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Abstract: Fast-growing grass is a biomass material with characteristics such as high temperature
and drought resistance; rapid growth and development; and repeated germination and cutting.
Therefore, it is a popular biomass fuel. It is required that the pollutants produced during the
biomass combustion process are appropriately controlled. For this purpose, our study analyses the
influence of combustion temperature and calcium oxide (CaO) on the nitrogen oxides (NOx) and
carbon monoxide (CO) emission characteristics of fast-growing grass combustion using the biomass
combustion flue gas analysis and testing platform. The results of our analysis revealed that CaO
additive can simultaneously reduce the peak and total NOx emissions at 750 ◦C. Particularly, 5%
CaO demonstrated a significant control effect on the NOx emission from the fast-growing grass
combustion process, with a peak and total emissions reduction of 47.05% and 56.81%, respectively. In
addition, with an increase in temperature, the CO emission curve attains a second peak higher than
the first peak, and the peak and total emissions show a decreasing trend.
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1. Introduction

In recent years, especially with the rapid development of the world economy and
advancement in technology, the demand for energy among humans has been on the increase.
Moreover, the continuous consumption of fossil fuels poses a series of environmental
problems [1]. According to the statistics of the International Energy Agency, global energy
demand and emissions increased by 5% in 2021, compared with 2020 [2], to about the same
level attained before the new corona pneumonia epidemic (around 3.3 billion tonnes). Thus,
to deal with this energy crisis and environmental problems, it is necessary to adjust the
energy structure actively and develop renewable energy vigorously. Interestingly, biomass
energy is an ideal alternative energy source because of its wide distribution, rich raw
materials, and low pollution [3–6]. Specifically, compared with other types of biomass,
fast-growing grass is characterized by high temperature and drought resistance; rapid
growth and development; and repeated germination and cutting [7–9], which can quickly
capture and fix carbon and regulate the atmospheric greenhouse effect. As a biomass fuel,
fast-growing grass has the disadvantages such as low calorific value, low bulk density,
and being difficult to collect and transport. It can be used as a soil remediation crop in
abandoned mining areas and a stable fuel for biomass power plants if planted on a large
scale. In addition, it can grow to about 4–5 m in height and 50–60 mm in diameter, which
is highly suitable for biomass feedstock. It can also be used as asphalt, wall materials,
wood-plastic composites, etc. [10–12].

Furthermore, the methods to utilize biomass resources include gasification, pyrolysis,
direct combustion, etc. [13]. Among them, direct combustion technology is the most widely
used method at present. This is because steam heat generated via burning biomass can
operate steam turbines and generate electricity, thus, converting biomass energy into
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electrical energy [5]. However, the utilization of biomass energy is accompanied by the
emissions of pollutants, such as nitrogen oxides, sulfur oxides, and particulate dust. Besides
environmental pollution, these pollutants may also cause harm to the environment and,
much more, human health. Specifically, nitrogen oxides (NOx) not only cause acid rain and
haze, but they also increase the content of PM2.5 in the atmosphere [14] and, much more,
reacts with hydrocarbons to produce photochemical smog [15,16]. Moreover, carbon
monoxide (CO) is a colorless, odorless, and non-irritating toxic gas, which is almost
insoluble in water. In addition, it does not easily react with other substances in the air and
can remain in the atmosphere for 2–3 years. Therefore, it is harmful to human health in the
case of severe local pollution. Although the environmental protection work in China has
made some progress, this environmental situation is still grim.

