

Review Research Progress of Co-Catalysts in Photocatalytic CO₂ Reduction: A Review of Developments, Opportunities, and Directions

Cheng Zuo ^(D), Qian Su * and Xueyuan Yan *^(D)

College of Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China * Correspondence: suqian93@163.com (Q.S.); yanxueyuan@wfu.edu.cn (X.Y.)

Abstract: With the development of the global economy, large amounts of fossil fuels are being burned, causing a severe energy crisis and climate change. Photocatalytic CO_2 reduction is a clean and environmentally friendly method to convert CO_2 into hydrocarbon fuel, providing a feasible solution to the global energy crisis and climate problems. Photocatalytic CO_2 reduction has three key steps: solar energy absorption, electron transfer, and CO_2 catalytic reduction. The previous literature has obtained many significant results around the first two steps, while in the third step, there are few results due to the need to add a co-catalyst. In general, the co-catalysts have three essential roles: (1) promoting the separation of photoexcited electron–hole pairs, (2) inhibiting side reactions, and (3) improving the selectivity of target products. This paper summarizes different types of photocatalysts for photocatalytic CO_2 reduction, the reaction mechanisms are illustrated, and the application prospects are prospected.

Keywords: CO₂ reduction; co-catalysts; fossil fuels; electron-hole pairs; precious metal

Citation: Zuo, C.; Su, Q.; Yan, X. Research Progress of Co-Catalysts in Photocatalytic CO₂ Reduction: A Review of Developments, Opportunities, and Directions. *Processes* **2023**, *11*, 867. https:// doi.org/10.3390/pr11030867

Academic Editors: Wende Tian, Qingjie Guo, Bin Liu and Zhe Cui

Received: 13 February 2023 Revised: 8 March 2023 Accepted: 12 March 2023 Published: 14 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

With the rapid economic development of the world, large amounts of fossil fuels are consumed. As a result, a large amount of CO_2 is discharged into the air, causing the greenhouse effect, thus breaking the ecological balance in the world. Fossil fuels are non-renewable energy [1,2]. In contrast, solar energy is inexhaustible, providing the earth with about 120,000 TW of energy annually [3,4]. How to improve the conversion and utilization of solar energy has always been the focus of researchers. In the photocatalytic process (Figure 1), semiconductor (SC) photocatalysts could be stimulated by the absorbed photons to produce e^--h^+ pairs, and after absorbing the photon energy, the internal electrons will be transferred from the valence band (VB) to the conduction band (CB) inside the semiconductor [5–7]. Negatively charged electrons are produced at the CB, and positively charged holes are produced at the VB. Subsequently, the light-induced e^- and h^+ will separate and migrate to the photocatalyst surface. The reactants adsorbed on the inner surface of the semiconductor undergo a redox reaction for energy conversion [8–10].

Fujishima et al. [11]'s preliminary research on photocatalysts shows that TiO_2 electrodes could make CO_2 conversion to small amounts of methanol under sunlight, which makes scholars focus on photocatalysis technology. Common semiconductors like metal oxides (e.g., TiO_2 and Ga_2O_3) and metal sulfides (e.g., CdS and MoS_2) have been found [1,3,6]. In general, photocatalytic CO_2 conversion can be roughly divided into three processes [9,10]. At present, much research has been completed on the two processes (i and ii), and process (iii) could improve catalytic efficiency by adding co-catalysts. Meanwhile, it improves the selectivity of CO_2 reduction products and inhibits side reactions. Up until now, research on co-catalyst photocatalytic CO_2 has been rare.

Figure 1. The mechanism of the photocatalytic process.

Up to now, CO₂ reduction catalysts could be divided into two categories: precious metal-based catalysts and precious metal-free catalysts. The precious metal-based catalysts showed excellent stability and redox properties in photocatalytic CO₂ reduction, such as Pt [12–20], Ag [21–31], Pd [32–36], Ru [37–39], Rh [40,41], Au [42,43], and alloys [44–47]. These catalysts have been widely applied to improve the selectivity of photocatalytic CO₂ reduction products. In addition, the exposed crystal surface, particle size, and particle distribution greatly affect the activity and selectivity of photocatalytic CO₂ reduction [48].

While the high cost of precious metal catalysts has limited their development for industrial applications, the search for low-cost, high-activity catalysts has become the focus of current research. The precious metal-free catalysts include $Cu/Cu_2O/CuO$ [49–60], Fe/Fe₂O₃ [61], Ni/NiO [62–67], co-incorporated metal-organic framework (MOF), and carbon nanomaterials. Cu/Cu₂O/CuO was recognized as an excellent catalyst with high activity. Zhang et al. [68] added unsaturated monatomic Co to the MOF system to improve photocatalytic CO₂ reduction efficiency.

Although researchers have made many contributions to the photocatalytic reduction of CO_2 , comprehensive reviews are still necessary to provide direction for future research. In this paper, we will focus on the mechanism and role of co-catalysts in CO_2 photocatalytic reduction reactions.

2. Application of Co-Catalysts in CO₂ Photocatalytic Reduction

2.1. Catalytic Reduction of CO₂ Reaction Mechanism

Due to the linear structure of CO₂, the energy required to cleave the C–O bond was much higher than that required to cleave the C–C, C–O, and C–H bonds [69]. In addition, the relatively wide energy gap and electron affinity of CO₂ leads to a negative single-electron transfer redox potential. Therefore, different reaction pathways have been developed to reduce CO₂ at lower energies. In general, the photocatalytic CO₂ reduction process must follow the following four steps [70,71]: (1) the electrons on the photocatalyst VB are stimulated and transferred to its CB to generate a photogenerated charge, and the photogenerated charge could either be transferred separately to the photocatalyst surface for photocatalytic reaction or recombined to release photons or heat; (2) the catalyst surface for CO₂ absorption; (3) photogenerated electrons on the photocatalyst surface to convert CO₂ into fuel; and (4) desorption of photocatalyst products. A conductive potential that is more negative than the required standard potential and effective electron transfer to the CO₂-adsorbed semiconductor surface determine the efficiency of CO₂ reduction (Table 1).

Reaction	E ⁰ _{redox} (vs. NHE)/V	
$CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$	-0.61	
$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$	-0.53	
$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O$	-0.48	
$CO_2 + 4H^+ + 4e^- \rightarrow C + 2H_2O$	-0.20	
$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$	-0.38	
$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$	-0.24	
$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_4 + 4H_2O$	-0.34	
$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_5OH + 3H_2O$	-0.33	
$2CO_2 + 14H^+ + 14e^- \rightarrow HCOOH + C_2H_6$	-0.27	
$2H^+ + 2e^- \rightarrow H_2$	-0.42	

Table 1. Different reduction products obtained from the photocatalytic reduction of CO_2 in an aqueous solution and the corresponding electrode potentials (vs. standard hydrogen electrode, 25 °C, pH = 7).

The products obtained change with the change of reaction conditions and catalytic materials during the reduction process. The photon energy required for photoexcitation depends on the band gap of the photocatalyst. The edge position of the photocatalyst's energy band should match the relevant reaction's redox potential. The different reduction products and corresponding electrode potentials obtained from the photocatalytic reduction reaction of CO_2 in an aqueous solution are shown in Table 1. The ideal CO_2 photocatalytic reduction reaction must meet the requirement that the CB potential of photogenerated electrons is more negative than the potential of the reduction products/ CO_2 (CH_4/CO_2 , CH_3OH/CO_2 , $HCHO/CO_2$, $HCOOH/CO_2$, or CO/CO_2), and the VB that generates holes is corrected than the potential of the oxidation reaction (O_2/H_2O) of H_2O . To sum up, photocatalytic reduction of CO_2 must meet two conditions: (i) photon energy is greater than or equal to band gap energy and (ii) the CB potential is more negative than the surface electron acceptor potential, and the VB potential is corrected than the surface electron donor potential. In this way, the reaction process of photocatalytic reduction of CO_2 can be realized [72].

Mechanistic Role of Co-Catalysts in CO₂ Photocatalytic Reduction

In the process of photocatalytic CO_2 reduction, the co-catalyst plays three critical roles in participating in the reaction as follows: (i) co-catalysts could reduce the activation energy or the reaction barrier on the semiconductor surface, (ii) co-catalysts could rapidly separate and migrate holes and electron pairs on semiconductor surfaces, and (iii) the co-catalyst could inhibit the side reactions in the photocatalytic reduction of CO_2 and improve the selectivity of the target product.

