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Abstract: Programmable logic controllers (PLCs) are everywhere today and perform critical tasks in
industries. They are considered as a key component for the Industry 4.0. Before they are put into
operation, it is necessary to check the accuracy of the PLC programs. This verification operation
can be performed using model checkers. This stage is often long and costly and requires a domain
expert who can understand the system, as well as the different model checker tools able to verify
the code implemented in the controller. Furthermore, this verification often requires a conversion
of the PLC code into a language understood by a model checker which can influence the behavior
of the observed PLC. Hence, there is a need to propose methods and tools which could be used by
technicians and engineers. The aim of this paper is to propose methods that require little work to
set up and are robust to program sizes used in Industry 4.0. This paper explores some fresh ideas
for human-adapted PLC code verification. We present different methods to test codes in structured
text (ST) compliant with the IEC 61131-3 standard. Hence, the first idea is to test the ST code that
will be directly implemented on a controller. For that, we propose a method using the model checker
UPPAAL which allows us to obtain exact results on short codes. Second, we propose verifying the
generic properties that a PLC program must avoid: deadlocks, non-accessible states and fugitive
states or actions. To solve combinatory explosion problems encountered with the UPPAAL software,
the third proposition consists of using relational databases. The same verification as previously
followed can be obtained, but the search time is longer. The fourth and last proposal is to process
the ST code with a neural network composed of long short-term memory layers (LSTM) to quickly
determine the validity of the code. This method could give an approximation of code errors in a few
seconds. The different proposed methods are supported with several examples.

Keywords: system verification; model checking; relational databases; recurrent neural networks;
programmable logic controllers; automation; structured text

1. Introduction

Industry has entered a phase of big change that sees digital technologies as a key
factor for the future to design cyber–physical production systems. The convergence of
the virtual world of the Internet and information technology (IT) and the real world of
industrial installations and operational technology (OT) will be the challenge for the Factory
of the Future (Industry 4.0). Modern information and communication technologies seem
to be a solution to increase productivity, quality and flexibility within industry. The chal-
lenges are numerous: connectivity and interoperability, digital twins, decentralization,
human-centered automation. . . These systems are predicted to enable new automation
paradigms and improve plant operations in terms of increased facility effectiveness. How-
ever, that could be accomplished only if innovative methodologies and tools are given
to the control engineer. One of them concerns programmable logic controllers (PLCs),
program verification tools. PLCs, with their sequential and cyclic operation, specified by
the IEC 61131 standards are widely used today for the control of automated installations [1].
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Article [2] shows that the programming model for PLCs needs to evolve to support the
increasing complexity and more extensive network integration demanded by Industry 4.0,
but PLCs will remain key components in Industry 4.0. Furthermore, refs. [3–5] give a deep
description of risk management in a factory where PLCs work together. In previous works,
we have proposed original methodological approaches to bridge the gap between formal
approaches in academia and industrial applications by proposing an original workflow
for automation study [6,7]. This workflow is based on an automatic generation process of
deliverables (PLC programs, recipe book...). However, the problem of PLC code verification
remains a scientific and technical issue. Our work in this paper is thus complementary
to the abovementioned approaches. The validation stage is generally based on factory
acceptance testing (FAT) carried out in the supplier’s test facilities and site acceptance
testing (SAT) carried out at the customer’s site. The commissioning of controllers remains a
critical step today and for Industry 4.0, as it is time-consuming and stressful for the staff.
Correcting errors at this stage of the project is particularly costly. Verification and “virtual
commissioning” of installations are now scientific and methodological obstacles to Industry
4.0. Today, we note that automation engineers use few or no code verification tools from
the academic world, formal or not, to facilitate the validation and commissioning stage [8].
The reason these practices are not used in the industrial world is mainly related to their
usability. They are considered too complex, given the models, formalism and methods
used, and often disconnected from the real needs of automation specialists.