Nevertheless, for NOx emission control, many scholars have found that the appropri-
ate utilization of additives can effectively reduce the NOx emission produced by biomass
fuels [8]. Many scholars [17–21] have studied the effect of additives on the wet denitri-
fication reaction. Specifically, the direct use of the additives is favored by a variety of
scholars due to ease of operation, convenience, low cost, and small space occupation. For
example, Chen [22] achieved better NOx emission reduction via mixed combustion with a
5% additive in microalgae. Particularly, the results of the analysis show that the reduction
order of the NOx emission peak is CuCl2 > SiC > ZnCl2 > MgO. In addition, Liu [23] found
that Na2CO3 and K2CO3 additives have certain catalytic reduction and immobilization
effects on NOx release during litchi peel combustion. In addition, Burak [24] found that
AlNH4(SO4)2 and NH4MgPO4 additives can reduce the conversion rate of fuel-N to NO in
the sunflower shell combustion process by 40%. Furthermore, Liu [25] studied the emission
characteristics of NOx and N2O in the fluidized combustion process of rice straw and pine
sawdust after adding limestone at 800 ◦C. It was found that introducing limestone into
the circulating fluidized bed (CFB) reactor reduced the NO emission. In addition, it was
observed that when the Ca/S molar ratio was 2:1, 5:1, and 10:1, the NO reduction rates
were 11.8, 15.1, and 24.9%, respectively. In addition, a ceramic-supported platinum catalyst
on a ceramic carrier (TiO2, MnO2), such as Cu(NO3)2·3H2O, H2PtCl6, and 99.5% pure urea
solutions can reduce the emissions of polluting gases such as NOx [26–28].

Furthermore, a series of research works have been conducted on calcium-based addi-
tives. For example, Meng et al. [29] used CaO and MgO or kaolin as additives for biomass
particle combustion and discovered that the additive of MgO can reduce the content of
K and Cl in ash. In addition, Lindstrom et al. [30] mixed CaO with grains rich in alkali
elements, such as barley and oats, for combustion. The results demonstrated that lime
contributes to the formation of high-temperature molten potassium calcium phosphate,
which slows ash deposition. In addition, Tomáš et al. [31] studied the effect of catalytic
additives, such as calcium oxide (CaO) and potassium permanganate (KMnO4), on the
emissions of wheat bran and beet pulp particles by using a low-power boiler. The results
of their research revealed that the additive of 15% CaO and 5% KMnO4 could minimize
NOx emission. Much more, Zhang et al. studied the migration characteristics of sulfur and
nitrogen during the combustion process of sludge with CaO additive. The results showed
that in addition to promoting the conversion of HCN to other nitrogen-contained gases,
CaO can promote the formation of NO from HCN and NH3; and, much more, facilitate
the reduction reaction of NO to N2 [32]. Further still, Liu [33] investigated the catalytic
effect of a regulator (CaO) on nitrogen conversion during sewage sludge pyrolysis and
discovered that CaO usage is a promising strategy to effectively reduce the production of
NOx precursors and, much more, increase the generation of pollution-free N2.

Regarding the reduction of CO emission, most authors have focused on controlling
combustion temperature and air flow [34]; moreover, it is also possible to reduce CO
emission by adding CaO. For example, Hayhurst et al. [35] in their work, were able to half
the concentration of CO after introducing CaO. More so, Leckner et al. [36] found that a
165 MW CFB boiler emits a significantly lower concentration of CO when some CaO was
present in the bed layer. However, they did not consider the effect of different amounts of
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CaO on CO emission. Thus, there exists a gap in the study of the effect of additives on the
NOx and CO emission characteristics of fast-growing grass combustion.

To bridge this gap, using fast-growing grass as our biomass material, we investigate
the NOx and CO emission characteristics at different combustion temperatures (600, 700,
750, 800, and 850 ◦C) and of different mass fractions (3, 5, 10, and 15%) of CaO additives at
750 ◦C. The experiment is conducted using a self-built tube furnace to provide some data
references for the emission control of NOx and CO during the combustion process and a
theoretical basis for its efficient and low-pollution combustion.