Photoexcited electrons could migrate through the photocatalyst conduction band to the co-catalyst surface to reduce CO_2 to CO, HCOOH, HCHO, CH₃OH, and CH₄ (from Figure 2). The excellent heterojunction structure between the co-catalyst and the semiconductor is vital for enhancing the migration of photogenerated carriers from the semiconductor to the co-catalyst.

In the process of photocatalytic CO_2 reduction, many factors affect the activity of the co-catalyst. For instance, elemental composition, crystal structure, exposed crystalline surface, and particle size. Excessive co-catalysts could have the following three problems: (i) Excess co-catalyst could cover the active sites on the semiconductor surface and hinder the reduction of CO_2 . (ii) Excess co-catalysts block sunlight and reduce light absorption, thus reducing the number of hole–electron pairs. (iii) Excessive amount of co-catalyst could cover the semiconductor surface unevenly, resulting in a larger catalyst size and thus lower catalytic activity. Therefore, finding the optimal amount of co-catalyst addition is necessary to maximize the photocatalyst activity.

Figure 2. Mechanism of photocatalytic CO₂ reduction.

3. Noble Metal-Based Co-Catalysts

Precious metal-based co-catalysts, such as Pt, Ag, Pd, Rh, Au, and alloys, have successfully improved the activity and selectivity of target products for photocatalytic CO₂ reduction in a range of photocatalyst systems. Noble metal co-catalysts improve the photocatalytic efficiency and enhance the selectivity of target products in the photocatalytic reduction of CO₂. However, the high cost of the precious metal itself limits its industrial development process.

3.1. Pt-Based Co-Catalysts

Generally, there are two main categories of Pt distribution on the photocatalyst surface. One is the in situ loading of Pt during the synthesis of TiO_2 photocatalysts, and the other is the effect of Pt on the synthesis of TiO_2 photocatalysts. The researchers [12] synthesized TiO_2 nanofibers (NFs) using Au and Pt NP coatings by a simple electron spin method. The precursors containing Ti, Au, and Pt were mixed, respectively. The Au and Pt NPs were found to bind precisely to TiO_2 in situ during the electron spin. The Au- and Pt-loaded TiO_2 NFs exhibited higher CO₂ reduction activity under the action of H₂O vapor than pure TiO_2 .

In the preparation of TiO₂, in addition to the above two methods, impregnation-calcination and microwave-assisted solvent-heat treatment methods were used. The mesoporous TiO_2 loaded with Pt, Au, and Ag exhibited photocatalytic activity for reducing CO2 to gasphase CH_4 under visible light irradiation. The mesoporous TiO₂ loaded with 0.2% Pt by mass fraction produced the highest CH_4 content of 5.7 µmol g⁻¹ after visible light irradiation for 2 h. The reason is that the noble metal Pt has the highest work function (5.65 eV) and the lowest Fermi energy level among many co-catalysts. It has the most potent electron extraction ability, making it an ideal choice for photocatalytic CO₂ reduction co-catalyst. Therefore, adding co-catalyst Pt on the semiconductor surface could increase electron mobility and maximize the separation of electrons and holes [73]. Among them, the loading of Pt into TiO₂ was the most widely studied. Pt, Au, and Ag were loaded onto the mesoporous TiO_2 surface. The results showed that when the mass fraction of Pt was 0.2%, the highest yield of CH₄ was 5.7 μ mol g⁻¹ after 2 h of light exposure. The possible reason is that the value of the work function of Pt is higher than that of Au (5.1 eV) and Ag (4.26 eV). Therefore, photogenerated electrons could migrate from TiO₂ to Pt. Furthermore, Xie et al. [15] reported various noble metals loaded on TiO₂. The results showed that the noble metals are active in the order of Ag < Rh < Au < Pd < Pt through the yield of CH₄. This trend is consistent with the respective functionalities of the metals. Although the

addition of noble metal catalysts improved the selectivity of CH_4 , the selectivity of CO (e.g., noble metal Rh) decreased instead. It also accelerates the trend of H_2O reduction to H_2 . The results show that the selectivity of CO_2 reduction decreases from 56% for TiO₂ to 39–45% for the loaded noble metal in TiO₂. Therefore, the focus of current research is the study of how to improve activity.

The impregnation roasting technique was also widely used for Pt-loaded TiO₂. For example, using impregnation and calcination methods, Anpo et al. [17] loaded a mass fraction of 1.0% Pt onto synthesized TiO₂-anchored Y zeolites. The addition of Pt increased the CH₄ yield and decreased in CH₃OH yield. Furthermore, a microwave-assisted solvothermal rapid loading of Pt on TiO₂ was developed [18]. For example, the highest photocatalytic activity for CO and CH₄ was achieved when the mass fraction of Pt was 0.6%. At the same time, undoped TiO₂ was 0.20% and 0.34%. The excess Pt loading reduced the dispersion of Pt NPs and increased the size of Pt NPs. It was easier to remove from the TiO₂ NTAs higher than other polyols. Under visible light irradiation, the Pt-loaded TiO₂ NTAs exhibit a CH₄ content of about 25 \pm 4 ppm in CO₂ and H₂O vapor, while the unloaded TiO₂ NTAs produce only about 3 ppm of CH₄. The Pt NPs were uniformly dispersed on the surface of TiO₂ NTAs.

Due to quantum confinement, the deposition time may lead to tiny Pt NPs high energy band separation, thus limiting the electron transfer from TiO₂ to Pt (Figure 3) [74]. On the contrary, the larger the Pt NPs have similar energy band positions as the bulk Pt. In this case, the light-induced migration of electrons and holes to Pt leads to their recombination. The Pt NPs with optimal size and energy band between -4.4 and -5.65 eV can promote efficient photoinduced electron transfer from TiO₂ only when the appropriate deposition time is used (Figure 3).

Figure 3. Mechanism diagram of CO₂ reduction by Pt-TiO₂ photocatalyst [74].

Yuan et al. [75] loaded 0.5% Pt by mass fraction onto P/g-C₃N₄ composites and exhibited excellent activity. Cao et al. [76] loaded Pt co-catalysts onto In₂O₃ nanocrystaldeposited g-C₃N₄ NSs hybrid photocatalysts. After 4 h of visible light irradiation, the yield of CH₄ reached 159.2 ppm. Whereas the catalyst not loaded with In₂O₃/g-C₃N₄ was only 76.7 ppm. Pt could act as an electron receiver and facilitate charge transfer and migration. Li et al. [77] used H₂O vapor to photocatalysis the reduction of CO₂ to CH₄ by photodeposition with Pt loaded on SiO₂ columnar HNb₃O₈. The highest photocatalytic activity for CH₄ was achieved when the mass fraction of Pt was 0.4%. The results showed that at 0.4 wt% Pt/SiO₂-HNb₃O₈ in the presence of H₂O vapor and N₂, there was no CO₂ in the product, indicating that part of the CH₄ may come from carbon accumulation on the photocatalyst. In comparison, the rate of CH_4 generation from carbon accumulation is much lower than the rate of CH_4 generation.

Although Pt is a more applied co-catalyst in the photocatalytic reduction of CO_2 for hydrogen production, it was not the best. This was because it permanently traps photogenerated electrons while promoting H₂ production, which will reduce the efficiency of photocatalytic CO_2 reduction [18,72]. In addition, Pt could increase the activity of CO_2 conversion to CH_4 more than CO because the generated CO cannot be desorbed from Pt. It leads to catalyst deactivation [78].

In addition, it was also found that when an excessive amount of Pt was loaded onto TiO_2 , Pt would be loudly agglomerated on the semiconductor surface. The electron-rich density of Pt will hinder the formation of Schottky barriers between TiO_2 and Pt, which may increase the electron-hole complex probability and ultimately reduce the CO_2 conversion efficiency [78].

3.2. Ag-Based Co-Catalysts

The binding energy of Ag to CO is much lower than that of Pt to CO, and CO is more easily desorbed from the Ag surface for CO_2 reduction conversion. Therefore, Ag was widely used as a co-catalyst for CO_2 photocatalytic reduction, especially in improving the selectivity of CO. The researchers loaded the co-catalyst Ag onto TiO₂. Reduction products were mainly CH₄ and CH₃OH. Experimental results showed that when the mass fraction of Ag exceeded 5%, Ag clusters would be formed on the semiconductor surface, strengthening the formation of Schottky barriers. It causes the separation of electron–hole pairs and prolongs the lifetime of electron–hole pairs, thus improving the catalyst activity [79].