Our goal is to propose a set of methods that allow checking some properties common to
each correctly programmed PLC code during development and prior to the implementation
of the facility. In order to automatically find faults before implementation, we must restrict
ourselves to indicating the presence of certain errors that will almost certainly induce
problems during code execution. Errors will be found on the variables that compose the
code to avoid the demanding task of code formalisation . We will focus on extracting
accessible states, non-accessible states, deadlock, and fugitive states from the structured
text (ST), also defined in IEC 61131-3 and implemented on PLCs. Usually, a PLC program
is a cyclic sequence. The program includes a few variables that are in deadlock, which
makes its systematic search relevant. It is the same for fugitive states; we expect a PLC
to react to situations. A fugitive state is a change in the parameters of the PLC without
any external event that can involve fugitive actions which, most of the time, is a problem.
From the accessible and non-accessible states, a competition matrix can be produced
which can give more information about the code. In order to explain the relevance of the
methods developed, we will apply our methods to different examples to test the limits of
considered approaches.

Software exists that can perform a formal proof of the code. Examples include UP-
PAAL [9], NuSMV [10] or Supremica [11]. However, it is necessary to convert the code
implemented on the PLC to have an overview of the reliability of the implemented code
as noted in [12–14]. To remove this source of error, we propose a method similar to [15]
or [16] which involves verifying properties from a specification. To our best of knowledge,
no other study examines this specific application context. This method is much more
computationally expensive. The error search performed by UPPAAL, as noted in [17] keeps
the information necessary for its completion in RAM. The amount of information sufficient
to ensure the reliability of a code can be very important; it is necessary to find an effective
method for storage and research of the information once generated. To solve this problem,
we propose organizing the information in a database by converting the logical code into a
relational database similar to [18–21]. This allows optimizing the storage space to allow
fast retrieval of information. We also propose a search for errors in the PLC code by queries
in the database. Thus, the error search is no longer an exploration of a graph in a PLC
but by a query on a database. This method is particularly time-consuming because the
information is stored on a computer’s hard drive. Nevertheless, this search for errors can
be distributed among several computers by following the method detailed by [22] which
uses fast communication between FPGA (field-programmable gate array). However, this
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precise study of complex code is often not necessary during code development, but it is
convenient to quickly obtain information. Text understanding by using neural networks is
a fast-growing problem. Although very standardized, this operation is not simple. Indeed,
unlike functions to be reproduced or images to be analyzed, all the texts we want to analyze
are not the same size, and there is no simple way to force a text into a precise size unlike an
image. It is thus necessary to analyze a text as a sequence of words; for that we can use the
recurrent neural networks as detailed in [23,24]. Neural networks composed of layers of
long short-term memory (LSTM), as noted in [25], are ideal for this task as shown by [26].
It is natural to try to find properties in computer program codes with LSTMs, as noted
in [27,28]. By analyzing the code with a recurrent neural network, we can obtain results
similar to the formal methods.

The rest of this paper is organized as follows. Section 2 examines the framework of
the methods we will use as well as some notations in codes used as examples. Section 3
shows how it is possible from the ST code of a PLC to generate a graph in the UPPAAL
format. This method is efficient, but only a small verification can be carried out because of
the research without the storage of UPPAAL. This issue is addressed in Section 4, where
we explain how a database can be used to store and retrieve information to check larger
examples. Section 5 explains how to go even further by using recursive neural networks to
sequence the code to find errors without exploring the marking graph. The conclusion of
the paper is given in Section 6.

2. Scope of Use
2.1. Illustrative Example

As explained in the introduction, one of the main challenges of using automatic
verification is for the user to define the functional and safety properties that have to be
checked. These are strongly dependent on the industrial process [29] and require strong
and specific competencies to express them in a formal language. In this paper, one of
the ideas is to focus on properties that are important in all PLC programs for automation
engineers. Hence, the use of the verification tools does not require a model-checker expert.
From our experience [6,7], we have selected four main errors to avoid in PLC programs:
deadlocks, accessible or non-accessible states, and fugitive states or actions. The purpose
of the following lamps example is to show the errors that different proposed methods
must detect. Figure 1 shows the specification of a PLC with 3 lamps: L1, L2, L3, driven
respectively by the 3 inputs: A,B,C. L1 needs a rising edge to make the switch between
its states. This control is correct. L2 changes its state when it is triggered. The absence of
the rising edge will cause the PLC to not stop on the next state. This example will show
a fugitive state and action when B is triggered. L3 does not allow a return to the initial
state and therefore cannot turn off; we must then obtain a deadlock. The ST code will be
obtained from the sequential function chart (Grafcet) automatically, thus ensuring the good
functioning of the code [30].