2. Materials and Methods
2.1. Materials

The experimental samples of fast-growing grass were taken from a planting base
in Yangshi Town, Loudi, Hunan Province, China. Subsequently, they were rinsed and
pretreated before the experiment. First, the samples were thermally dried at 106 ◦C in an
electric drying oven for 12 h; afterward, the samples were broken using a disintegrator
(model: dfy-300) and sieved with an 80-mesh screen to achieve particles with diameters less
than 200 µm; they were well labeled and placed in a dry ware for later use. Specifically, the
additive applied was reagent grade (AR) CaO with a purity greater than 98.0%. During the
experiment, two types of samples were put to the test: (1) pure fast-growing grass samples;
(2) a combination of fast-growing grass samples and CaO additives, with mass fractions of
3, 5, 10, and 15%, respectively.

A muffle furnace (model: 5E-MF6100) was employed for industrial analysis. In addi-
tion, the volatile content was measured according to the ASTME0870-82R98E01 standard;
the ash content was measured according to the ASTME1755-01 standard; the fixed carbon
content was obtained by difference method. Furthermore, the elemental analysis was
performed using an elemental analyzer (model: Vario EL cube); the calorimeter (model:
WZR-1TCII) was used to measure the upper calorific value, and the results are shown in
Figure 1. In Figure 1, it is shown that fast-growing grass had a lower ash content and higher
volatile content and was prone to pyrolysis.
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Figure 1. The ultimate and proximate analysis of fast-growing grass samples (% dry weight).

2.2. Apparatus and Methods

The schematic diagram of the experimental system is shown in Figure 2. Specifically,
the combustion experiment was conducted using a quartz tube reactor in a tubular furnace
(OTF-1200X) with a length of 600 mm and an inner diameter of 43 mm. Consequently, the
NOx and CO emissions were measured by the flue gas analyzer (Testo 350), and the data
were monitored at the computer terminal.
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Figure 2. Schematic diagram of the experimental system.

The specific experimental steps are as follows: we set the experimental target tempera-
ture on the temperature control box of the tubular furnace; thereafter, using the flowmeter,
we opened the air valve and control the flow of O2 and N2 to 0.2 and 0.8 L/min, respec-
tively; after the temperature rose to the specified temperature, we weighed 0.2 g of the
sample and corresponding proportion of CaO, laid them in the porcelain boat and stirred
them for 100 times with a spoon; after this, we used the flue gas analyzer probe to measure
the NOx and CO emissions at the flue gas outlet, and then monitored the data in real-time;
the combustion reaction was deemed to be finished when the CO and NOx volume concen-
trations fell to 2 ppm. To reduce the error, each group conducted three experiments and
took the average value.

2.3. Calculation Method

When the concentrations of CO and NOx emission dropped to 2 ppm, the combustion
reaction was regarded to be finished, according to the experimental method. The time
spent was thus the burnout time, which is noted as τ. We may refer to Liu [37] and Xu [38]
for the calculation formula. The calculation method of the CO parameters is consistent
with that of the NOx parameters.

(1) The average concentration CAC

CAC =

∫ t
0 Cdt

τ
(1)

where the unit of average concentration CAC is ppm;
∫ t

0 Cdt is the integral of the gas
concentration over the response time; τ is the burnout time, seconds.

(2) Calculation of NOx volume (Vg)
Since the volumes of NOx and CO are negligible compared to the input air, the volume

of NOx is approximately

Vg = Q× τ × CAC
106 (2)

where the unit of gas volume Vg is L; Q is the input airflow, L/s.

3. Results and Discussion
3.1. The Effect of Combustion Temperature on CO Emission from Fast-Growing Grass Combustion

Generally, volatile-N to volatile-NOx and char-N to char-NOx are the two main sources
of NOx in the flue gas. In the process of biomass utilization, the temperature of the boiler
furnace is usually controlled below 900 ◦C, and the conversion of the fuel-N also occurs
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at this temperature [39,40]. The subsequent measurements and analysis were conducted
below 900 ◦C.