Researchers [80] added a series of co-catalysts to the synthesized $BaLa_4Ti_4O_{15}$, respectively. After experiments, it was found that NiO, Ru, and Au could improve the activity of photocatalytic synthesis of H_2 and did not achieve CO_2 reduction because these three precious metals mainly act in the photocatalytic decomposition of H_2O to H_2 . In contrast, Ag is the most effective co-catalyst for promoting CO_2 reduction on $BaLa_4Ti_4O_{15}$ (Figure 4).

Figure 4. Mechanism of photocatalytic reduction of CO₂ by Ag-loaded BaLa₄Ti₄O₁₅ [80].

There are four methods for loading Ag onto $BaLa_4Ti_4O_{15}$: impregnation, photolytic deposition, H_2 reduction, and liquid-phase reduction. Among them, the liquid-phase reduction method is the most efficient yield for the reduction of CO_2 to CO compared to H_2 production. It is due to the small size and high dispersion of the deposited co-catalyst Ag, as shown in Figure 4. CO_2 could fully react with Ag and improve the activity of the co-catalyst.

The co-catalyst Ag differs from Pt because Pt tends to agglomerate on the semiconductor surface. On the one hand, it covers the active sites on the semiconductor surface, and on the other hand, it reduces the light intensity and the CO₂ reduction activity. Metal Ag could form small clusters on a nanometer scale, and the smaller the size of the clusters, the stronger the interaction with the carrier and the easier to receive electrons on the d orbitals.

3.3. Pd-Based Co-Catalysts

Unlike the first two noble metal co-catalysts, the crystalline surface of Pd has a more significant effect on CO_2 reduction. The researchers loaded Pd on TiO_2 by the photode-position method and then covered a Nafion layer on Pd- TiO_2 . The Pd- TiO_2 photocatalyst with the Nafion layer overlay has vigorous photocatalytic activity and can reduce CO_2 to CH_4 [33].

Researchers [81] investigated the crystallographic selectivity of Pd co-catalysts using 2D g-C₃N₄ with low layer thickness. Single-crystal Pd NCs and Pd NTs surrounded by {100} and {111} crystal planes were loaded onto g-C₃N₄ using the solution-phase in situ growth method. The density functional theory (DFT) simulation results show that g-C₃N₄ has the function of enhanced charge separation efficiency. While the experimental results also revealed that the selectivity of g-C₃N₄ loaded with Pd NTs (80%) was significantly higher than that of g-C₃N₄ loaded with Pd NCs (20%).

3.4. Ru-Based Co-Catalysts

It was demonstrated that the metal Ru co-catalyst could reduce CO₂. Baran et al. [38] loaded metal Ru with a mass fraction of 1.0 onto the nanocrystalline ZnS surface by impregnation. The promoting effect of Ru-loaded co-catalysts may come from the following two aspects: (1) the adsorption of photoexcited electrons by Ru improves the charge separation efficiency and (2) Ru-loaded ZnS enhances the adsorption of CO₂.

3.5. Alloy Co-Catalysts

The alloy co-catalysts Au/Cu [44] and Cu/Pt alloys [45] showed synergistic effects in promoting photocatalytic CO₂ reduction. For example, Au/Cu alloy NPs were loaded onto TiO₂. In particular, the Au/Cu alloy with a mass fraction of 1.5% (1:2 atomic ratio of Au to Cu) loaded onto TiO₂ has high photocatalytic activity. The selectivity of CH₄ was as high as 97%. It was shown that introducing Cu in Au/Cu-TiO₂ could facilitate the transfer of CB electrons from TiO₂ to CO₂.

The photo deposition of Cu/Pt bimetallic shells on periodically modulated doublewalled titanium dioxide nanotubes to reduce of CO_2 to low-carbon hydrocarbons. Under simulated solar irradiation conditions, the optimized PMTiNT had an overall maximum hydrocarbon production rate [45].

4. Precious Metal-Free Co-Catalysts

Precious metal-free co-catalysts, especially Cu- [49–60] and Ni-based co-catalysts [62–67], have been widely used for photocatalytic CO_2 reduction reactions. The non-precious metal co-catalysts do not exhibit as high photocatalytic efficiency as those of precious metals in the photocatalytic reduction of CO_2 . However, they could reduce the probability of electron–hole complexation. Excellent photocatalytic activity was exhibited. Most importantly, the low cost of the non-precious metal makes industrialization possible.

4.1. Cu-Based Co-Catalysts

Currently, Cu-based co-catalysts are widely used for loading various catalysts. For example, TiO₂, ZnO, ZrO₂, and CdS et al. were used to enhance catalyst activity. It is shown that Cu was loaded onto TiO₂ by the thermal hydrolysis method. The TiO₂ surface was in the form of clusters of Cu₂O. Clusters of Cu₂O have the effect of having electron traps, which inhibit the carrier complex. Tseng et al. [82] employed a sol-gel method to load Cu onto TiO₂, and the analytical results showed that the presence of Cu was mainly in the form of Cu₂O. The 2.0 wt% Cu-modified TiO₂ showed more excellent efficiency for the reduction of CO₂ than unloaded TiO₂. The loaded Cu on TiO₂ could trap photogenerated electrons, thus improving the electron–hole separation efficiency. The researchers reported that CuO_x-modified TiO₂ exhibited more excellent activity than AgO_x-modified TiO₂ in reducing CO₂ to CH₃OH. In both cases, both CuO_x and AgO_x trapped photogenerated

electrons and served as active catalytic sites, and thus the activity was higher than that of pure TiO_2 [83].

Tseng and Wu [84] showed experimentally that the chemical state and distribution of Cu species on TiO₂ greatly influence the photocatalytic CO₂ reduction activity. The results showed that the isolated Cu(I) species obtained was the main active site. TiO₂ modified by Cu has a higher activity than TiO₂ modified by Ag. Xie et al. [85] synthesized Cu-loaded TiO₂ by sol-gel method to photocatalysis reduce CO₂ to CH₃OH. XAS and XPS spectra showed that the higher the dispersion of Cu₂O on the TiO₂ surface, the better the photocatalytic performance. Cu/TiO₂ catalysts treated with H₂ reduction after the reaction were found to have altered dispersion and oxidation state of Cu on TiO₂ with reduced activity. It is because Cu⁺ electron capture was stronger than Cu²⁺ due to the higher reduction potential of Cu²⁺. In addition, stability tests were done, and the used CuO/TiO₂ could be regenerated after exposure to air due to the desorption of its surface gas products. The catalyst has excellent stability.

In addition to the methods above for loading Cu-based co-catalysts during the preparation of TiO₂, the impregnation–calcination method [51,58], the impregnation–calcination method followed by pretreatment [86,87], stirred sonication [88], and microwave-assisted reduction were used to disperse Cu-based co-catalysts on the treated TiO₂. Adachi et al. loaded a 5% mass fraction of Cu onto the TiO₂ surface by impregnating and calcining in an H₂ atmosphere [89]. The synthesized Cu/TiO₂ was active in the photocatalytic reduction of CO₂ to CH₄, C₂H₄, and C₂H₆. The catalyst did not produce methanol or formaldehyde.

4.2. Ni-Based Co-Catalysts

Ni and NiO have also been used for photocatalytic CO_2 reduction. Wang et al. [90] used a sol-gel method to load NiO with $InTaO_4$ composites. The NiO co-catalyst was used in conjunction with $InTaO_4$, and the photocatalytic activity of CO_2 reduction to CH_3OH was significantly enhanced under visible light irradiation. NiO extracts the photogenerated electrons from $InTaO_4$ to reduce the CO_2 . Tsai et al. [91] reported loading Ni@NiO co-catalysts with the core-shell structure to $InTaO_4$ for photocatalytic CO_2 reduction to CH_3OH . Ni@NiO NPs induce the transfer of photogenerated electrons from $InTaO_4$ to Ni@NiO and improve the photocatalyst activity.

4.3. Graphene Co-Catalysts

Carbon materials were the most widespread and infinitely promising materials on earth, ranging from amorphous carbon black to crystalline structured natural layered graphite and from fullerenes with zero-dimensional nanostructures to graphene with two-dimensional structures. Carbon nanomaterials have been attracting significant attention in recent decades. The discovery of graphene self-assembled hydrogels with threedimensional mesh structures has dramatically enriched the family of carbon materials and provided a new growth point in the field of new materials. It has also shown great scientific significance and experimental results due to its unique nanostructure and properties. Thus, it provides a new goal and direction for researching carbon-based materials.