The previous example is small. We choose an example of a heavier operative part
which cannot be certified by the current methods depicted in Figure 2. This figure was
obtained with the software Factory I/O which allowed us to test the codes used in an experi-
ment simulating the behavior of the sorting station considered. This example is a separating
station which sorts boxes of two different colors. It consists of four conveyor belts, two
mono-stable cylinders, six Boolean sensors and two colors sensors that differentiate the
boxes. The controller code of this unit is 250 lines long and is composed of 183 internal
variables. This code is also obtained from the automatic conversion of a grafcet [30] that
has been thoroughly checked by several automaticians. No formal verification has been
able to check the accuracy of this code apart from the use of the method using a database
written in Section 3. Thus, we make the assumption of its validation which will have been
tested by simulation and virtual commissioning.
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Figure 1. Grafcet of the operative part of the lamps example.

Figure 2. Separating station used as the heavy example.

2.2. Classes of Variables

Different classes of variables are distinguished and require different treatment in
the modeling of the controller behavior. From the Grafcet shown in Figure 1, a code is
automatically generated (Figure 3). We distinguish five types of variables:

• Inputs (red) which cannot be controlled and need to be generated externally to test
the code (sensors for instance);

• Outputs (purple) which are the output of the controller where marking sequences
need to be tested (actuators for instance);

• Internal variables (yellow) which are needed to establish the state of the controller at
any given time. In the example, step variables (X10, X11, X20, X21, X30, X31) and the
memories to calculate rising edge (RE0p, RE1p) are considered as internal variables;

• Recalculated internal variables (green) which are not needed to establish the state
of the controller at any given time. Transition function variables (FTX10, FTX11,
FTX20, FTX21, FTX30) and memory of input variables (RE0, RE1) in the example
are considered as recalculated internal variables;

• Variables of initialization (blue) whose values are initialized to one during the start of
the PLC and then switch to zero during operation.

These distinctions will be useful during the automatic verification stage.



Processes 2023, 11, 687 5 of 17

Figure 3. Colorized code by class of variables.

2.3. Code Restrictions

The structured text syntax allows edges on variable values. This syntax is specific
to the PLC and will be replaced in the controller code by an internal variable storing the
value at the previous PLC cycle. To ensure the end of the cycle of the PLC, the while loop is
forbidden. It could be replaced by a for loop with a break statement on a condition. Timed
triggers are considered as Boolean input variables in the same way as sensors. As timed
triggers can occur at any time during operation, more coercive models could hide errors.

3. Automatic Verification Based on UPPAAL
3.1. Principle

Based on the code and the class of the variable, we need to create states graphs to
simulate the behavior of the PLC. The circles represent states. They are connected to each
other by transitions represented by arrows that are crossed where a synchronization hap-
pened which is marked after the semicolon. The exclamation mark represents the emission
of the synchronization; the question mark represents the waiting of the synchronization.
At the time of the transition between two states, the code marked before the semicolon
is executed. For each type of variable previously established, we generate a graph that
reflects the behavior of a PLC. For each step, any change can occur on any input variables.
The code from the PLC is stored in a function created by the user called gra f cet(), and
values of variables are stored by UPPAAL. To explore the accessible marking graph, we use
a synchronization graph that changes the input variables and executes the code (Figure 4).

The synchronization var! allows another graph to change variable values. Before the
main loop, an initialization is conducted to start the PLC with the correct values. In a cycle,
the PLC code is executed three times without any input change to detect fugitive states.
To make the values of the input variables change, we use graphs similar to the graph in
Figure 5a adapted to the possible values of this variable. Each input variable needs a graph.

With this method, fugitive states are tested at the end of the gra f cet() call by comparing
the current value of the variable with its previous and pre-previous value. Deadlocks can be
automatically tested by looking for the possibility of falling edges for each cycle. Accessible
marking and non-accessible marking can be obtained with the UPPAAL query syntax.
The synchronization of its graphs allows testing the Cartesian product of the inputs for
each state of the code. To simplify the number of test inputs, we can impose restrictions
on it. We can take the example of the cylinder end of stroke sensors that cannot both be
triggered at the same time. This case does not need to be tested and allows us to greatly
reduce the search space. This can be implemented by adding a non-simultaneous inputs
graph (Figure 5b).
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initialization=1;_

grafcet();_

grafcet();_

grafcet();_

initialization=0;start!
_;var!

grafcet();_ grafcet();_

grafcet();_

Figure 4. UPPAAL graph of synchronization.