In the early stage, we studied the NOx emission characteristics of fast-growing grass
at 600, 700, 750, 800, and 850 ◦C. Please refer to the preliminary work for details [9]. From
the results of our experiment, we observe that at 600 ◦C, the NOx generated by volatile
combustion is delayed (65 s). In addition, the concentration is low, about 20 ppm, and the
combustion reaction lasts for nearly 180 s. Second, there are two peaks of NOx emission
during the combustion at 700, 750, 800, and 850 ◦C, corresponding to the volatile and
semi-char combustion phase. Specifically, the first peak value is at about 20 s, and the peak
value gradually increases with the increase in temperature. The second peak appears at 77,
58, 62, and 67 s, respectively, and the intensity is much lower than the first peak.

Following this, the flue gas measurements and analysis are also conducted on the CO
emission generated by the burning of fast-growing grass under these five temperatures,
and the results are shown in Figure 3.
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It is evident from Figure 3 that when the combustion temperature is 600 ◦C, the
maximum peak value of the CO emission curve is attained (2830 ppm), which is 28.16 times
that of the minimum peak value (100.5 ppm). In addition, when the temperature rises to
700, 750, 800, and 850 ◦C, respectively, the first peak appears quickly, around 20 s. With a
subsequent increase in temperature, the peak values show a decreasing delineation of 573.5,
697.5, 333.0, and 100.5 ppm, respectively; in addition, the peak emission also narrows. The
analysis shows that the behavior of the formation of CO is closely related to temperature.
Different from 600 ◦C, a second peak appears at 700, 750, 800, and 850 ◦C in the CO
emission curve at about 46, 38, 42, and 39 s, respectively. With the subsequent increase in
temperature, the peak decreases in a similar way as the first peak, however, the peak is
higher than the first peak. Specifically, the peaks are 1090.5, 1479.5, 1044.5, and 723 ppm,
respectively, which is similar to the burning rule of large particle wood briquette fuel in
Chen Guohua’s research at 800 ◦C [41]. This may be because when the fast-growing grass
fuel is just sent into the reactor the heat transfer rate between its interior and the surface is
small; therefore, a small amount of CO-containing volatilization is released and gradually
increases. When the surface temperature of the fast-growing grass fuel reaches the ignition
point, the volatile content is ignited and begins to burn; subsequently, the CO concentration
starts to drop, and, thus, the first peak appears. As the combustion continues, the heat
continuously accumulates in the fast-growing grass fuel, accelerating the release of volatile
matter, which causes the combustion reaction to intensify. At this time, the instantaneous
consumption of O2 on the fuel surface increases while the airflow is constant; thus, an
anoxic atmosphere is formed, which generates a large amount of CO. When the volatilized
output reaches the maximum value, the CO emission curve attains a second peak, and
the volatilized output at this time is greater than the amount of volatilized output during



Processes 2023, 11, 760 6 of 12

ignition; therefore, the second peak is higher than the first peak [41]. It is interesting to
note that the peak CO emission of fast-growing grass burning at 750 ◦C is higher than
that at 700 ◦C. This may be because 750 ◦C is the transition temperature from incomplete
combustion to complete combustion. The research of Xu [42] shows a similar situation.

The total emissions of CO from fast-growing grass combustion at different temper-
atures are shown in Figure 4. It is evident from Figure 4 that the total CO emissions in
the combustion process generally demonstrate a downward delineation with an increase
in temperature. Specifically, when the temperature is 600 ◦C, the maximum value of CO
emission is 1.899 mL, while when the temperature rises to 850 ◦C, the emission value is
0.619 mL, which is only 0.33 times the former. In addition, it is worth noting that in the
range of 700–800 ◦C the temperature has little impact on the total emissions of CO; hence,
the three emission curves are very close. When the temperature is 700 ◦C, the CO emission
is 1.018 mL. When the temperature rises to 800 ◦C the CO emission only decreases to
0.912 mL, while at 750 ◦C, the CO emission exceeds the 700 ◦C emission. These results are
consistent with the emission rule in Figure 3. Furthermore, considering that the emissions
of CO (1.029 mL) and NOx (0.025 mL) [9] are large at 750 ◦C, the subsequent experiments
are conducted at this temperature.
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3.2. The Effect of CaO on CO Emission