Photocatalysis could convert light energy into chemical energy for air purification and degradation of organic pollutants in wastewater. It was shown that graphene was compounded with semiconductor photocatalysts, and the regular two-dimensional planar structure of graphene was used as the carrier of photocatalysts. On the one hand, it could improve the dispersion of the catalyst. On the other hand, it could accelerate the photogenerated charge migration rate and improve the composite's photocatalytic activity.

Currently, there are three main methods to improve the photocatalytic efficiency of graphene: mixed method, encapsulation method, and a method with graphene itself involved in a photocatalytic reaction, which are described below.

4.3.1. Composite Method

Graphene oxide (RGO) is known for its two-dimensional and planar conjugate structure, which gives it excellent electron conductivity. The compounding of graphene with photocatalytic materials was a common method to improve photocatalytic efficiency [92]. Sim et al. deposited Pt nanoparticles (Pt NPs) and RGO on the surface of TiO₂ nanotube arrays (TNTs), considering the electron capture function of graphene [93]. Initially, the electron–hole pair recombination time (10^{-9} s) was faster than the adsorption kinetics of CO₂ molecules on TiO₂. After depositing RGO sheets on the surface of Pt-TNT, RGO acts as an electron reservoir by trapping photogenerated electrons to inhibit electron–hole pair recombination, while the LSPR effect of Pt-NP enables the composite to have visible light-capturing properties. The quenching of PL spectra, transient photocurrent response, and EIS test reflect the excellent electron–hole pair separation in the photocatalyst due to the coexistence of RGO and Pt-NP. The total methane yield obtained by RGO/Pt-TNTs reached 10.96 μ mol·m⁻².

In addition, graphene is also usually combined with non-noble metals as a co-catalyst. Shown et al. synthesized a series of copper nanoparticles (NPs) modified graphene oxide photocatalysts by a simple microwave process, which significantly improved the yield of photocatalytic solar fuel [94]. The results show that with the increase of Cu load, the electrons spontaneously transfer from GO to Cu NP, resulting in the Fermi energy level moving to a more negative potential. Since the Fermi energy level of Cu NP is lower than that of the CB of GO, the photoexcited electrons can be easily transferred from GO to Cu NP while the photogenerated holes remain in the VB of GO. The electrons accumulated on Cu NPs participate in the CO₂ reduction reaction, while the holes in GO participate in the oxidation reaction. This charge transfer mechanism accelerates the charge separation at the interface between GO and Cu NPs, thus inhibiting the recombination of carriers and enhancing the reduction performance of photocatalysts. When the load of Cu NPs is 10 wt%, the solar fuel production rate under visible light reaches the highest value of 6.84μ mol g-cat⁻¹ h⁻¹, more than 60 times the original GO and 240 times the P-25.

Similarly, when compounded with other materials, such as TaON, the band gap width was reduced to a certain extent. There may be strong interactions between graphene and other semiconductor materials, which will increase the Fermi level of graphene. The energy barrier for supplying electrons from graphene to the adsorbed CO_2 is reduced, thus weakening the C=O bond of CO_2 and causing the bond to break.

4.3.2. Wrapping Method

The wrapping method solves the problem of additives causing an increase in the concentration of defects in the catalyst crystal itself. This is because the catalytic efficiency of the photocatalyst is influenced by the thickness of the cladding layer, which is mainly used to adjust the catalyst's light absorption effect by adjusting the cladding layer's thickness [95]. The wrapping method does not change the band gap width of the photocatalyst, so the problem of increasing defect concentration during the crystallization of the catalyst can be adjusted by the wrapping method. The thickness of the catalyst cladding layer should be controlled reasonably during the preparation of the catalyst. The probability of electron–hole complexation can be reduced, which improves photocatalytic activity [96].

4.3.3. Participation of Graphene Itself in Photocatalytic Reactions

The previous two methods introduced different active components, both of which have some degree of influence on the defect concentration in the crystal. Graphene itself has the advantage of fast carrier transport and low charge recombination rate of the photocatalyst. In addition, GO has a wide band gap energy and great potential as a photocatalyst to reduce carbon dioxide to valuable products such as methane, methanol, and formic acid. Therefore, researchers began considering using pure graphene as a catalyst to participate in the photocatalytic reaction. Kuang et al. prepared two radiation catalysts (GOSS and GOUV) by simulating sunlight (SS) and ultraviolet light (UV) irradiating graphene (GO) [97]. Research shows that radiation has two effects on graphene. On the one hand, radiation eliminated CO released by photolysis in the photocatalytic reaction. On the other hand, radiation activates graphene oxide. Specifically, the radiation caused the generation of defects in GO and restored the large π -conjugation network, making the GO obtain photolytic saturation and sufficient activity to reduce CO₂. Irradiated graphene oxide significantly improves the efficiency of photocatalytic reduction of CO₂, especially the CO yield of GOSS irradiated under simulated sunlight, which is nearly three times that of original graphene oxide. Although graphene has made some achievements in reducing CO₂ as a photocatalyst, there are few relevant studies and many problems to be solved.

The following table summarizes a comparison of the photocatalyst performance of different co-catalysts (Table 2).

Co-Catalysts	Representational Preparation Method	Nitrogen Source	Major CO ₂ Reduction Products	Reaction Medium	References
Pt-based	Situ photodeposition, impregnation-calcination and microwave-assisted solvent-heat methods	N ₂	CH ₄ CO	H ₂ O	[15,19]
Ag-based	Sol-gel	N_2	CH_4	H ₂ O	[79]
Alloy	Photodeposition	N ₂	$\begin{array}{c} C_2H_4\\ C_2H_6 \end{array}$	H ₂ O	[44,45]
Pd-based	Photodeposition	N ₂	CH_4 C_2H_6	H ₂ O	[33]
Cu-based	Thermal hydrolysis	N_2	CH ₃ OH CO	H ₂ O	[83,84]
Ni-based	Incipient wetness impregnation	N_2	CH ₃ OH	H ₂ O	[90,91]
Graphene	Hydrothermal method	N ₂	CH ₄	H ₂ O	[92,93]

Table 2. Co-catalysts for photocatalytic CO₂ reduction of metals and non-metals.

4.4. Single-Atom Co-Catalysts

The high cost and environmental pollution of photocatalysts limit their application in industrial processes. Nevertheless, using single-atom co-catalysts is an interesting approach to solving this series of problems. Jiang et al. [98] loaded atomically dispersed Cu onto ultrathin TiO_2 nanosheets (Figure 5), which could reduce CO_2 to CO. The catalyst also has excellent stability, can be recycled, and is non-polluting to the environment (Figure 6). This technology provides support for green conversion technologies for solar energy.

Figure 5. TEM image of Cu-TiO₂ photocatalyst [96]. The red circles in the diagram indicate the atomically dispersed Cu.

Figure 6. Mechanism of CO₂ reduction by Cu dispersed on TiO₂ nanoflakes [96].

Table 3 shows the abbreviations of terms in the manuscript.

Table 3. Abbreviations of professional terms.

Names	Abbreviations	
Density functional theory	DFT	
Ultraviolet photoelectron spectroscopy	UPS	
Nanotube arrays	NTAs	
Nanotetrahydrogen	NT	
Energy dispersive X-ray	EDX	
Periodically modulated double-walled titanium dioxide nanotubes	PMTiNT	
Reduced graphene oxide	RGO	

A number of specialized words appear in the manuscript, and the following table shows the abbreviations of the professional terms (Table 3).

5. Challenges and Perspectives

In conclusion, selecting a high activity, selectivity, and stability is necessary to improve CO_2 reduction activity. The co-catalysts have several properties: (1) promoting the separation of photoexcited electron–hole pairs, (2) inhibiting side reactions, and (3) improving the selectivity of target products.