_;start?

x=1;var?

x=4;var?

x=0;var?

(a)

_;start?

x=0;var? x=1;var?

y=0;var?y=1;var?

(b)

Figure 5. UPPAAL variables graph: (a) variables modification graph; (b) non-simultaneous in-
puts graph.

To generate these different graphs, we only needed:

• The ST code to be implemented on the PLC;
• The computer type of each variable and their possible values;
• The variable type defined in Section 2.2.

The ST code is transcribed in UPPAAL by changing the operators and graphs that
are generated and instanced according to the rescued variables. To implement non-
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simultaneous inputs, a list of non-simultaneous sensors is given to the simulation. The ro-
bustness of the code to sensor failures cannot be assessed anymore.

3.2. Results

To evaluate the fugitivity of a variable, we add lines of code to the PLC. These lines
allow us to store the values of the variables during the PLC cycles. Thus, we define storage
variables L1p and L1pp containing the values of L1 at the previous cycles. Then, we obtain
the variable L1 f which contains the information of the fugitivity obtained by the allocation
Figure 6. Variables that evaluate fugitivity determine the shape of the synchronization
graph (Figure 4), which performs three PLC cycles before testing the different variables.
UPPAAL queries are automatically generated and show correct behavior (Table 1). This
result is consistent with the Grafcet specification.

L1f:= (L1pp and not L1p and L1) or (not L1pp and L1p and not L1);

Figure 6. Declaration of the variables that check fugitivity.

Table 1. Results of the lamps example by automatic verification using UPPAAL.

L1 L2 L3

There is a state where the variable is fugitive. False True False

There is a state where the variable is in deadlock. False Flase True

3.3. Discussion

This method allows us to quickly obtain results on a large part of the code used on
PLCs. Indeed, no restriction in the code is required. Moreover, the PLC is implemented
in UPPAAL and can be submitted for other tests if one knows the syntax of the requests.
However, we are very limited by the size of the PLC code. Indeed, UPPAAL stores the
verification information in the RAM of the computer. In the case of large PLCs, it is not
possible to contain all this information. In our case, it was not possible to use this method on
the separating station. To solve this problem, it is necessary to find an algorithm allowing
storing the graph of the accessible markings and which would be able to recover the
information necessary at the validation of the code.

4. Exploitation of the Markings Graph by a Database
4.1. Principle

Keeping the graph of the markings in a database could save a lot of time if it has an
adapted shape. The generation will be longer because of the storing time, but after this step,
the query will be faster. The ST code is used as previously and is tested for each state with all
possible inputs. The PLC simulator gives us for each founded state, starting from the initial
state, new states with each possible input after a cycle as described in [17]. The retrieve
data can be stored in a structured query language (SQL) database format as represented in
Figure 7. To fill this database, we start with the nodes, the simplified nodes, the edges and
the inputs marking which are directly obtained from the PLC simulator. The simplified
nodes are the reduction of the marking of internal variables and output variables to output
variables. This feature allows a faster search of the accessible output marking while keeping
the total information of the microcontroller during the code correction phase. Fugitive
states are tested afterwards via an SQL query (Figure 8) to ensure maximal efficiency during
database population. Used table names in the query are the same as those in the graph
representing the different relationships in Figure 7. This request is the most demanding for
the software; in some cases, it is impossible to evaluate. Other results can be accessed by
this method, such as accessible marking state and non-accessible marking state, by using
recurrent requests on the nodes names.
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Figure 7. Shape of the database that stores marking graph.

SELECT target.marking, nd.marking, source.marking, nd.id
FROM Nodes AS nd
JOIN Edges AS T1 ON T1.target_node_id = nd.id
JOIN Edges AS T2 ON T2.target_node_id = nd.id
JOIN Nodes AS target ON T2.target_node_id = target.id
JOIN Nodes AS sources ON T1.source_node_id = source.id
WHERE T1.id = T2.id
Figure 8. SQL request to find a fugitive state.