At 750 ◦C, the CO emission curves from the mixed combustion of fast-growing grass
and CaO additives with different mass fractions (3, 5, 10, and 15%) are shown in Figure 5.
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As can be observed from Figure 5, introducing the CaO additive at 750 ◦C can reduce
the maximum peak of the CO emission in the fast-growing grass combustion. This is
because CaO additive can reduce CO emission in the early stage of combustion. At the
same time, the effect of different mass fractions of CaO on CO emission varies. Except for
the case of 10% additive, the maximum peak CO emission decreases with the increase of
CaO additive. When the mass fraction of CaO is 3, 5, 10, and 15%, the maximum peak CO
emission decreases by 21.83, 27.81, 26.24, and 30.34%, respectively, relative to the highest
peak (1479.5 ppm) without additive. However, after 73 s, the presence of the CaO additive
leads to an increase in the concentration of the CO emission and, much more, the extension
of the combustion time. At the same time, after adding CaO additives, the first peak value
increases to a certain extent, which may be due to the reaction of CaO with HCN in volatile
matter of fast-growing grass to generate CO (CaO + 2 HCN→ CaCN2 + CO + H2) [35].
However, the increase of the peak value does not follow a clear rule with additives. When
the mass fraction of CaO is 3, 5, 10, and 15%, the peak value increases by 127, 79.5, 393.8
and 11.2 ppm, respectively. Generally speaking, 10% CaO additive is a special value,
similar to 750 ◦C in Section 3.1, which may be the inflection point value generated by
CO. Zhang et al. [43] noticed a similar phenomenon when they studied the effect of CaO
granulated blast furnace slag on denitration performance. The internal mechanism is worth
further study. Therefore, to better analyze the CO emission from the mixed combustion of
fast-growing grass and CaO additives with different mass fractions at 750 ◦C, the curve of
the total CO emission over time is obtained. See Figure 6 for details.
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It is obvious from Figure 6 that the total CO emission from fast-growing grass com-
bustion rises after adding CaO additive compared with no additive. This is because, in
the late combustion period, CaO and ash mix together covering the fuel surface; this
reduces the contact area between the remaining unburned fuel and oxygen to some ex-
tent. As a consequence, beyond making the fast-growing grass produce a little CO during
oxygen-poor combustion, it also prolongs the reaction time, thereby making the total CO
emission increase slightly. Particularly, the CO emission curves are not linear with CaO
mass fractions. When the 3, 5, and 15% CaO additives are added, respectively, the total CO
emission is similar. However, when the 10% CaO additive is added the total CO emission is
highest (1.17 mL), which is 13.59% more than the value obtained without the CaO additive
(1.03 mL). Therefore, it is not recommended to add a 10% CaO additive.

3.3. The Effect of CaO on NOx Emission

As shown in Figure 7, the CaO additive can inhibit the generation of volatile-NOx
and char-NOx. Specifically, at 750 ◦C, after adding 3, 5, 10, and 15% CaO additives,
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respectively, the first peak value of NOx emission from fast-growing grass combustion
decreased significantly by 42.55, 47.05, 39.01, and 40.89%, respectively. This is because CaO
can catalyze HCN to generate N2, as shown in the equation 2 CiHj + 2 HCN→ N2 + (j +
1-k) H2 + 2 Ci+1Hk [44]; in addition, CaO can also react with HCN and NH3 in the pyrolysis
stage to form N2, as shown in the equations CaO + 2 HCN→ CaCN2 + CO + H2; CaCxNy
→ CaCx + y/2 N2; and CaCx + y NH3→ CaCxNy + 3/2 yH2 [33,45,46]. Surprisingly, adding
more additives does not show a better peak reduction effect. This is due to the fact that
the number of active sites decreases when the amount of additives reaches a particular
level because the active ingredients agglomerate or cover the additives’ surfaces. Similar
findings have been noted in earlier research [16,47]. In addition, the second peak of the
NOx emission from fast-growing grass combustion also decreases, especially when the
mass fraction of CaO is more than 3%, and the second peak almost disappears. This may
be attributed to the delayed effect of CaO on CO release (see Figure 5). When char-NOx is
generated, CO still maintains a high concentration, which is not conducive to the formation
of char-NOx under the reduction environment. At the same time, it was also found that the
CaO additive not only affects the peak emission of NOx, but it also delays the occurrence
of the two peaks.
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Figure 7. NOx emission curve of fast-growing grass combustion with CaO additive at 750 ◦C.