Currently, about half of the literature reports the use of noble metal-based co-catalysts (e.g., Pt-, Au-, and Ag-) and alloys (i.e., Au/Cu and Pt/Cu) for facilitating photocatalytic CO₂ reduction reactions. Recently, researchers have also developed many noble metal-free co-catalysts to aid in the photocatalytic reduction of CO₂ such as Cu-, Ni-, and graphene. Among them, Cu-based co-catalysts are the most commonly used catalysts for the photocatalytic reduction of CO₂. Loading a co-catalyst on the surface of the semiconductor is a technology to improve the synergistic effect of CO₂ reduction. However, many results on high activity, stability, and selectivity of catalysts for CO₂ reduction have been reported in the literature. However, it is still in the initial stage of exploration, and there is still much room for development in the future. Several issues are cited below. The activity, stability, and selectivity of co-catalyst-loaded semiconductor catalysts have been studied more in the literature. However, the physicochemical properties, catalytic activity, and coupling of multi-electron and multi-metal reaction mechanisms of co-catalysts have been less studied. In addition, theoretical calculations (e.g., density functional theory) are needed to study the process of CO₂ reduction to provide theoretical knowledge for photocatalytic CO₂ reduction. Unlike other literature, this paper is optimistic about the application prospect of graphene photocatalytic CO_2 reduction for the following two reasons: (1) Graphene has excellent electrical conductivity and large specific surface, so it could improve the available semiconductor materials with low visible light utilization and high excitation electron-hole

complex probability. (2) Graphene is a good co-catalyst for the environment and causes no pollution to the environment before and after the reaction. In future research, we should focus on the direction of graphene photocatalytic CO_2 reduction.

6. Conclusions

- 1. The activity of CO₂ reduction could be improved by controlling the preparation of the catalyst. Currently, monometallic and bimetallic co-catalysts are the most studied in the literature, but there are few studies on three or more polymetallic co-catalysts. In future research, we should focus on developing multi-metal and multi-functional co-catalysts. Finally, it must be noted that co-catalysts that require environmental friendliness, energy efficiency, and other advantages are essential to achieve the scale of industrial application of photocatalysts.
- 2. We aimed to explore high selectivity, high activity, and low-cost co-catalysts. According to previous studies, catalysts like Cu/Pt and Cu/Au are more effective for CO₂ reduction. Given this, it could be tried to find new and more efficient photocatalysts, such as three metals or metal oxides of more than three metals, metal nitride, metal phosphide, bentonite, spinel, and chalcocite. Multi-component active ingredients with synergistic effects could enhance photocatalytic CO₂ activity. In addition, the stability of semiconductor photocatalysts is also a significant challenge. Finding effective techniques to stop the chemical or photocorrosion of co-catalysts will be a crucial direction for future research.

Author Contributions: Methodology, Q.S.; Project Administration, X.Y.; Writing—Original Draft Preparation, C.Z.; Writing—Review and Editing, C.Z. and Q.S.; Validation, C.Z., Q.S., and X.Y. All authors have read and agreed to the published version of the manuscript.

Funding: Support for carrying out this work was provided by Natural Science of Shandong Province, China (ZR2021QB214) and the Doctoral Research Foundation of Weifang University, China (2022BS13 and 2021BS48).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic Reduction of CO₂ on TiO₂ and Other Semiconductors. *Angew. Chem. Int. Ed.* 2013, 52, 7372–7408. [CrossRef] [PubMed]
- 2. Karamian, E.; Sharifnia, S. On the general mechanism of photocatalytic reduction of CO₂. J. CO2 Util. 2016, 16, 194–203. [CrossRef]
- 3. Mao, J.; Li, K.; Peng, T. Recent advances in the photocatalytic CO₂ reduction over semiconductors. *Catal. Sci. Technol.* **2013**, 3, 2481–2498. [CrossRef]
- Cook, J.; Oreskes, N.; Doran, P.T.; Anderegg, W.R.L.; Verheggen, B.; Maibach, E.W.; Carlton, J.S.; Lewandowsky, S.; Skuce, A.G.; Green, S.A.; et al. Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. *Environ. Res. Lett.* 2016, 11, 048002. [CrossRef]
- Feng, Y.; Wang, C.; Cui, P. Ultrahigh Photocatalytic CO₂ Reduction Efficiency and Selectivity Manipulation by Single-Tungsten-Atom Oxide at the Atomic Step of TiO₂. *Adv. Mater.* 2022, *34*, 2109074. [CrossRef] [PubMed]
- Choi, K.M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C.A.; Barmanbek, J.T.; Alshammari, A.S.; Yang, P.; Yaghi, O.M. Plasmonenhanced photocatalytic CO₂ conversion within metal-organic frameworks under visible light. *J. Am. Chem. Soc.* 2017, 139, 356–362. [CrossRef] [PubMed]
- Gondal, M.A.; Dastageer, M.A.; Oloore, L.E.; Baig, U. Laser induced selective photo-catalytic reduction of CO₂ into methanol using In₂O₃-WO₃ nano-composite. *J. Photochem. Photobiol. A* 2017, 343, 40–50. [CrossRef]
- Liu, J.; Liu, M.; Yang, X.L.; Chen, H.; Liu, S.Z.F.; Yan, J.Q. Photo-Redeposition Synthesis of Bimetal Pt–Cu Co-catalysts for TiO₂ Photocatalytic Solar-Fuel Production. ACS Sustain. Chem. Eng. 2019, 6, 1900289. [CrossRef]
- Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO₂ reduction activity of anatase TiO₂ by coexposed {001} and {101} facets. *J. Am. Chem. Soc.* 2014, 136, 8839–8842. [CrossRef]
- 10. Pu, Y.; Luo, Y.; Wei, X.; Sun, J.; Li, L.; Zou, W.; Dong, L. Synergistic effects of Cu₂O-decorated CeO₂ on photocatalytic CO₂ reduction: Surface Lewis acid/base and oxygen defect. *Appl. Catal. B* **2019**, *254*, 580–586. [CrossRef]
- 11. Nguyen, N.H.; Wu, H.Y.; Bai, H. Photocatalytic reduction of NO₂ and CO₂ using molybdenum-doped titania nanotubes. *Chem. Eng. J.* **2015**, *269*, 60–66. [CrossRef]