4.2. Results

With the method proposed in this section, we can study the graph of the reachable
markings in the example of the lamps represented in Figure 9. Red arrows represent
transition between two strongly connected parts of a graph which indicates the presence
of deadlocks. Green arrows come from a fugitive state and point to the fugitive output.
We obtain similar results to the verification carried out with UPPAAL. On the example
of the separating station, we have access to the concurrency matrix (Table 2) that shows
PC1 and PC2 (two plunger actuators who share working space) cannot be activated at the
same time. Moreover, PC1 and PC2 which share the working space with C1 and C2 (two
conveyor belts) must not be activated at the same time. We see that this condition is also
respected. Finally, CE1 and CE2 (two conveyor belts) do not share any work space and
could be activated at any time. The generated database stores sixty million edges, twenty-
six thousand states and weight height gigabytes. Fugitive states could not be computed.
The database generation required twelve hours on a working station.

Table 2. Concurrency matrix obtained by the database.

C1 C2 CE1 CE2 PC1 PC2

C1 1 1 1 1 0 0

C2 1 1 1 1 0 0

CE1 1 1 1 1 1 1

CE2 1 1 1 1 1 1

PC1 0 0 1 1 1 0

PC2 0 0 1 1 0 1
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Figure 9. Accessible state graph from the light example obtained with the databases.

4.3. Discussion

This method allows efficient storage of the combinatorial explosion storing induced
by the nature of the PLC. It also allows us to find information in tens of Gigabits of data.
Once the generation of the marking graph is accessible, the retrieval of information from
the database is rather fast. Its execution time is very long, and the code termination is
not certain. This is a problem; in case of a simple error in the code, one can wait for the
results for several days to find out that there is a mistake which requires a complete new
exploration of the graph of markings. So, one solution could be to propose a method for a
quick verification method that is less precise but that could indicate obvious errors.

5. Code Analysis by a Recursive Neural Network
5.1. Principle

We propose in this section an exploratory approach around the use of recurrent neural
networks for the automatic verification of PLC code, the idea being not to have to browse
the graph of reachable markings but only the code. The difficulty of implementing this
method lies in the generation of a large database of checked model codes, which must
be representative of those to which we wish to apply the neural network. We will limit
our experiments to codes with few variables represented by a list of Boolean equations, so
we can already validate the use of neural networks in a case where the generation of the
database is not restrictive.

In order to process the codes with neural networks, we first need to convert them
into a sequence of number vectors. We chose to put the codes in an elementary form by
decomposing all the Boolean equations into a sequence of simple operations. The lines
readable by the neural network must be compatible with the following regular expression
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where the following are noted: \w+ the variable names | the operator or and ? the presence
of zero or one occurrence of the expression preceded by the operator.

(\w+) := (((\w+) (AND|OR) (\w+))|((NOT )?(\w+))) ; (1)

An example of code corresponding to this description is used in Figure 10. This format
allows us to convert each line of the elementary code into a vector of {0, 1}2×ns+ne+4 with
ne and ns, respectively, the numbers of input and output variables of the codes. Line to
vector conversions are given in Table 3.

We consider the internal variables as output variables because they have the same
role in the construction of the graph of reachable markings. The ns first coordinates of the
vector are used to encode the output variable to which a new value will be assigned; they
are all zero except for the coordinate corresponding to the variable number. The ns + 1+ ne
next corresponds to the variables appearing in the assignment and the next three are for
the logical operator in the line.

Table 3. Examples of ST code lines and their encoding.