It can be observed from Figure 8 that the CaO additive has a significant reduction
effect on the total NOx emission of fast-growing grass combustion which varies from
the CaO mass fraction. It is worth noting that the emission reduction rate of NOx is not
directly related to the mass fraction of CaO. The emission reduction effect is worst at 10%,
with a value of 26.13%. However, it is stronger when the mass fraction of CaO is 5% and
15%, and the values are 56.81% and 56.06%, respectively. This may be attributed to the
mutual inhibition relationship between CO and NOx. When the CaO mass fraction is
10%, the emission concentration of CO is the lowest in the 36–51 s period (also a crucial
time for volatile-NOx generation; see Figure 5); therefore, at this time, its ability to inhibit
NOx generation is at its lowest. As a result, the peak emission of NOx generation occurs
during this period (see Figure 7), which is the worst effect of the 10%. Considering
the two factors of NOx the peak and total emissions, it can be concluded that the 5%
CaO additive achieves the best comprehensive control effect on NOx emission from the
combustion of fast-growing grass.
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4. Conclusions

In this paper, a self-built tubular furnace experimental platform was used to investigate
the emission reduction characteristics of NOx and CO from fast-growing grass combustion
at different temperatures with different mass fractions of CaO additives. The following
conclusions were drawn:

(1) Temperature is an important factor that affects CO emission from biomass combus-
tion. With the increase in temperature, the CO emission curve attains a second peak higher
than the first peak, and both the peak and total emissions show a decreasing trend (except
750 ◦C).

(2) CaO additive influences NOx emission from fast-growing grass combustion. Specif-
ically, at 750 ◦C, it reduces the peak and total emissions of NOx. At the same time, consider-
ing the two factors, it is concluded that 5% CaO additive achieves the best comprehensive
control effect on NOx emission from fast-growing grass combustion, with the peak and
total emissions reduction of 47.05% and 56.81%, respectively.

(3) CaO additive also has an important impact on CO emission from fast-growing
grass combustion. CaO additive reduces the peak emission of CO to a certain extent but
increases the total emission of CO.

In order to further expand the research findings of this paper, it is necessary to
observe the surface morphology of fast-growing grass after adding CaO additive using a
scanning electron microscope in order to further analyze the mechanism of CaO on CO and
NOx emissions.
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Nomenclature

C the concentration
V the volume
M the molar mass
Q the input airflow
T the temperature of the materials(K)
Abbreviations and acronyms
AlNH4(SO4)2 Ammonium Aluminum Sulfatehydrate
Ca CalCium
CaCN2 CalCium Cyanamide
CaO CalCium Oxide
CFB CirCulating Fluidized Bed
Cl Chlorine
CO Carbon Monoxide
CO2 Carbon Dioxide
CuCl2 CupriC Chloride
Cu(NO3)2 CupriC Nitrate
H2 Hydrogen
HCN Hydrogen Cyanide
H2PtCl6 ChloroplatiniC ACid
K Potassium
K2CO3 Potassium Carbonate
KMnO4 Potassium Permanganate
MgO Magnesium Oxide
MnO2 Manganese Dioxide
N2 Nitrogen
Na2CO3 Sodium Carbonate
NH3 Ammonia
NH4MgPO4 Magnesium Ammonium Phosphate
NOx Nitrogen Oxides, NO, N2O
PM PartiCulate Matter
S Sulfur
SiC SiliCon Carbide
TiO2 Titanium Dioxide
ZnCl2 ZinC Chloride
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