- Zhang, Z.; Wang, Z.; Cao, S.-W.; Xue, C. Au/Pt Nanoparticle-Decorated TiO₂ Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion. J. Phys. Chem. C 2013, 117, 25939–25947. [CrossRef]
- 13. Uner, D.; Oymak, M.M. On the mechanism of photocatalytic CO₂ reduction with water in the gas phase. *Catal. Today* **2012**, *181*, 82–88. [CrossRef]
- Xiong, Z.; Wang, H.; Xu, N.; Li, H.; Fang, B.; Zhao, Y.; Zhang, J.; Zheng, C. Photocatalytic reduction of CO₂ on Pt²⁺-Pt⁰/TiO₂ nanoparticles under UV/Vis light irradiation: A combination of Pt²⁺ doping and Pt nanoparticles deposition. *Int. J. Hydrogen Energy* 2015, 40, 10049–10062. [CrossRef]
- 15. Xie, S.; Wang, Y.; Zhang, Q.; Deng, W.; Wang, Y. MgO- and Pt-Promoted TiO₂ as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. *ACS Catal.* **2014**, *4*, 3644–3653. [CrossRef]
- Dukovic, G.; Merkle, M.G.; Nelson, J.H.; Hughes, S.M.; Alivisatos, A.P. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures. *Adv. Mater.* 2008, 20, 4306–4311. [CrossRef]
- Maimaitizi, H.; Abulizi, A.; Kadeer, K.; Talifu, D.; Tursun, Y. In situ synthesis of Pt and N co-doped hollow hierarchical BiOCI microsphere as an efficient photocatalyst for organic pollutant degradation and photocatalytic CO₂ reduction. *Appl. Surf. Sci.* 2020, 502, 144083. [CrossRef]
- Fang, B.; Bonakdarpour, A.; Reilly, K.; Xing, Y.; Taghipour, F.; Wilkinson, D.P. Large-scale synthesis of TiO₂ microspheres with hierarchical nanostructure for highly efficient photodriven reduction of CO₂ to CH₄. ACS Appl. Mater. Interfaces 2014, 6, 15488–15498. [CrossRef] [PubMed]
- Zhao, Y.; Wei, Y.; Wu, X.; Zheng, H.; Zhao, Z.; Liu, J.; Li, J. Graphene-wrapped Pt/TiO₂ Photocatalysts with Enhanced Photogenerated Charges Separation and Reactant Adsorption for High Selective Photoreduction of CO₂ to CH₄. *Appl. Catal. B* 2018, 226, 360–372. [CrossRef]
- Feng, X.; Sloppy, J.D.; LaTempa, T.J.; Paulose, M.; Komarneni, S.; Bao, N.; Grimes, C.A. Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO₂ nanotube arrays: Application to the photocatalytic reduction of carbon dioxide. *J. Mater. Chem.* 2011, 21, 13429–13433. [CrossRef]
- 21. Li, K.; Peng, T.; Ying, Z.; Song, S.; Zhang, J. Ag-loading on brookite TiO₂ quasi nanocubes with exposed {210} and {001} facets: Activity and selectivity of CO₂ photoreduction to CO/CH₄. *Appl. Catal. B* **2016**, *180*, 130–138. [CrossRef]
- 22. Takayama, T.; Tanabe, K.; Saito, K.; Iwase, A.; Kudo, A. The KCaSrTa₅O₁₅ photocatalyst with tungsten bronze structure for water splitting and CO₂ reduction. *Phys. Chem. Chem. Phys.* **2014**, *16*, 24417–24422. [CrossRef]
- Wang, Z.; Teramura, K.; Huang, Z.; Hosokawa, S.; Sakatad, Y.; Tanaka, T. Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO₂ by H₂O through the modification of Ag-loaded Ga₂O₃ with a ZnGa₂O₄ layer. *Catal. Sci. Technol.* 2016, *6*, 1025–1032. [CrossRef]
- 24. Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. Highly efficient photocatalytic conversion of CO₂ into solid CO using H₂O as a reductant over Ag-modified ZnGa₂O₄. J. Mater. Chem. A **2015**, *3*, 11313–11319. [CrossRef]
- 25. Yamamoto, M.; Yoshida, T.; Yamamoto, N.; Nomoto, T.; Yamamoto, Y.; Yagi, S.; Yoshida, H. Photocatalytic reduction of CO₂ with water promoted by Ag clusters in Ag/Ga₂O₃ photocatalysts. *J. Mater. Chem. A* **2015**, *3*, 16810–16816. [CrossRef]
- Ohno, T.; Higo, T.; Murakami, N.; Saito, H.; Zhang, Q.; Yang, Y.; Tsubota, T. Photocatalytic reduction of CO₂ over exposed-crystal-face-controlled TiO₂ nanorod having a brookite phase with co-catalyst loading. *Appl. Catal. B* 2014, 152–153, 309–316. [CrossRef]
- Zhao, C.; Krall, A.; Zhao, H.; Zhang, Q.; Li, Y. Ultrasonic spray pyrolysis synthesis of Ag/TiO₂ nanocomposite photocatalysts for simultaneous H₂ production and CO₂ reduction. *Int. J. Hydrogen Energy* 2012, *37*, 9967–9976. [CrossRef]
- Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. Photocatalytic conversion of CO₂ in water over Ag-modified La₂Ti₂O₇. *Appl. Catal. B* 2015, 163, 241–247. [CrossRef]
- Sui, D.; Yin, X.; Dong, H.; Qin, S.; Chen, J.; Jiang, W. Photocatalytically Reducing CO₂ to Methyl Formate in Methanol over Ag Loaded SrTiO₃ Nanocrystal Catalysts. *Catal. Lett.* 2012, 142, 1202–1210. [CrossRef]
- Zhang, Y.; Wang, X.; Dong, P.; Huang, Z.; Nie, X.; Zhang, X. TiO₂ Surfaces Self-Doped with Ag Nanoparticles Exhibit Efficient CO₂ Photoreduction under Visible Light. *RSC Adv.* 2018, *8*, 15991–15998. [CrossRef]
- 31. Liu, L.; Pitts, D.T.; Zhao, H.; Zhao, C.; Li, Y. Silver-incorporated bicrystalline (anatase/brookite) TiO₂ microspheres for CO₂ photoreduction with water in the presence of methanol. *Appl. Catal. A* **2013**, *467*, 474–482. [CrossRef]
- Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. Photochemical Reduction of CO₂ Using TiO₂: Effects of Organic Adsorbates on TiO₂ and Deposition of Pd onto TiO₂. ACS Appl. Mater. Interfaces 2011, 3, 2594–2600. [CrossRef]
- Kim, W.; Seok, T.; Choi, W. Nafion layer-enhanced photosynthetic conversion of CO₂ into hydrocarbons on TiO₂ nanoparticles. Energy Environ. Sci. 2012, 5, 6066–6070. [CrossRef]
- Koci, K.; Matejova, L.; Reli, M.; Capek, L.; Matejka, V.; Lacny, Z.; Kustrowski, P.; Obalbv, L. Sol-Gel Derived Pd Supported TiO₂ZrO, and TiO, Photocatalysts; Their Examination in PhotocatalyticReduction of Carbon Dioxide. *Catal. Today.* 2014, 230, 20–26. [CrossRef]
- 35. Hong, J.; Zhang, W.; Wang, Y.; Zhou, T.; Xu, R. Photocatalytic Reduction of Carbon Dioxide over Self-Assembled Carbon Nitride and Layered Double Hydroxide: The Role of Carbon Dioxide Enrichment. *ChemCatChem* **2014**, *6*, 2315–2321. [CrossRef]
- 36. Kuai, L.; Chen, Z.; Liu, S.; Kan, E.; Yu, N.; Ren, Y.; Fang, C.; Li, X.; Li, Y.; Geng, B. Titania Supported Synergistic Palladium Single Atoms and Nanoparticles for Room Temperature Ketone and Aldehydes Hydrogenation. *Nat. Commun.* **2020**, *11*, 48. [CrossRef]