S1 S2 ... Sns S1 S2 ... Sns Init E1 ... Ene AND OR NOT

S2 := E1 OR S1; 0 1 ... 0 1 0 ... 0 0 1 ... 0 0 1 0

S1 := NOT Init; 1 0 ... 0 0 0 ... 0 1 0 ... 0 0 0 1

S2 := Sns; 0 1 ... 0 0 0 ... 1 0 0 ... 0 0 0 0

Sns := Ene AND Ene; 0 0 ... 1 0 0 ... 0 0 0 ... 1 1 0 0

Now that we have a method to transform our ST codes into a sequence of number
vectors, we can build binary classifiers based on a sequential path of the code using
recurrent neural networks, and more particularly LSTM networks [25], which are widely
used for sequential data analysis. Examples of their uses for source code processing
problems can be found in the scientific literature, for example in [23,27,28] for the detection
of different types of programming errors. We will jointly train an LSTM network and a
multilayer perceptron to classify ST codes. The vectors xk corresponding to each line of code
will be given sequentially as input to the LSTM cell to update the memory vectors (hk, ck),
and then the last short-term memory will be decoded by the multilayer perceptron to create
the prediction vector whose each component between zero and one can be interpreted as a
probability that the corresponding variable is involved in a fugitivity or deadlock problem
in the ST code (Figure 11). During training, the parameters of the LSTM network and the
perceptron will be optimized to minimize the cross-entropy between the objective and the
prediction, which is the error function commonly used for binary classification problems.We
could also train another LSTM network to classify the codes but this time by browsing them
in the opposite direction. This would allow us to give more importance to the first lines
of the codes, which would be the last ones to be analyzed by the LSTM network and thus
would have the most influence on the output memory at the beginning of the training. This
is the idea behind the classical bi-LSTM architectures (for bidirectional LSTM networks),
where a forward LSTM and a backward LSTM browse the code independently and for
which the multilayer perceptron (MLP) performing the classification takes as input the
concatenation of the final memories of these two LSTM.

The LSTM networks browse the code sequentially; they are given the input lines in
order of their appearance in the code. This way of browsing the code is not optimal because
in a code there can be independent blocks of instructions whose order can be changed
without affecting the output of the algorithm. The idea of our approach is to inscribe this
invariance by permutation directly in the structure of the recurrent network . The idea
of constructing LSTM networks that traverse a text in a non-sequential way is not new:
in [26], LSTM networks based on the traversal of a tree rather than a sequence are presented.



Processes 2023, 11, 687 11 of 17

However in our case, the structure adapted to code traversal is not that of a tree but that of
a directed graph.

We can summarize the dependencies of the lines on the others in a directed graph that
we will call the causality graph. Each node of this graph corresponds to a line of code, and
there is an edge from one node to another if and only if the line corresponding to the arrival
node involves a variable whose last assignment took place on the line corresponding to
the departure node. We add a start node and an end node to this graph: the start node
will be linked to the nodes having no other antecedents in the graph (which correspond
to the lines of code that can be executed first because they do not depend on any other),
and in an analogous way, the end node will have as antecedents all the nodes having
no other successors (i.e., the nodes corresponding to the lines that can be executed last).
To understand this, we use an example of arbitrary code and the associated causal graph
(Figure 10). The start and end nodes are, respectively, numbered by 0 and −1. Line 9 uses
the variable s0 which is modified for the last time in Line 2. It could therefore be executed
at any position in the code as long as it is executed after Line 2 and before Line 10 since the
latter depends directly on it. Similarly, Line 3 must be executed after Line 2 which itself
must be executed after Line 1, but Lines 4, 5, 9 and 10 are not in the same branch as Line 3
and can be executed either before or after it. There is thus a multitude of codes associated
with the same causal graph (except for the numbering of the nodes).

Figure 10. Example ST code and associated causal graph.

LSTMCell

Vector corresponding to the 
line of code no.1

Short-term memory
initialized to zero

Long-term memory
initialized to zero

LSTMCell

Vector corresponding to the
last line of code

MLP

0.0012
0.9422
0.5500

.

.

.

0.2566
0.9865

0
1
0
.
.
.

1
1

Model prediction

Objective vector
cross-entropy...

Figure 11. Simplified scheme for classifiers based on an LSTM network and a multilayer perceptron.
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We define a DGLSTM (DiGraph long short-term memory) network as a network
composed of an LSTM cell that is recurrently evaluated by following a given oriented
graph which must verify some properties:

• It must have n + 2 nodes if the input sequences are of size n;
• It must have a single node without antecedents as well as a single node without successors;
• It must not contain any oriented cycle.

When a node has several antecedents in the graph, the memory used by the LSTM cell
when evaluating the corresponding input will be the average of the memories computed in
the output of the LSTM cell when evaluating the inputs corresponding to the antecedents of
the node. The multilayer perceptron trained jointly with the DGLSTM network to make the
prediction will take the average of the input memories of the output node as input . At each
evaluation of a DGLSTM network, we must therefore not only provide the input sequence
(x1, x2, ..., xn) but also the graph of causality of the corresponding code (Figure 12). In a
similar way to bi-LSTM, we can define the bi-DGLSTM architectures for which the causality
graph is browsed in both directions independently by two DGLSTM networks.

