [40,41].
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The idea of the BAS algorithm is that the specific location of food is equivalent to the
maximum value point of the objective function, and beetles move step-by-step towards the
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location with the strongest smell of food. Compared with the artificial bee colony algorithm
and the ant colony algorithm, the BAS can perform optimization calculation without an
explicit objective function and gradient vector. BAS is different from other optimization
algorithms as BAS only needs one individual, namely a beetle, and this algorithm uses a
single individual to solve the optimization problem, with a low computational complexity
and fast optimization speed [42–44]. The body steps are as follows:

(1) Randomly generate and standardize the direction vector:

b =
rands(N, 1)
||rands(N, 1)|| (9)

where, N is the spatial dimension of variables, and rands(·) is a random function.
(2) Calculate the coordinates of the left and right whiskers:

xl − xr = 2dtb (10)

xl , xr can be represented by the center of mass, as follows:

xl = xt + dtb (11)

xr = xt − dtb (12)

where, xt is the coordinate of ceramide at time t, and dt is the horizontal projection search
distance from the center of mass to the whisker at time t.

(3) To determine the odor intensity of the left and right antennae, f (xl) and f (xr) are
used to substitute the left and right positions, and f (x) is the objective function.

(4) According to the corresponding smell of the two whiskers, determine the next
movement position of the longicorn:

xt+1 = xt − δtbsign( f (xr)− f (xl)) (13)

where, δt is the step size at time t.
(5) Search distance and step update:

dt+1 = ηddt + d0 (14)

δt = ηδδt−1 (15)

where, d0 represents the artificially set minimum step size, and ηd and ηδ are the attenuation
coefficients of search distance and step size renewal, respectively.

Figure 2 shows the workflow of the beetle whisker search algorithm, and Figure 3
shows the algorithm workflow combination process diagram, where Y is the discriminant
condition satisfied and N is the condition not satisfied.

The traditional BAS algorithm is only suitable for the optimization of continuous
functions, so it needs to be discretized to solve the scheduling problem. In this paper, a
non-fixed point discrete division method was adopted. Control vector parameterization is
a direct method for numerically solving optimal control problems. This method transforms
the original infinite-dimensional dynamic optimization problem into a finite-dimensional
static optimization problem via discretization. The parameterization process of the control
vector requires a finite number of parameters to approximate the control vector u(t), which
varies continuously with time. Time intervals are usually divided into n subintervals. In
dynamic optimization, the time interval is divided by equal division and unequal division.
Unequal partition of time intervals involves initializing a set of parameters in the time
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domain
[
t0, t f

]
according to some rules, namely (t1, t2, . . . , tn ∈ (t0 , t f )), and the division

formula of unequal division is as follows [45]:

ti = t0 +

(t f − t0)×
i

∑
k=1

τk

n
∑

i=1
τi

, i = 1, 2, . . . , n (16)Processes 2023, 11, x FOR PEER REVIEW  9  of  18 
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The non-fixed point discrete division method is a new method to determine time
nodes in the time domain. It is based on the control parameterization idea of the piecewise
constant method. The method is to randomly select n time interval points, ti, i = 1, 2, . . . , n,
within the time interval

[
t0, t f

]
between the beginning and the end of the reaction process.
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The distance between two different adjacent points can be longer or shorter, the position
of nodes can be sparse or dense, and [ti, ti+1] is calculated in turn to obtain the control
trajectory. Compared with the method of equal division and unequal division, the non-fixed
point discrete division method can determine time nodes more randomly. The non-fixed
point discrete division method can refine the control process and produce a more accurate
control trajectory.

In this paper, the production line was scheduled by using the longicorn whisker
search algorithm. Combining the longicorn whisker search algorithm and the multi-
constraint production line scheduling model, the minimum capacity completion time and
the shortest waiting time of the station are the optimization objectives. The algorithm
and scheduling process are shown in Figure 3. The parameters in the Tendon search
algorithm were initialized, including the space dimension k, the distance between the left
and right whiskers d, the initial step length, and the number of iterations, and the position
of Tendon was initialized and the direction was random. The production line capacity
completion time, station waiting time, station information, equipment, etc., were coded.
The beetle random vector was constructed, and the next moving direction of longicorn was
determined by comparing the signal size of longicorn’s left and right whiskers, and then
the position of longicorn was updated. The fitness of the solution was iteratively calculated,
the individuals with better fitness were selected, and the iteration was completed after
continuous screening until the conditions were met.