- Sasirekha, N.; Basha, S.J.S.; Shanthi, K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. *Appl. Catal. B* 2006, *62*, 169–180. [CrossRef]
- 38. Zhang, R.; Wang, H.; Tang, S.; Liu, C.; Dong, F.; Yue, H.; Liang, B. Photocatalytic Oxidative Dehydrogenation of Ethane Using CO₂ as a Soft Oxidant over Pd/TiO₂ Catalysts to C₂H₄ and Syngas. *ACS Catal.* **2018**, *8*, 9280–9286. [CrossRef]
- Yan, S.C.; Ouyang, S.X.; Gao, J.; Yang, M.; Feng, J.Y.; Fan, X.X.; Wan, L.J.; Li, Z.S.; Ye, J.H.; Zhou, Y.; et al. A Room-Temperature Reactive-Template Route to Mesoporous ZnGa₂O₄ with Improved Photocatalytic Activity in Reduction of CO₂. *Angew. Chem. Int. Ed.* 2010, 49, 6544–6548. [CrossRef]
- Yoshino, S.; Sato, K.; Yamaguchi, Y.; Iwase, A.; Kudo, A. Z-schematic CO₂ reduction to CO through interparticle electron transfer between SrTiO₃: Rh of a reducing photocatalyst and BiVO₄ of a water oxidation photocatalyst under visible light. ACS Appl. Energy Mater. 2020, 3, 10001–10007. [CrossRef]
- Baran, T.; Wojtyła, S.; Dibenedetto, A.; Aresta, M.; Macyk, W. Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO₂. *Appl. Catal. B* 2015, *178*, 170–176. [CrossRef]
- Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C.E.; Xu, J.; Fernando, K.A.S.; Wang, P.; Guliants, E.A., II; Tackett, K.N.; Sun, Y.-P. Carbon Nanoparticles as Visible-Light Photocatalysts for Efficient CO₂ Conversion and Beyond. *J. Am. Chem.Soc.* 2011, 133, 4754–4757. [CrossRef]
- Rossetti, I.; Villa, A.; Compagnoni, M.; Prati, L.; Ramis, G.; Pirola, C.; Bianchi, C.L.; Wang, W.; Wang, D. CO₂ photoconversion to fuels under high pressure: Effect of TiO₂ phase and of unconventional reaction conditions. *Catal. Sci. Technol.* 2015, *5*, 4481–4487. [CrossRef]
- Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A Highly Selective and Stable ZnO-ZrO₂ Solid Solution Catalyst for CO₂ Hydrogenation to Methanol. *Sci. Adv.* 2017, *3*, e1701290. [CrossRef]
- Zhang, X.; Han, F.; Shi, B.; Farsinezhad, S.; Dechaine, G.P.; Shankar, K. Photocatalytic Conversion of Diluted CO₂ into Light Hydrocarbons Using Periodically Modulated Multiwalled Nanotube Arrays. *Angew. Chem. Int. Ed.* 2012, *51*, 12732–12735. [CrossRef]
- Baldoví, H.G.; Neatu, S.; Khan, A.; Asiri, A.M.; Kosa, S.A.; Garcia, H. Understanding the Origin of the Photocatalytic CO₂ Reduction by Au- and Cu-Loaded TiO₂: A Microsecond Transient Absorption Spectroscopy Study. *J. Phys. Chem. C* 2015, 119, 6819–6827. [CrossRef]
- 47. Qin, L.; Si, G.; Li, X.; Kang, S.-Z. Synergetic effect of Cu–Pt bimetallic cocatalyst on SrTiO₃ for efficient photocatalytic hydrogen production from water. *RSC Adv.* **2015**, *5*, 102593–102598. [CrossRef]
- Kang, Q.; Wang, T.; Li, P.; Liu, L.; Chang, K.; Li, M.; Ye, J. Photocatalytic Reduction of Carbon Dioxide by Hydrous Hydrazine over Au-Cu Alloy Nanoparticles Supported on SrTiO₃/TiO₂ Coaxial Nanotube Arrays. *Angew. Chem. Int. Ed.* 2015, 54, 841–845. [CrossRef]
- Fang, B.; Xing, Y.; Bonakdarpour, A.; Zhang, S.; Wilkinson, D.P. Hierarchical CuO-TiO₂ Hollow Microspheres for Highly Efficient Photodriven Reduction of CO₂ to CH₄. ACS Sustain. Chem. Eng. 2015, 3, 2381–2388. [CrossRef]
- Ovcharov, M.L.; Mishura, A.M.; Shcherban, N.D.; Filonenko, S.M.; Granchak, V.M. Photocatalytic Reduction of CO₂ usingNanostructured Cu₂O with Foam-Like Structure. Sol. Energy 2016, 139, 452–457. [CrossRef]
- 51. Zhang, Q.; Gao, T.; Andino, J.M.; Li, Y. Copper and iodine co-modified TiO₂ nanoparticles for improved activity of CO₂ photoreduction with water vapor. *Appl. Catal. B* **2012**, *123–124*, 257. [CrossRef]
- Li, Y.; Wang, W.-N.; Zhan, Z.; Woo, M.-H.; Wu, C.-Y.; Biswas, P. Photocatalytic reduction of CO₂ with H₂O on mesoporous silica supported Cu/TiO₂ catalysts. *Appl. Catal. B* 2010, 100, 386. [CrossRef]
- 53. Liu, L.; Gao, F.; Zhao, H.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO₂ catalysts for enhanced CO₂ photoreduction efficiency. *Appl. Catal. B* **2013**, 134–135, 349–358. [CrossRef]
- 54. Liu, D.; Fernández, Y.; Ola, O.; Mackintosh, S.; Maroto-Valer, M.; Parlett, C.M.A.; Lee, A.F.; Wu, J.C.S. On the impact of Cu dispersion on CO₂ photoreduction over Cu/TiO₂. *Catal. Commun.* **2012**, *25*, 78. [CrossRef]
- 55. Yang, H.-C.; Lin, H.-Y.; Chien, Y.-S.; Wu, J.C.-S.; Wu, H.-H. Mesoporous TiO₂/SBA-15, and Cu/TiO₂/SBA-15 Composite Photocatalysts for Photoreduction of CO₂ to Methanol. *Catal. Lett.* **2009**, *131*, 381. [CrossRef]
- 56. Wang, W.-N.; Park, J.; Biswas, P. Rapid synthesis of nanostructured Cu-TiO₂-SiO₂ composites for CO₂ photoreduction by evaporation driven self-assembly. *Catal. Sci. Technol.* **2011**, *1*, 593. [CrossRef]
- 57. Liu, E.; Qi, L.; Bian, J.; Chen, Y.; Hu, X.; Fan, J.; Liu, H.; Zhu, C.; Wang, Q. A facile strategy to fabricate plasmonic Cu modified TiO₂ nano-flower films for photocatalytic reduction of CO₂ to methanol. *Mater. Res. Bull.* **2015**, *68*, 203. [CrossRef]
- 58. Huang, L.; Duan, Z.; Song, Y.; Li, Q.; Chen, L. BiVO₄ microplates with oxygen vacancies decorated with metallic Cu and Bi nanoparticles for CO₂ photoreduction. *ACS Appl. Nano Mater.* **2021**, *4*, 3576–3585. [CrossRef]
- Bharad, P.A.; Nikam, A.V.; Thomas, F.; Gopinath, C.S. CuO_x-TiO₂ composites: Electronically integrated nanocomposites for solar hydrogen generation. *Chemistryselect* 2018, *3*, 12022–12030. [CrossRef]
- Srinivas, B.; Shubhamangala, B.; Lalitha, K.; Reddy, P.A.K.; Kumari, V.D.; Subrahmanyam, M. Photocatalytic reduction of CO₂ over Cu-TiO₂/molecular sieve 5A composite. *Photochem. Photobiol.* 2011, 87, 995. [CrossRef]
- Kumar, A.; Sharma, G.; Naushad, M.; Ahamad, T.; Veses, R.C.; Stadler, F.J. Highly visible active Ag₂CrO₄/Ag/BiFeO₃@RGO nano-junction for photoreduction of CO₂ and photocatalytic removal of ciprofloxacin and bromate ions: The triggering effect of Ag and RGO. *Chem. Eng. J.* 2019, *370*, 148–165. [CrossRef]