LSTMCell LSTMCell

LSTMCell LSTMCell

LSTMCell

LSTMCell

LSTMCell LSTMCell

LSTMCell

LSTMCell

MLP

LSTMCell

Figure 12. Causality graphs and associated DGLSTM network.

5.2. Experiments

We first generated a large number of random codes for which we set the maximum
amount of input and output variables to 3 and 10, respectively. The lines of ST codes
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are generated randomly and independently; there are between 5 and 15 per code. We
used 250,000 codes for the training and 50,000 codes for the verification of the epoch. We
used 50,000 other codes that had never been presented to the different neural networks
to perform our statistical analysis. The fact that the lines are generated independently
of each other means that there are many unnecessary lines of code. For example, it is
common to assign a new value to a variable without having used it since its last assignment,
but there are also many less trivial cases of unnecessary lines that can hardly be corrected.
We do not really know to what extent the code used in practice by the APIs may contain
unnecessary lines or unnecessarily complex portions of the code. In any case, we have
chosen to keep the generation of codes by independent lines for the moment, hoping that
the “realistic” codes are not under-represented in the set of codes that can be generated.
The ideal solution would be to simplify the codes before they are processed by the LSTM or
DGLSTM networks, but this would require considerable work. This theme of simplification
of the codes has been evoked, especially in [20].

We trained five different types of models:

• LSTM networks based on a word encoding;
• LSTM networks based on line encoding;
• Bi-LSTM networks based on a line encoding;
• DGLSTM networks based on a line encoding;
• Bi-DGLSTM networks based on a line encoding.

All models were trained on the same amount of data and with batches of 128 codes. We
used the ADAM algorithm [31] for training. RMSprop and SGD were tested without much
success. We also used a strategy to reduce the training rate when the error decrease stopped
and stopped training when the average error on the validation data stopped decreasing
due to over-learning. We used a Bayesian optimization algorithm of the library optuna to
find the best set of hyperparameters for each of the five types of models. The error on the
validation data at the end of training was the criterion to minimize. The hyperparameters
in question are the same for all five types of models:

• Size of the memory of the LSTM cells;
• Number of LSTM cells composed during the evaluation of a single input vector;
• Number of layers and number of neurons of the multilayer perceptron;
• Value of the dropout layers.

In addition to the cross-entropy, four other error measures are defined which are
only used to analyze the results: the percentages of false positives and false negatives for
the deadlock and for the fugitivity. The error on the validation base decreases faster for
DGLSTM and bi-DGLSTM than for the other models: a few epochs are usually enough
to reach a plateau in the error, while it takes several tens for the others. This plateau
generally corresponds to a lower error than for the other models. For both (bi-)LSTMs and
(bi-)DGLSTMs, the deepest networks give the best results but at the cost of a more difficult
training which seems very sensitive to the initialization weights. Sometimes, the error does
not decrease at all even for a large number of epochs, whereas it sometimes decreases from
the first epochs for identical hyperparameters. Thus, the best results we have obtained are
the result of good luck at initialization.

In addition to the cross-entropy, four other error measures are defined which are only
used to analyze the results: the percentages of false positives and false negatives for the
deadlock and for the fugitivity (Figure 13). It seems that it is more difficult to predict
deadlock than fugitivity. We ran the hyperparameter optimization routine for the same
amount of time for all five model types. The models with the slowest evaluation could
therefore be trained a smaller number of times than the others. The (bi-)DGLSTM networks
take by far the longest to evaluate and are therefore the most disadvantaged for this choice,
which does not prevent them from having the best results, thus demonstrating the relevance
of the non-sequential browsing of the ST codes.
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We have demonstrated the ability of neural networks to make correct predictions
for the majority of randomly generated codes, but this does not guarantee that these
predictions will always be mostly correct for real codes used in practice. We therefore
applied our best bi-DGLSTM networks to model check the three-lamp example. We have
therefore evaluated the best DGLSTM network on the three-lamp example (Table 4). Note
that the criterion for selecting the best DGLSTM is the prediction error on the validation
base composed of random codes. The network was therefore not selected to be the best
on this particular example, which would have led to artificially good results. The network
succeeds almost perfectly in predicting fugitivity, with only one minor error for the second
lamp. As observed, on average on all random codes, the prediction of deadlock seems
much worse.