4. Cases

The intelligent production line is widely used in modern enterprises, and different
enterprises have different characteristics. There are many technological processes in the
garment manufacturing industry, and the intelligent production line is long, and each
stage has its own characteristics. The garment intelligent production line is more complex
than the ordinary mechanical product processing intelligent production line, and may
have several kinds of ordinary mechanical product production line problems. Intelligent
production line scheduling can be used to solve the problem of garment production, and
the method can be applied to many industries.

Garment hanging production systems have been developed since the 1970s. It is a
technological crystallization from traditional manual manufacturing in order to improve
production efficiency and management levels based on the development of an industrial
base and garment production practice. The garment hanging system belongs to the produc-
tion and transmission mode of the garment assembly line, which is famous for its automatic
high-tech method. The hanging system requires the combination of manpower and equip-
ment to form a set of rigorous and mechanized production transmission and management
modes. In the production process, the corresponding hardware system is used to directly
transport the semi-finished product cutting pieces to the side of each processing machine,
and the length of the line can be adjusted at any time. The processing chain and production
mode are not limited, with good flexibility. It is convenient for garment mass production
and saves time. Due to the impact of order arrival times, style differences, insert order and
return order, and other factors under the clothing mass personalized customization mode,
the production scheduling is complicated.

Taking multi-constraint garment hanging production system scheduling as an example,
the garment hanging production system of many enterprises currently has a large gap
in personnel quality, management level, and operational skills, which limits the roles of
the system functions, and thus results in the factories equipped with hanging production
lines not improving the production efficiency much compared with before. At present, the
scheduling function of the garment hanging production system is only to put forward the
processes to be scheduled and find feasible scheduling schemes in the production process,
and the final scheduling decision is still up to the line leader. However, artificial scheduling
cannot guarantee the optimal balance rate of the production line, which may lead to the
existence of bottleneck processes and frequent scheduling of the production line.
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4.1. Advantages of Multi-Constraint Intelligent Production Line

Figure 4 shows the flow chart of scheduling, where (a) is the ordinary scheduling and
(b) is the multi-constraint intelligent scheduling. Multi-constraint intelligent production
line has the following advantages.
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(1) In the general production system, the production process is greatly affected by
the level of operational skills. The production process of the multi-constraint intelligent
production line is adjusted according to the emergency situation of production tasks and
equipment conditions, which is not affected by the skill level of the operators.

(2) In general, the scheduling power of the production system is largely determined
by the operator. The scheduling function of the production system only puts forward the
processes to be scheduled and feasible scheduling schemes in the production process, and
the final scheduling decision is made by the line manager according to the production
situation. Multi-constraint intelligent production line scheduling can predict the production
situation according to the production plan and automatically schedule the production.

(3) The overall utilization rate of the equipment in the production process of the
general production system is difficult to be used as a good indicator. The multi-constraint
intelligent production line scheduling can take the equipment utilization rate as a separate
indicator for assessment, which can effectively ensure the equipment utilization rate.

(4) Due to the large gaps in personnel quality, management level, and operational
skills in the general production system, it is difficult to exert the production efficiency
of the system function to a large extent. The multi-constraint intelligent production line
can effectively improve production efficiency according to the real-time scheduling of
production tasks and equipment.

4.2. Case Study

Taking the actual clothing processing and production as an example, the general
processing and production process of clothing enterprises is as follows: discharge →
cutting→ making bags→ sewing→ keyhole nail→ ironing→ garment inspection→
packaging→ warehousing or shipping. The production process is arranged according to
the demand. The number of people in the shirt hanging production line is 13, with 1 person
per 1 station, and each station has 1 or 2 equipment. According to the time ratio of each
processing process of shirts, 16 sets of equipment are set, among which the flat sewing
machine, ironing table, five-line car, chain machine, keyhole machine, and nailing machine
configuration ratio is 7:4:2:1:1.
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4.3. Result