- 62. Jeyalakshmi, V.; Mahalakshmy, R.; Krishnamurthy, K.R.; Viswanathan, B. Photocatalytic Reduction of Carbon Dioxide by Water: A Step towards Sustainable Fuels and Chemicals. *Catal. Today* **2016**, *266*, 160. [CrossRef]
- 63. Wang, J.; Li, B.; Chen, J.; Li, N.; Zheng, J.; Zhao, J.; Zhu, Z. Enhanced photocatalytic H₂ production activity of Cd_xZn_{1-x}S nanocrystals by surface loading MS (M = Ni, Co, Cu) species. Appl. *Surf. Sci.* **2012**, 259, 118–123. [CrossRef]
- Ruan, C.; Huang, Z.-Q.; Lin, J.; Li, L.; Liu, X.; Tian, M.; Huang, C.; Chang, C.-R.; Li, J.; Wang, X. Synergy of the catalytic activation on Ni and the CeO₂-TiO₂/Ce₂Ti₂O₇ stoichiometric redox cycle for dramatically enhanced solar fuel production. *Energy Environ. Sci.* 2019, 12, 767–779. [CrossRef]
- 65. Liou, P.Y.; Chen, S.C.; Wu, J.C.S.; Liu, D.; Mackintosh, S.; Maroto-Valerb, M.; Linforth, R. Photocatalytic CO₂ reduction using an internally illuminated monolith photoreactor. *Energy Environ. Sci.* **2011**, *4*, 1487. [CrossRef]
- Miao, Y.F.; Guo, R.T.; Gu, J.W.; Liu, Y.Z.; Wu, G.L.; Duan, C.P.; Pan, W.G. Z-scheme Bi/Bi₂O₂CO₃/Layered double-hydroxide nanosheet heterojunctions for photocatalytic CO₂ reduction under visible light. *ACS Appl. Nano Mater.* 2021, *4*, 4902–4911. [CrossRef]
- 67. Yu, L.; Zhang, X.; Li, G.; Cao, Y.; Shao, Y.; Li, D. Highly efficient Bi₂O₂CO₃/BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light. *Appl. Catal. B* **2016**, *187*, 301–309. [CrossRef]
- Zhang, H.; Wei, J.; Dong, J.; Liu, G.; Shi, L.; An, P.; Zhao, G.; Kong, J.; Wang, X.; Meng, X.; et al. Efficient Visible-Light-Driven Carbon Dioxide Reduction by a Single-Atom Implanted Metal-Organic Framework. *Angew. Chem. Int. Ed.* 2016, 55, 14310. [CrossRef]
- 69. Wei, L.; Yu, C.; Zhang, Q.; Liu, H.; Wang, Y. TiO₂-Based Heterojunction Photocatalysts for Photocatalytic Reduction of CO₂ into Solar Fuels. *J. Mater. Chem. A* **2018**, *6*, 22411–22436. [CrossRef]
- 70. Nie, N.; Zhang, L.; Fu, J.; Cheng, B.; Yu, J. Self-assembled hierarchical direct Zscheme g-C₃N₄/ZnO microspheres with enhanced photocatalytic CO₂ reduction performance. *Appl. Surf. Sci.* **2018**, *441*, 12–22. [CrossRef]
- Zhou, L.; Kamyab, H.; Surendar, A.; Maseleno, A.; Ibatova, A.Z.; Chelliapan, S.; Karachi, N.; Parsaee, Z. Novel Z-scheme composite Ag₂CrO₄/NG/polyimide as high performance nano catalyst for photoreduction of CO₂: Design, fabrication, characterization and mechanism. *J. Photochem. Photobiol. A* 2019, *368*, 30–40. [CrossRef]
- Xu, Q.L.; Xia, Z.H.; Zhang, J.M.; Wei, Z.Y.; Guo, Q.; Jin, H.L.; Tang, H.; Li, S.Z.; Pan, X.C.; Su, Z.; et al. Recent advances in solar-driven CO₂ reduction over g-C₃N₄-based photocatalysts. *Carbon Energy* 2022. [CrossRef]
- Li, X.; Zhuang, Z.; Li, W.; Pan, H. Photocatalytic reduction of CO₂ over noble metal-loaded and nitrogen-doped mesoporous TiO₂. *Appl. Catal. A* 2012, 429–430, 31–38. [CrossRef]
- 74. Kočí, K.; Matějů, K.; Obalová, L.; Krejčíková, S.; Lacný, Z.; Plachá, D.; Čapek, L.; Hospodková, A.; Šolcová, O. Effect of silver doping on the TiO₂ for photocatalytic reduction of CO₂. Appl. Catal. B-Environ. 2013, 96, 239–244. [CrossRef]
- 75. Yuan, Y.-P.; Cao, S.-W.; Liao, Y.-S.; Yin, L.-S.; Xue, C. Red phosphor/g-C₃N₄ heterojunction with enhanced photocatalytic activities for solar fuels production. *Appl. Catal. B* **2013**, *140–141*, 164–168. [CrossRef]
- Gao, G.; Jiao, Y.; Waclawik, E.R.; Du, A. Single atom (Pd/Pt) supported on graphitic carbon nitride as efficient photocatalyst for visible-light reduction of carbon dioxide. *J. Am. Chem. Soc.* 2016, 138, 6292. [CrossRef]
- Li, X.; Li, W.; Zhuang, Z.; Zhong, Y.; Li, Q.; Wang, L. Photocatalytic Reduction of Carbon Dioxide to Methane over SiO₂-Pillared HNb₃O₈. *J. Phys. Chem. C* 2012, *116*, 16047. [CrossRef]
- Yu, X.; Wang, Y.; Kim, A.; Kim, Y.K. Observation of Temperature-Dependent Kinetics for Catalytic CO Oxidation over TiO₂-Supported Pt Catalysts. *Chem. Phys. Lett.* 2017, 685, 282–287. [CrossRef]
- Asi, M.A.; Zhu, L.; He, C.; Sharma, V.K.; Shu, D.; Li, S.; Yang, J.; Xiong, Y. Visible-Light-Harvesting Reduction of CO₂ to Chemical Fuels with Plasmonic Ag@AgBr/CNT Nanocomposites. *Catal. Today* 2013, 216, 268–275. [CrossRef]
- 80. Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa₄Ti₄O₁₅(A=Ca, Sr, and Ba) Using Water as a Reducing Reagent. *J. Am. Chem. Soc.* **2011**, *133*, 20863. [CrossRef]
- Bai, S.; Wang, X.; Hu, C.; Xie, M.; Jiang, J.; Xiong, Y. Two-dimensional g-C₃N₄: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. *Chem. Commun.* 2014, 50, 6094. [CrossRef] [PubMed]
- Tseng, I.-H.; Wu, J.C.-S. Photoreduction of CO₂ using sol-gel derived titania and titania-supported copper catalysts. *Appl. Catal. B* 2002, *37*, 37–48. [CrossRef]
- 83. Wu, J.C.S.; Wu, T.H.; Chu, T.; Huang, H.; Tsai, D. Application of Optical-fiber Photoreactor for CO₂ Photocatalytic Reduction. *Top. Catal.* **2008**, *47*, 131–136. [CrossRef]
- 84. Tseng, I.-H.; Wu, J.C.-S. Effects of sol-gel procedures on the photocatalysis of Cu/TiO₂ in CO₂ photoreduction. *J. Catal.* **2004**, 221, 432–440. [CrossRef]
- Xie, S.; Ma, W.; Wu, X.; Zhang, H.; Zhang, Q.; Wang, Y.; Wang, Y. Photocatalytic and Electrocatalytic Transformations of C1Molecules Involving C-C Coupling. *Energy Environ. Sci.* 2021, 14, 37–89. [CrossRef]
- Ajmal, S.; Yang, Y.; Tahir, M.; Li, K.A.; Bacha, A.-U.-R.; Nabi, I.; Liu, Y.; Wang, T.; Zhang, L. Boosting C2 Products in Electrochemical CO₂ Reduction over Highly Dense Copper Nanoplates. *Catal. Sci. Technol.* 2020, 10, 4562–4570. [CrossRef]
- 87. Slamet; Nasution, H.W.; Purnama, E.; Kosela, S.; Gunlazuardi, J. Photocatalytic reduction of CO₂ on copper-doped Titania catalysts prepared by improved-impregnation method. *Catal. Commun.* **2005**, *6*, 313. [CrossRef]
- Zhao, H.; Duan, J.; Zhang, Z.; Wang, W. Bi-Ti-In trimetallic sites in the Indiumdoped Bi₄Ti₃O₁₂-CuIn₅S₈ S-scheme heterojunction for controlling the selectivity of CO₂ photoreduction. *Fuel* **2022**, *325*, 124993. [CrossRef]

- 89. Adachi, K.; Ohta, K.; Mizuno, T. Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. *Sol. Energy* **1994**, *53*, 187. [CrossRef]
- Wang, Z.-Y.; Chou, H.-C.; Wu, J.C.; Tsai, D.P.; Mul, G. CO₂ photoreduction using NiO/InTaO₄ in optical-fiber reactor for renewable energy. *Mul. Appl. Catal. A* 2010, 380, 172. [CrossRef]
- Tsai, C.-W.; Chen, H.M.; Liu, R.-S.; Asakura, K.; Chan, T.-S. Ni@NiO Core-Shell Structure-Modified Nitrogen-Doped InTaO₄ for Solar-Driven Highly Efficient CO₂ Reduction to Methanol. J. Phys. Chem. C 2011, 115, 10180. [CrossRef]
- 92. Li, N.; Jiang, R.; Li, Y.; Zhou, J.; Ma, Q.; Shen, S.; Liu, M. Plasma-Assisted Photocatalysis of CH₄ and CO₂ into Ethylene. ACS Sustain. Chem. Eng. 2019, 7, 11455–11463. [CrossRef]
- Sim, L.C.; Leong, K.H.; Saravanan, P.; Ibrahim, S. Rapid thermal reduced graphene oxide/Pt-TiO₂ nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO₂. *Appl. Surf. Sci.* 2015, *358*, 122–129. [CrossRef]
- 94. Shown, I.; Hsu, H.-C.; Chang, Y.-C.; Lin, C.-H.; Roy, P.K.; Ganguly, A.; Wang, C.-H.; Chang, J.-K.; Wu, C.-I.; Chen, L.-C.; et al. Highly Efficient Visible Light Photocatalytic Reduction of CO₂ to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. *Nano Lett.* **2014**, *14*, 6097. [CrossRef] [PubMed]
- 95. Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO₂ to solar fuel. *J. Mater. Chem. A* **2014**, *2*, 3407. [CrossRef]
- 96. Gui, M.M.; Chai, S.-P.; Xu, B.-Q.; Mohamed, A.R. Enhanced visible light responsive MWCNT/TiO₂ core-shell nanocomposites as the potential photocatalyst for reduction of CO₂ into methane. *Sol. Energy Mater. Sol. Cells* **2014**, *122*, 183. [CrossRef]
- Kuang, Y.; Shang, J.; Zhu, T. Photo-Activated Graphene Oxide to Enhance Photocatalytic Reduction of CO₂. ACS Appl. Mater. Interfaces 2020, 12, 3580–3591. [CrossRef] [PubMed]
- Jiang, Z.; Sun, W.; Miao, W.; Yuan, Z. Living Atomically Dispersed Cu Ultrathin TiO₂ Nanosheet CO₂ Reduction Photocatalyst. *Adv. Sci.* 2019, *6*, 1900289. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.