Figure 13. Error obtained for the best model of each type.

Table 4. Results obtained with the best DGLSTM on the validation set for the 3-lamp example.

Predicted Deadlock Expected Deadlock Predicted Fugitivity Real Fugitivity
FTX10 0.057 0 0.004 0
FTX11 0.081 0 0.899 1
X10 0.931 0 0.015 0
X11 0.571 0 0.211 0
FTX20 0.308 1 0.387 0
FTX21 0.011 0 0.972 1
X20 0.718 0 0.079 0
X21 0.166 1 0.667 0
FTX30 0.043 0 0.937 1
X30 0.992 0 0.002 0
X31 0.088 0 0.842 1

5.3. Discussion

The use of neural networks for model checking seems promising. A full-fledged study
would be needed to improve the performance of the networks and extend their use to codes
with larger numbers of variables, which would require more attention to parsimonious
database generation. In particular, we did not conduct any data augmentation. From a
single code verified with UPPAAL, it would have been possible to create many equivalent
codes that do not necessarily have the same causal graphs, for example by permuting the
names of some variables. Finally, it would be interesting to understand the codes that
cause problems to neural networks. The use of the causal graph to browse the code in a
non-sequential way seems relevant and is not restricted to the context of our study.
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Table 5 presents, as a synthesis, the results obtained from the three methods proposed
in the paper. From these first results, we could imagine for the future the following testing
PLC code methodology. Once a compilable code is obtained, it is best to start with an
algorithm based on syntactic analysis by neural networks that provides a quick opinion on
the provided code. This operation allows detecting faults as soon as possible, which allows
the engineer to correct them before using more resource-intensive methods. Then, we can
use UPPAAL or databases depending on the size of the code to certify that the errors defined
in this article are in the code. The key point of our proposed method is to find simple
errors in a code that are often programming errors without a priori. Thus, all the codes
implemented in a factory should go through these verification steps to eliminate simple
faults which would considerably reduce the time of analysis with respect to the behavior of
the PLC which requires a comparison with the driven machine and its environment.

Table 5. Comparison of the different methods presented in this paper.

UPPAAL-Based Verification Database-Based Verification Neural Network Verification

Understood semantics Full ST code 90% of ST code Boolean operation

Maximum number of variables Around 20 Around 200 8

Execution time 20 min for 20 variables codes 12 h for 150 variables codes 0.5 s

Validity of results Certain if completion Certain if completion Uncertain

6. Conclusions

In this article, we have discussed several methods that could allow the Factory 4.0
engineers to test generic properties of PLC programs in a simple way. To do this, we
explored different methods that could be used together in the future for testing PLC
programs of different sizes and complexities. Moreover, we believe that this work could
be used as a basis for more complex database implementations on supercomputers and
for training neural networks on larger syntax. Indeed, the exploration of the accessible
marking graph can be easily parallelized, and the accessibility to the database can be
parallelized. A work on an implementation closer to the functioning of a database would
certainly make it possible to treat much more complex cases in record time. Furthermore,
neural networks are able to translate and summarize text thanks to attention mechanisms
which could certainly give excellent results on code verification. At the moment, our
algorithm is not able to cover all the codes implemented on the different controllers used
in the industry. Some complex semantics inducing strong combinatorial explosion cannot
be present in the verified codes. We hope to be able to extend our work to the whole
set of codes by implementing other ingenious solutions allowing us to treat the various
combinatorial problems.

The final goal of this study is to support humans to design reliable PLC codes. Dur-
ing this first study, we did not submit our methods to actors who did not know our research
subject. One of the objectives of our future work will be to submit our proposed tools to
personnel working on the realization of PLC code in an industrial environment.
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Abbreviations

The following abbreviations are used in this manuscript:

DGLSTM DiGraph Long Short-Term Memory
FAT Factory Acceptance Testing
FPGA Field-Programmable Gate Array
Grafcet Graphe Fonctionnel de Commande des Étapes et Transitions

(Sequential Function Chart)
IT Information Technology
LSTM Long Short-Term Memory
MLP MultiLayer Perceptron
OT Operational Technology
PLC Programmable Logic Controllers
RAM Random Access Memory
SAT Acceptance Testing
SQL Structured Query Language
ST Structured Text
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