To verify the effectiveness of the algorithm, the APSO algorithm, NSGA-II algorithm,
and BAS algorithm were selected for comparison. With the minimum waiting time as
the goal, the APSO, NSGA-II, and BAS algorithms were compared. MAtlab2016 was
used for programming, and the BAS algorithm, APSO algorithm, and NSGA-II algorithm
parameters were set as follows, to ensure the maximization of the population size and
the maximum number of iterations as far as possible. The population size was set as
N = 100 and the maximum number of iterations as 300 generations. The crossover rate was
Pc = 0.8, and the variation rate was Pm = 0.02. BAS parameters were set as follows: dimen-
sion n was 3, the coefficient ηδ between the distance of two whiskers and step size was 5,
the initial step size of each beetle was 0.3, and the maximum number of iterations was 300.
The algorithm comparison results are shown in Figure 5. The optimal value of the APSO
algorithm was 1.5 s, of the NSGA-II algorithm was 1.3 s, and of the BAS algorithm was
1.1 s. The results after the BAS algorithm optimization were minimal, and BAS had good
convergence. As the number of iterations increased, the waiting time gradually decreased
until it became stable. It can be seen from the iteration curves of the three algorithms that
the BAS algorithm had the lowest number of iterations, followed by NSGA-II and APSO.
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Figure 5. Iteration diagram of station waiting time.

Objective 2 was obtaining the minimum completion time, and the maximum number
of iterations was 300. The comparison results of the three algorithms are shown in Figure 6,
and the optimal value was 327.2 s. The optimal value of the APSO algorithm was 347.5 s, of
the NSGA-II algorithm was 341.3 s, and of the BAS algorithm was 327.2 s. The completion
time after the BAS algorithm optimization was minimum, and the algorithm had good
convergence. As can be seen from the figure, as the number of iterations increased, the
completion time gradually decreased until it became stable. From the iteration curves of the
three algorithms, it can be seen that the BAS algorithm had the lowest number of iterations,
followed by NSGA-II and APSO.

Figures 7–9 show the scheduling results. Different colors in the figure represent
different processes, and the corresponding colors of the process numbers have been given
in the figure.
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The experimental results showed that the production time and equipment utilization
rate required to complete 500 pieces of clothing were 23,027 s and 61% in the production
plan before scheduling, 20,156 s and 64% in the scheduling under the assumption of
complete human cooperation, and 18,936 s and 71% in the multi-constrained intelligent
scheduling. After multi-constraint intelligent scheduling, the shortest completion time
was 18,936 s, which was 82% of that before optimization. The device utilization rate of
multi-constraint intelligent scheduling was 10% higher than that before optimization and
the waiting time was greatly reduced.

4.4. Comparison with Related Research

Some methods to reduce the completion time and waiting time of job-shop scheduling
have been reported at home and abroad [9–26], and these methods and algorithms are
effective for saving time. However, these studies are all about job-shop scheduling with-
out considering production constraints. In this case, because the production limit is not
precisely limited, it is difficult to ensure accurate and effective scheduling. In the stage of
production planning, whether the scheduling has pertinence depends on the limitation of
the basic background to a great extent. On the basis of multi-constraint production, this
paper optimized the process parameters with the aim of minimizing the completion time
and the waiting time. The results are more practical by using the relatively advanced BAS.

5. Conclusions

A multi-constraint intelligent production line scheduling method based on BAS was
proposed to solve the problem of untimely scheduling of manufacturing production, and
we used the garment mass production line as an example to verify. This method considers
production line scheduling under various constraints and uses BAS to solve the problem,
aiming at the order import of the multi-constraint intelligent production line, based on the
existing production conditions, using the BAS for real-time production scheduling, to maxi-
mize the utilization rate of equipment and to achieve the efficiency of the production line.
Experimental results showed that compared with traditional scheduling, the completion
time of multi-constraint intelligent production line scheduling based on BAS was reduced
by 7.1%, and the waiting time of equipment was reduced by 16.2%.

In the future, the research will mainly focus on two points: first, more typical multi-
constraint intelligent production line scheduling problems will be studied, and second, the
typical process scheduling of the multi-constraint intelligent production line for the same
product will be studied.
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